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Abstract: We discuss a new design methodology of self-organizing approximator technique (self-

organizing polynomial neural networks (SOPNN)) using evolutionary algorithm (EA). The SOPNN dwells 

on the ideas of group method of data handling. The performances of SOPNN depend strongly on the 

number of input variables available to the model, the number of input variables and type (order) of the 

polynomials to each node. They must be fixed by designer in advance before the architecture is 

constructed. So the trial and error method must go with heavy computation burden and low efficiency. 

Moreover it does not guarantee that the obtained SOPNN is the best one. In this paper, we propose EA-

based SOPNN to alleviate these problems. The order of the polynomial, the number of input variables, and 

the optimum input variables are encoded as a chromosome and fitness of each chromosome is computed. 

So the appropriate information of each node is evolved accordingly and tuned gradually throughout the EA 

iterations. We can show that the EA-based SOPNN is a sophisticated and versatile architecture which can 

construct models for limited data set as well as poorly defined complex problems. Comprehensive 

comparisons show that the performance of the EA-based SOPNN is significantly improved in the sense of 

approximation and prediction abilities with a much simpler structure compared with the conventional 

SOPNN model as well as previous identification methods. 
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1. Introduction 

System modeling and identification is important for system analysis, control, and automation as well as 

for scientific research. So a lot of attention has been directed to developing advanced techniques of system 

modeling. Neural networks and fuzzy systems have been widely used for modeling nonlinear systems. The 

approximation capability of neural networks, such as multilayer perceptrons, radial basis function (RBF) 

networks, or dynamic recurrent neural networks has been investigated by many authors [1-3]. On the other 

hand, fuzzy systems have been proved to be able to approximate nonlinear functions with arbitrary 

accuracy [4-5]. But the resultant neural network representation is very complex and difficult to understand 

and fuzzy systems require too many fuzzy rules for accurate function approximation, particularly in the 

case of multidimensional input. As another method, there is a GMDH-type algorithm. Group Method of 

Data Handling (GMDH) was introduced by Ivakhnenko in the early 1970’s [6-10]. GMDH-type algorithms 

have been extensively used since the mid-1970’s for prediction and modeling complex nonlinear processes. 

The main characteristics of GMDH is that it is a self-organizing and provides an automated selection of 

essential input variables without using a prior information on the relationship among input-output variables 

[11]. Self-organizing Polynomial Neural Networks (SOPNN) [12-13] is GMDH-type algorithm and one of 

useful approximator techniques. SOPNN has an architecture similar to feedforward neural networks whose 

neurons are replaced by polynomial nodes. The output of the each node in SOPNN structure is obtained 

using several types of high-order polynomial such as linear, quadratic, and modified quadratic of input 

variables. These polynomials are called as partial descriptions (PDs). SOPNNs have fewer nodes than 

Artificial Neural Networks (ANNs), but the nodes are more flexible. The SOPNN shows a superb 

performance in comparison to the previous fuzzy modeling methods. Although the SOPNN is structured 

by a systematic design procedure, it has some drawbacks to be solved. If there are sufficiently large 
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number of input variables and data points, SOPNN algorithm has a tendency to produce overly complex 

networks. On the other hand, if a small number of input variables are available, SOPNN does not maintain 

good performance. Moreover, the performances of SOPNN depend strongly on the number of input 

variables available to the model, the number of input variables and types or order in each PD. They must 

be chosen in advance before the architecture of SOPNN is constructed. In most cases, they are determined 

by the trial and error method with a heavy computational burden and low efficiency. Moreover, the 

SOPNN algorithm is a heuristic method so it does not guarantee that the obtained SOPNN is the best one 

for nonlinear system modeling. Therefore, more attention must be paid to solve the above-mentioned 

drawbacks. 

In this paper we will present a new design methodology of SOPNN using evolutionary algorithm (EA) 

in order to alleviate the above-mentioned drawbacks of the SOPNN. We call this new network the EA-

based SOPNN. 

Evolutionary Algorithm (EA) has been widely used as a parallel global search method for optimization 

problems [14-17]. The EA is used to determine that how many input variables are chosen to each node, 

which input variables are optimally chosen among many input variables, and what is the appropriate type 

of the polynomials in each PD. 

