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Abstract

This study addresses the susceptibility of the traditional
theoretical framework of the educational production-function to
political influence and personal bias.  The politics of the
production-function are becoming increasingly obvious in
educational research as the battle over whether money matters in
improving educational productivity continues (Hanushek, 1989-
1997; Hedges et. al., 1994,1996).  One common thread of the
studies on both sides of the money issue is the predominantly
deductive approach that is used.  Through the purely deductive
approach, researchers are driven to test the statistical significance
of preconceived notions, political or personal in origin, about how
the educational system works.  As an alternative approach,
inductive, non-linear pattern recognition algorithms are applied to
school productivity data from the state of Vermont.  These
algorithms, known as Neural Networks, yield optimal solutions
that differ both in functional form and parameter significance from
many of our preconceived notions.

Introduction

DOES MONEY MATTER? or is this really even the question? And if it’s

not, then why do we keep asking it, over and over (Hanushek, 1989-’97; Hedges,

Laine and Greenwald, 1994, 1996)?  For his most recent meta-analysis of this

question, Hanushek (1997) combines the results of 90 studies regarding the

relationship between schooling inputs and student outcomes. Betts (1996) uses

approximately 60 related studies similarly in his assessment of the relationship
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between school spending, spending-related factors and student earnings.  Yet,

while these meta-analyses provide us with an insightful overview of existing

educational productivity research, and a relative balance of political perspectives,

we seem to be covering little new ground with regard to understanding the system

of schooling as a whole.

Structurally, most studies of educational productivity consist of some

statistical test of the effects of a selected set of schooling inputs (S) and student

inputs (X) on student outcomes (Q). These tests are most often performed within a

standard, deductive, hypothesis-testing framework. In addition to typical

production-function analysis, there are a number of other methods for which the

end result is quite the same.  Among these methods are rate of return analyses

(Betts, 1996) and cost-function analyses (Duncombe and Miner, 1996). At the

most basic level, each of the methods rely on the determination of some

mathematical relationship between spending and learning or spending and

earning.

When it comes to whether money matters, it is quite easy to see how there

can be both political and personal incentives for making arguments toward one

side or the other of the issue.  While it is expected that the cumulative outcomes

of our biases will result in a balanced pool of useful information, eventually

revealing a middle-ground, the tendency has been for the pool of results to

become more polarized over time.  How do we go about breaking the gridlock on
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this question?  And, more importantly, should our efforts continue to be so

narrowly focussed on the many permutations of this question? Perhaps our

problems lie more deeply in the processes of educational research itself. Perhaps

the methods by which we generate and subsequently test the “important questions

of today", themselves, are too restrictive.

Potential Pitfalls of Exclusively Deductive Processes

As researchers in the social sciences, we find ourselves tightly bound to

testing the rationality of existing and proposed theories.  A vast amount of our

research consists of statistical hypothesis tests based on some theoretical

framework. Research lacking such a framework is unlikely to be granted

credibility in the educational research community. Ultimately, in quantitative

analyses, these theoretical frameworks are operationalized into formal

mathematical models1, equation types2, and even functional forms3.  But, where

do these theories and models come from?

The research process is designed such that new theories are intended to

evolve from novelties in previous findings, that these new theories will be

validated in subsequent studies that may themselves reveal new novelties, and so

on.  Two distinct problems may inhibit this process. First, ongoing research on a

                                                       
1 Median Voter Model, Political Support Maximization Model etc.
2 Production-Function etc.
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given theoretical framework may at some point become stagnant, revealing little

novelty in its findings, yet persisting nonetheless, “spinning the wheels of the

research process.”  Second, the selection and combination of previous findings

toward the generation of novel ideas must occur solely within the mind of the

researcher(s).

Statistical Methods: Technical Limitations and Potential Political Influence

Beyond the formation of the research question is a limited set of statistical

methods. Linear correlation and multiple linear regression analysis are among the

methods that lend themselves to traditional statistical hypothesis testing.  The

basic objective, in either case, is to determine whether the prescribed inputs and

outcomes share a statistical relationship (generally linear) other than “0.”4 Yet, for

statistical hypothesis testing to occur, two key a priori decisions must be made: 1)

the parameters to be tested, and 2) the shape of the frame (functional form) to be

applied to the relationship. While these issues are seemingly technical, both

parameter selection and determination of functional form are susceptible to the

influence of personal and/or political biases.