This paper is organized as follows. The design procedure of the conventional SOPNN is briefly 

described in Section 2. A design methodology of EA-based SOPNN is described in Section 3. Coding of 

the key factors of the SOPNN, the representation of chromosome and fitness function are also discussed in 

Section 3. The proposed EA-based SOPNN is applied to nonlinear systems modeling to show its 

performances compared with other methods including conventional SOPNN in Section 4, Finally 

conclusions are given in Section 5. 
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2. Design procedure of SOPNN 

The SOPNN algorithm is based on the GMDH method and utilizes a class of polynomials such as linear, 

quadratic, and modified quadratic types. By choosing the most significant input variables and polynomial 

types among various types of forms available, we can obtain the PDs in each layer. The framework of the 

design procedure of the SOPNN comes as a sequence of the following steps.  

[Step 1] Determine system’s input variables. 

We define the input variables such as 1 2, ,i i Nix x xL related to output variables iy , where N and i are the 

number of entire input variables and input-output data set, respectively. The normalization of the input data 

is also performed if required.  

[Step 2] Form training and testing data. 

The input - output data set is separated into training ( trn ) data set and testing ( ten ) data set. Obviously 

we have tetr nnn += . The training data set is used to construct a SOPNN model. And the testing data set is 

used to evaluate the constructed SOPNN model. 

[Step 3] Choose a structure of the SOPNN. 

The structure of SOPNN is strongly dependent on the number of input variables and the order of PD in 

each layer. Two kinds of SOPNN structures, namely, the basic SOPNN structure and the modified SOPNN 

structure can be available. Each of them comes with two cases. Table 1 summarizes the various SOPNN 

structures. 

(a) Basic SOPNN structure – The number of input variables of PDs is the same in every layer. 

    Case 1. The polynomial order of the PDs is the same in each layer of the network. 

    Case 2. The polynomial order of the PDs in the 2nd or higher layer is different from the one of PDs in 

the 1st layer.  

(b) Modified SOPNN structure – The number of input variables of PDs varies from layer to layer. 

Case 1. The polynomial order of the PDs is same in every layer. 

Case 2. The polynomial order of the PDs in the 2nd layer or higher is different from the one of PDs 
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in the 1st layer. 

 

Table 1. Taxonomy of various SOPNN structures 

PD Type 
Layer 

No. of input 
variables 

Order of 
Polynomial SOPNN structure 

1st layer i Type I 

2-5th layer j Type J 

(1) i=j: Basic SOPNN 
a) I=J: Case 1 
b) I≠J: Case 2 

(2) i≠j: Modified SOPNN 
   a) I=J: Case 1 
   b) I≠J: Case 2 

                               (i, j=2, 3, …, ; I, J=1, 2, 3) 

 

[Step 4] Determine the number of input variables and the order of the polynomial forming a PD. 

We determine arbitrarily the number of input variables and the type of the polynomial in PDs. The 

polynomials are different according to the number of input variables and the polynomial order. Several 

types of polynomials are shown in the Table 2. The total number of PDs located at the current layer is 

determined by the number of the selected input variables (r) from the nodes of the preceding layer, because 

the outputs of the nodes of the preceding layer become the input variables to the current layer. The total 

number of PDs in the current layer is equal to the combination N rc , that is 
( )

!
! !

N
r N r−

, where N is the 

number of nodes in the preceding layer. 

 

Table 2. Different types of the polynomial in PDs. 

    No. of inputs 
Order of 
the polynomial 

1 2 3 

1 (Type 1) Linear Bilinear Trilinear 

2 (Type 2) Quadratic Biquadratic Triquadratic 

2 (Type 3) Modified 
quadratic 

Modified 
biquadratic 

Modified 
triquadratic 

               

• Bilinear PD = 22110 xcxcc ++  

• Biquadratic PD = 22110 xcxcc ++ + 215
2
24

2
13 xxcxcxc ++  
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• Modified biquadratic PD = 22110 xcxcc ++ 213 xxc+  

• Trilinear PD = 3322110 xcxcxcc +++  

• Triquadratic PD= 3322110 xcxcxcc +++ + 329318217
2
36

2
25

2
14 xxcxxcxxcxcxcxc +++++  

• Modified triquadratic PD = 3322110 xcxcxcc +++  + 326315214 xxcxxcxxc ++  

 

[Step 5] Estimate the coefficients of the PD. 

The vector of coefficients of the PDs as shown in Table 2 is determined using a standard mean squared 

errors (MSE) by minimizing the following index 

( )
2

1

1 !( ) , 1,2,
! !

trn

k i ki
itr

NE y z k
n r N r=

= − =
−∑ L                  (1) 

where, kiz denotes the output of the k-th node with respect to the i-th data and trn is the number of training 

data subset. 

This step is completed repeatedly for all the nodes in the current layer and, in the sequel, all layers of the 

SOPNN starting from the input to the output layer. 

[Step 6] Select PDs with the good predictive capability. 

The predictive capability of each PD is evaluated by performance index using the testing data set. Then 

we choose w PDs Among N rc PDs in due order from the best predictive capability (the lowest value of the 

performance index). Here, w is the pre-defined number of PDs that must be preserved to next layer. The 

outputs of the chosen PDs serve as inputs to the next layer. 

There are two cases as to the number of the preserved PDs in each layer 

If 
( )

!
! !

N w
r N r

〈
−

 then the number of the chosen PDs retained for the next layer is equal to 
( )

!
! !

N
r N r−

 

If 
( )

!
! !

N w
r N r

≥
−

 then the number of the chosen PDs retained for the next layer is equal to w 

[Step 7] Check the stopping criterion. 

The SOPNN algorithm terminates when the number of layers predetermined by the designer is reached.  

[Step 8] Determine new input variables for the next layer. 

If the stopping criterion is not satisfied, the next layer is constructed by repeating step 4 through step 8.  
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The overall architecture of the SOPNN is shown in Fig. 1. When the final layer has been constructed, the 

node with the best predictive capability is selected as the output node. All remaining nodes except output 

node in the final layer are discarded. Furthermore, all the nodes in the previous layers that do not have 

influence on the output node are also removed by tracing the data flow path of each layer.  

 

Possible inputs Optimal modelChoice of estimated models/
stop conditions

...

x 1i
x 2i

x 3i
x 4i

xNi

xN- 1i

Z1
1

Z1
N!/{(N-r)!r!}

...

PD

PD

PD
... ...

PD

zj-1
p

zj-1
q

order
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selected inputs: (j-1)th layer
zj-1

p,  z
j-1

q

PD:  j th layer
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zi

Z1
2

j th layer

c0+c1z
j-1

p+c2z
j-1

q+c3(z
j-1

p)2+c4(z
j-1

q)2+c5z
j-1

pzj-1
q

zj-1
p

zj-1
q

...

zj-1
1

zi

... yi
∧

 

Fig. 1. Overall architecture of the SOPNN 

 

The SOPNN is a flexible neural architecture whose structure is developed through modeling process. In 

particular, the number of the layers and the number of nodes in each layer of the SOPNN are not fixed in 

advance (it usually happens in the case of multilayer perceptron) but generated in a dynamic way. Its each 

node exhibits a high level of flexibility and realizes a polynomial type of mapping between input and 

output variables. As a result, SOPNN provides a systematic design procedure but the performances depend 

strongly on a few factors stated in the section 1. In the following section, we propose the new design 

procedure using EA for the systemic design of SOPNN with the optimum performance. 
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3. Design of EA-based SOPNN 

In this section, a new design technique of SOPNN using EA is described. In the SOPNN algorithm, the 

problems are how to determine the optimal number of input variables, which input variables are chosen, 

and how to select the order of the polynomial forming a PD in each node. In this paper, these problems are 

solved by using EA. The EA is implemented using crossover and mutation probably rates for better 

exploitation of the optimal inputs and order of polynomial in each node of SOPNN. All of the initial EA 

populations are randomized, which implies that minimum heuristic knowledge is used. The appropriate 

inputs and order are evolved accordingly and are tuned gradually throughout the EA iterations. 

In the evolutionary design procedure, key issues are how to encode the order of the polynomial, the 

number of input variables, and the optimum input variables as a chromosome and how to define a criterion 

to compute the fitness of each chromosome. In what follows, the detailed representation of the coding 

strategy and choice of fitness function are given.  

 

3.1 Representation of chromosome for appropriate information of each PD 

When we design the SOPNN using EA, the most important consideration is the representation strategy, 

that is how to encode the key factors of the SOPNN into the chromosome. We employ a binary coding for 

the available design specification. We code the order and the inputs of each node in the SOPNN as a finite-

length string. Our chromosomes are made of three sub-chromosomes. The first one is consisted of 2 bits 

for the order of polynomial (PD), the second one is consisted of 3 bits for the number of inputs of PD, and 

the last one is consisted of N bits which are equal to the number of entire input candidates in the current 

layer. These input candidates are the node outputs of the previous layer. The representation of binary 

chromosomes is illustrated in Fig. 2.  
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00 11 0 1 01 •••10

The 1st sub-chromosome:
2 bits for the order of PD

The 2nd sub-chromosome:
3 bits for the number of

inputs of PD

The 3rd sub-chromosome: N bits
equal to input candidates in the

current layer

 

Fig. 2. Structure of binary chromosome for a PD 

 

The 1st sub-chromosome is made of 2 bits. It represents several types of order of PD. The relationship 

between bits in the 1st sub-chromosome and the order of PD is shown in Table 3. Thus, each node can 

exploit a different order of the polynomial.  

 

Table 3. Relationship between bits in the 1st sub-chromosome and order of PD. 

Bits in the 1st sub-
chromosome Order of polynomial(PD) 

00 Type 1 – Linear 
01 
10 Type 2 – Quadratic 

11 Type 3 – Modified quadratic 

 

The 3rd sub-chromosome has N bits, which are concatenated a bit of 0’s and 1’s coding. The input 

candidate is represented by a 1 bit if it is chosen as input variable to the PD and by a 0 bit it is not chosen. 

This way solves the problem of which input variables to be chosen.  

If many input candidates are chosen for model design, the modeling is computationally complex, and 

normally requires a lot of time to achieve good results. In addition, it causes improper results and poor 

generalization ability. Good approximation performance does not necessarily guarantee good 

generalization capability [18]. To overcome this drawback, we introduce the 2nd sub-chromosome into the 

chromosome. The 2nd sub-chromosome is consisted of 3 bits and represents the number of input variables 

to be selected. The number based on the 2nd sub-chromosome is shown in the Table 4. Input variables for 
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each node are selected among entire input candidates as many as the number represented in the 2nd sub-

chromosome. Designer must determine the maximum number in consideration of the characteristic of 

system, design specification, and some prior knowledge of model. With this method we can solve the 

problems such as the conflict between overfitting and generalization and the requirement of a lot of 

computing time.  

 

Table 4. Relationship between bits in the 2nd sub-chromosome and number of inputs to PD. 

Bits in the 2nd sub-
chromosome 

Number of inputs to 
PD 

000 1 
001 2 
010 2 
011 3 
100 3 
101 4 
110 4 
111 5 

 

The relationship between chromosome and information on PD is shown in Fig. 3. The PD corresponding 

to the chromosome in Fig. 3 is described briefly as Fig. 4. 

Information on PD Forming a PD

x6

x5

x4

x3

x2

x1

Input cadidates Chromosome

1st sub-
chromosome

3rd sub-
chromosome

2nd sub-
chromosome

selected

0

0

1

1

0

0

0

1

0

1

0

selected

ignored

ignored

ignored

ignored

Order of
polynomial

No. of inputs

ŷf

 

Fig. 3. Example of PD whose various pieces of required information are obtained from its chromosome 
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x6

x1

PD2
2 ŷ

:quadratic
(Type 2)

: 2 inputs
 

Fig. 4. Node with PD corresponding to chromosome in Fig. 3. 

 

Fig. 3 shows an example of PD. The various pieces of required information are obtained its chromosome. 

The 1st sub-chromosome shows that the polynomial order is Type 2 (quadratic form). The 2nd sub-

chromosome shows two input variables to this node. The 3rd sub-chromosome tells that x1 and x6 are 

selected as input variables. The node with PD corresponding to Fig. 3 is shown in Fig. 4. Thus, the output 

of this PD ŷ can be expressed as (2). 

2 2
1 6 0 1 1 2 6 3 1 4 6 5 1 6ˆ ( , )y f x x c c x c x c x c x c x x= = + + + + +                (2) 

where coefficients c0, c1, …, c5 are evaluated using the training data set by means of the standard LSE. 

The polynomial function, PD, is formed automatically according to the information of sub-

chromosomes. 

The design procedure of EA-based SOPNN is shown in Fig. 5. At the beginning of the process, the 

initial populations comprise a set of chromosomes that are scattered all over the search space. The 

populations are all randomly initialized. Thus, the use of heuristic knowledge is minimized. The 

assignment of the fitness in EA serves as guidance to lead the search toward the optimal solution. Fitness 

function with several specific cases for modeling will be explained later. After each of the chromosomes is 

evaluated and associated with a fitness, the current population undergoes the reproduction process to create 

the next generation of population. The roulette-wheel selection scheme is used to determine the members 

of the new generation of population. After the new group of population is built, the mating pool is formed 

and the crossover is carried out. The crossover proceeds in three steps. First, two newly reproduced strings 

are selected from the mating pool produced by reproduction. Second, a position (one point) along the two 
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strings is selected uniformly at random. The third step is to exchange all characters following the crossing 

site. We use one-point crossover operator with a crossover probability of Pc (0.85). This is then followed 

by the mutation operation. The mutation is the occasional alteration of a value at a particular bit position 

(we flip the states of a bit from 0 to 1 or vice versa). The mutation serves as an insurance policy which 

would recover the loss of a particular piece of information (any simple bit). The mutation rate used is fixed 

at 0.05 (Pm). Generally, after these three operations, the overall fitness of the population improves. Each of 

the population generated then goes through a series of evaluation, reproduction, crossover, and mutation, 

and the procedure is repeated until a termination condition is reached. After the evolution process, the final 

generation of population consists of highly fit bits that provide optimal solutions. After the termination 

condition is satisfied, one chromosome (PD) with the best performance in the final generation of 

population is selected as the output PD. All remaining other chromosomes are discarded and all the nodes 

that do not have influence on this output PD in the previous layers are also removed. By doing this, the 

EA-based SOPNN model is obtained. 

YES

NO

Start

Results: chromosomes which have
good fitness value are selected for the
new input variables of the next layer

Generation of initial population:
the parameters are encoded into a

chromosome

Termination condition

Evaluation: each chromosome is
evaluated and has its fitness value

End: one chromosome (PD)
characterized by the best

performance is selected as the output
when the 3rd layer is reached

A`: 0 0 0 0 0 0 0 0 0 1 1 A`:  0 0 0 1 0 0 0 0 0 1 1

before mutation after mutation

A:  0 0 0 0 0 0 0 1 1 1 1
B:  1 1 0 0 0 1 1 0 0 1 1

A`:  0 0 0 0 0 0 0 0 0 1 1
B`:  1 1 0 0 0 1 1 1 1 1 1

before crossover after crossover

The fitness values of the new chromosomes
are improved trough generations with

genetic operators

---: mutation site

---: crossover site

A:  0 0 0 0 0 0 0 1 1 1 1 B:  1 1 0 0 0 1 1 0 0 1 1

Reproduction: roulette wheel

One-point crossover

Invert mutation

 

Fig. 5. Block diagram of the design procedure of EA-based SOPNN. 
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3.2 Fitness function for modeling 

The important thing to be considered for the EA is the determination of the fitness function. The 

genotype representation encodes the problem into a string while the fitness function measures the 

performance of the model. It is quite important for evolving systems to find a good fitness measurement. 

To construct models with significant approximation and generalization ability, we introduce the error 

function such as  

(1 )E PI EPIθ θ= × + − ×                                 (3) 

where [0,1]θ ∈ is a weighting factor for PI and EPI, which denote the values of the performance index for 

the training data and testing data, respectively. Then the fitness value is determined as follows: 

1
1

F
E

=
+

                                   (4) 

Maximizing F is identical to minimizing E. The choice of θ  establishes a certain tradeoff between the 

approximation and generalization ability of the EA-based SOPNN.  

 

 

4. Simulation results 

In this section, we show the performance of our new EA-based SOPNN for two well known nonlinear 

system modeling. One is a time series of gas furnace (Box-Jenkins data)[19] which was studied previously 

in [20-27]. The other is a nonlinear system already exploited in fuzzy modeling [28-33]. 

 

4.1 Gas furnace process 

The delayed terms of methane gas flow rate u(t) and carbon dioxide density y(t) such as u(t-3), u(t-2), 

u(t-1), y(t-3), y(t-2), and y(t-1)are used as input variables to the EA-based SOPNN. The actual system 

output y(t) is used as target output variable for this model. We choose the input variables of nodes in the 

1st layer from these input variables. The total data set consisting of 296 input-output pairs is split into two 

parts. The first one (consisting of 148 pairs) is used for training. The remaining part of the data set serves 
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as a testing set. Using the training data set, the coefficients of the polynomial are estimated using the 

standard LSE. The performance index is defined as the mean squared error  

2

1

1 ˆ( ) ( )
m

i i
i

PI EPI y y
m =

= −∑                             (5) 

where iy  is the actual system output, iŷ is the estimated output of each node, and m is the number of 

data. 

The design parameters of EA-based SOPNN for modeling are shown in Table 5. In the 1st layer, 20 

chromosomes are generated and evolved during 40 generations, where each chromosome in the population 

is defined as corresponding node. So 20 nodes (PDs) are produced in the 1st layer based on the EA 

operators. All PDs are estimated and evaluated using the training and testing data sets, respectively. They 

are also evaluated by a fitness function and ranked according to their fitness value. We choose nodes as 

many as a predetermined number w from the highest ranking node, and use their outputs as new input 

variables to the nodes in the next layer. In other words, The chosen PDs (w nodes) must be preserved for 

the design of the next layer and the outputs of the preserved PDs serve as inputs to the next layer. The 

value of w is different from each layer, which is also shown in Table 5. This procedure is repeated for the 

2nd layer and the 3rd layer.  

 

Table 5. Design parameters of EA-based SOPNN for modeling. 

Parameters 1st layer 2nd layer 3rd layer 

Maximum generations 40 60 80 
Population size:( w) 20:(15) 60:(50) 80 

String length 11 20 55 
Crossover rate (Pc) 0.85 
Mutation rate (Pm) 0.05 
Weighting factor: θ  0.1~0.9 

Type (order) 1~3 

w: the number of chosen nodes whose outputs are used as inputs to the next layer 

 

Table 6 summarizes the values of the performance index, PI and EPI, of the proposed EA-based SOPNN 

according to weighting factor. These values are the lowest value in each layer. The overall lowest value of 
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the performance index is obtained at the third layer when the weighting factor is 0.5. If this model is 

designed to have the fourth or higher layer, the performance values come to much lower, but the large 

computation time is required and the model has much complex network size. 

 

Table 6. Values of performance index of the proposed EA-based SOPNN. 

1st layer 2nd layer 3rd layer Weighting factor (θ) 
PI EPI PI EPI PI EPI 

0.1 0.0214 0.1260 0.0200 0.1231 0.0199 0.1228 
0.25 0.0214 0.1260 0.0149 0.1228 0.0145 0.1191 
0.5 0.0214 0.1260 0.0139 0.1212 0.0129 0.1086 
0.75 0.0214 0.1260 0.0139 0.1293 0.0138 0.1235 
0.9 0.0173 0.1411 0.0137 0.1315 0.0129 0.1278 

 

Fig. 6 depicts the trend of the performance index values produced in successive generations of the EA 

when the weighting factor θ is 0.5. Fig. 7 illustrates the values of error function and fitness function in 

successive EA generations when θ =0.5.  
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(a) performance index for the training data set        (b) performance index for the testing data set  

Fig. 6. Trend of performance index values with respect to generations through layers (θ=0.5) 
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(a) error function (E)                           (b) fitness function (F) 

Fig. 7. Values of the error function and fitness function with respect to the successive generations

 (θ=0.5) 

 

Fig. 8 shows the proposed EA-based SOPNN model with 3 layers and its identification performance 

when the θ =0.5. The model output follows the actual output very well. Where the values of the 

performance index of the proposed method are equal to PI=0.012, EPI=0.108, respectively. 
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(a) Proposed EA-based SOPNN model with 3 layers 
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(b) actual output versus model output                           (c) error 

Fig. 8. Proposed EA-based SOPNN model with 3 layers and its identification performance (θ=0.5) 

 

For the comparison of network size of the proposed EA-based SOPNN with that of conventional 

SOPNN, conventional SOPNN models are visualized in Fig. 9. The structure of the EA-based SOPNN is 

much simpler than the conventional SOPNN in terms of number of nodes and layers. In addition, the 

performance of the EA-based SOPNN provides comparable results. Also, EA-based model outperforms 

the existing identification models. The results of the basic SOPNN & Case 1 in Fig. 9 (a) are obtained in 

the 5th layer when using 4 inputs and Type 3 to every node in all layers, (that are quantified as PI=0.012, 

EPI=0.084). The results of the modified SOPNN and Case 2 in Fig. 9 (b) (PI=0.016, EPI=0.101) have been 

reported when using 2 inputs and Type 1 to every node in the 1st layer and 3 inputs and Type 2 to every 

node in the 2nd layer or higher. 
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(b) Modified SOPNN & Case 2 

Fig. 9. Conventional SOPNN models with 5 layers 

 

Table 7. Values of performance index of some identification models. 

Performance index Model 
PI PI EPI 

Tong’s model[20] 0.469   
Sugeno and Yasukawa’s model[21] 0.190   

Xu’s model[22] 0.328   
Pedrycz’s model[23] 0.320   

Leski and Czogala’s model[24] 0.047   
Kang’s model[25] 0.161   
Kim’s model[26]  0.034 0.244 

Lin and Cunningham’s model[27]  0.071 0.261 
Kim’s model [12]  0.013 0.126 

Basic &Case 1  0.012 0.084 SOPNN  
(5 layers) [13] Modified&Case2  0.016 0.101 

EA-based SOPNN (3 layers)  0.012 0.108 

 

Table 7 provides a comparison of the proposed model with other techniques being already proposed in 
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the literature. The comparison is realized on the basis of the same performance index for the training and 

testing data set. Additionally, PI denotes a performance index of the models for the entire data set (not 

being split into a training and testing set). PI denotes a performance index of the model for the training 

data set while EPI for the testing data. It is obvious that the proposed architecture outperforms other 

models both in terms of their accuracy and higher generalization capabilities. 

 
 

5.2. A Three-Input Nonlinear Function 

In this example, we will demonstrate how the proposed EA-based SOPNN model can be employed to 

identify the highly nonlinear function. The performance of this model will be compared with earlier works. 

The function to be identified is a three-input nonlinear function given by (6)  

 

0.5 1 1.5 2
1 2 3(1 )y x x x− −= + + +                                   (6) 

 

which is widely used by Takagi and Hayashi[28], Sugeno and Kang[29], and Kondo[30] to test their 

modeling approaches. Table 8 shows 40 pairs of the input-output data obtained from (6) [32]. The 

input 4x is a dummy variable which has no relation to (6). The data on Table 8 is divided into training data 

set (Nos. 1-20) and testing data set (Nos. 21-40). To compare the performance, the same performance 

index, average percentage error (APE) adopted in [28-32] is used.  

 

1

ˆ| |1 100 (%)
m

i i

i i

y y
APE

m y=

−
= ×∑                           (7) 

 

where m is the number of data pairs and iy and iŷ  are the i-th actual output and model output, 

respectively.  

Again, a series of comprehensive experiments was conducted and the results are summarized in the 

same way as before. The design parameters of EA-based SOPNN in each layer are shown in Table 9.  
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Table 8. Input-output data of three-input nonlinear function. 

Training data (1-20) Testing data (21-40) 
No. x1 x2 x3 x4 y No. x1 x2 x3 x4 y 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
1 
1 
1 
1 
5 
5 
5 
5 
5 
1 
1 
1 
1 
1 
5 
5 
5 
5 
5 

3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 

1 
2 
3 
4 
5 
4 
3 
2 
1 
2 
3 
4 
5 
4 
3 
2 
1 
2 
3 
4 

1 
1 
5 
5 
1 
1 
5 
5 
1 
1 
5 
5 
1 
1 
5 
5 
1 
1 
5 
5 

11.11 
6.521
10.19
6.043
5.242
19.02
14.15
14.36
27.42
15.39
5.724
9.766
5.87 
5.406
10.19
15.39
19.68
21.06
14.15
12.68

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

1 
1 
1 
1 
1 
5 
5 
5 
5 
5 
1 
1 
1 
1 
1 
5 
5 
5 
5 
5 

1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 
5 
1 
3 

5 
4 
3 
2 
1 
2 
3 
4 
5 
4 
3 
2 
1 
2 
3 
4 
5 
4 
3 
2 

1 
1 
5 
5 
1 
1 
5 
5 
1 
1 
5 
5 
1 
1 
5 
5 
1 
1 
5 
5 

9.545 
6.043 
5.724 
11.25 
11.11 
14.36 
19.61 
13.65 
12.43 
19.02 
6.38 
6.521 

16 
7.219 
5.724 
19.02 
13.39 
12.68 
19.61 
15.39

 

Table 9. Design parameters of EA-based SOPNN for modeling . 

Parameters 1st layer 2nd layer 3rd layer 

Maximum generations 40 60 80 
Population size:( w) 20:(15) 60:(50) 80 

String length 8 20 55 
Crossover rate (Pc) 0.85 

Mutation rate (Pm) 0.05 
Weighting factor: θ  0.1~0.9 

Type (order) 1~3 

w: the number of chosen nodes whose outputs are used as inputs to the next layer 

 

The simulation results of the EA-based SOPNN are summarized in Table 10. The overall lowest values 

of the performance index, PI=0.188 EPI=1.087, are obtained at the third layer when the weighting factor 

(θ) is 0.25.  

Table 10. Values of performance index of the proposed EA-based SOPNN model. 

1st layer 2nd layer 3rd layer Weighting factor 
PI EPI PI EPI PI EPI 

0.1 5.7845 6.8199 2.3895 3.3400 2.2837 3.1418 
0.25 5.7845 6.8199 0.8535 3.1356 0.1881 1.0879 
0.5 5.7845 6.8199 1.6324 5.5291 1.2268 3.5526 
0.75 5.7845 6.8199 1.9092 4.0896 0.5634 2.2097 
0.9 5.7845 6.8199 2.5083 5.1444 0.0002 4.8804 
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Fig. 10 illustrates the trend of the performance index values produced in successive generations of the 

EA when the weighting factor θ is 0.25. 
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(a) performance index for the training data set         (b) performance index for the testing data set 

Fig. 10. Trend of performance index values with respect to generations through layers (θ =0.25) 

 

Fig. 11 shows the values of error function and fitness function in successive EA generations when the θ 

is 0.25.  
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(a) error function (E)                           (b) fitness function (F) 

Fig. 11. Values of the error function and fitness function with respect to the successive generations (θ 

=0.25) 
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Fig. 12 depicts the proposed EA-based SOPNN model with 3 layers when the θ is 0.25. The structure of 

EA-based SOPNN is very simple and has a good performance. But for the conventional SOPNN, it is 

difficult to structure the model for this nonlinear function. That is why a few number of input candidates 

are considered [33]. 
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Fig. 12. Structure of the EA-based SOPNN model with 3 layers (θ =0.25) 

 

Fig. 13 shows the identification performance of the proposed EA-based SOPNN and its errors when the 

θ is 0.25. The output of the EA-based SOPNN follows the actual output very well.  
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(a) actual output versus model output of training data set    (b) errors of (a) 
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(c) actual output versus model output of testing data set   (d) errors of (c)  

Fig. 13. Identification performance of EA-based SOPNN model with 3 layers and its errors 

 

Table 11 shows the performance of the proposed EA-based SOPNN model and other models studied in 

the literature. The experimental results clearly reveal that the proposed model outperforms the existing 

models both in terms of better approximation capabilities (PI) as well as superb generalization abilities 

(EPI). But the conventional SOPNN cannot be applied to the identification of this example. 

 

Table 11. Performance comparison of various identification models. 

APE Model 
PI (%) EPI (%) 

GMDH model[30] 4.7 5.7 
Model 1  1.5 2.1 Fuzzy model 

[29]  Model 2  0.59 3.4 
Type 1 0.84 1.22 
Type 2 0.73 1.28 FNN [32] 
Type 3 0.63 1.25 

GD-FNN [31] 2.11 1.54 
Conventional SOPNN [13] Impossible 

EA-based SOPNN 0.188 1.087 
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5. Conclusions 

 In this paper, we propose a new design methodology of SOPNN using evolutionary algorithm, which is 

called as the EA-based SOPNN and study properties of EA-based SOPNN. We can see that the EA-based 

SOPNN is a sophisticated and versatile architecture which can construct models for limited data set and 

poorly defined complex problems. Moreover, the architecture of the model is not predetermined, but can 

be self-organized automatically during the design process. The conflict between overfitting and 

generalization can be avoided by using fitness function with weighting factor. The experimental results 

show that the proposed EA-based SOPNN is superior to the conventional SOPNN models as well as other 

previous models in terms of the modeling performance. 
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