The question of specific parameters to be tested is an applied extension of

the research question.  Among the important considerations are: 1) how to

                                                                                                                                                      
3 Linear, Logarithmic, Exponential, Multiplicative
4 with the usual acceptable probability of being wrong set at 5%.
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measure the constructs in question and 2) how to organize the parameters into an

equation structure that will provide us with the appropriate test statistics to

identify their significance.   Verstegen (1997) points out that even "order of entry"

can play a significant role in discriminating between the effects of school and

non-school inputs.

While it is quite easy to see how parameter selection can be used to

promote political biases regarding spending, the political undertones of functional

forms are somewhat more elusive. Cohn & Geske (1990) note: “A linear

relationship between X inputs and the Q outputs would be empirically valid to the

extent that the curvature of the total output function is only mildly violated by

employing a linear approximation.”5  A common economic assertion with regard

to shape of the “actual curve” is that “the education production, like all well-

behaved production-functions6, is subject to diminishing returns”(Betts, 1996).7

This behavior is generally well captured (e.g. displays a significant, positive

coefficient less than 1.0) by applying a log-log specification of wages relative to

per pupil spending (Betts, 1996). Others have replaced the log of spending with a

                                                       
5 p. 166
6 It is somewhat ironic that we consider a production to be "well behaved" based on the

extent to which it conforms to our theoretical expectations and functional forms as this
assessment assumes that we truly know how a production-function is supposed to
behave.

7 p. 163
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quadratic function, achieving a similar interpretation (Johnson & Stafford, 1973).8

While a significant parameter under either of these circumstances signifies

a statistically adequate fit9, it does not necessarily signify the best, or even most

appropriate fit.  Nor are we likely to find the best fit by these methods.  In

particular, where patterns of diminishing returns are expected, placing a rigid

frame (predefined functional form) over a data set is unlikely to reveal local

optima, or important decision points. In rate of return studies, where

determinations are made along a log-log production-function curve, results at

different levels of inputs can be nearly as misleading as the linear specification.10

The differential rates of response of outcomes to changes in inputs in a priori non-

linear specifications can have serious political implications.  For example: At

what point along the production-function curve does spending more yield

negligible performance returns?  The answer to this question varies depending on

the shape of the curve which will vary depending on the functional form selected.

New Approaches to Modeling

To synthesize the issues presented in the previous section, the key problem

                                                       
8 It is important to note that differential treatment of inputs and outcomes in the same

model may compromise the actual relationship between the variables.
9 At its most basic level, the significant parameter simply signifies that the fit is better

than “nothing.”
10Mathematically, the only difference that exists in applying the log-log specification is

that we are forcing a slightly bent rigid frame onto the data rather than an entirely
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with using purely deductive processes for studying systems as complex as our

education system is that we must assume that we actually understand how the

system works, by way of existing theory, before we even begin our analyses. In

light of the lack of novelty of our recent findings, and continued indecision

regarding the role of fiscal resources, perhaps we should humbly begin to

recognize our ignorance, take a step back, and ask the more basic question: ”What

makes schools tick?”11

This, however, is a dauntingly inductive question and one for which we

have not necessarily developed or applied methodologies in the field of education.

We may, however, gain some insights from theory and methods of other fields.

The possibilities now range from simple pattern recognition algorithms (Farlow,

1984), or Neural Networks, to exploratory modeling (Bankes, 1993), to complex

adaptive systems modeling (Minar, Burkhart, Langton and Askenazi, 1997). Each

of these methods employs a balance of inductive experimentation and deductive

testing in order to gain a deeper understanding of a system as a whole.

The example of inductive analysis presented in this study barely scratches

the surface of what is currently possible. In Bankes’ typology of data-driven,

model-driven, and question-driven exploratory modeling, the example that

                                                                                                                                                      
straight one.

11 Allow me to operationalize this phrase to mean: How do the multiplicity of potential
factors related to student performance collectively and interactively come together to
yield successful students as measured by indicators of academic performance?
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follows is primarily data- driven, with the simple goal of revealing patterns and

relationships in the complex system of schooling.12   In other circles these

methods might be referred to as "data mining" or "knowledge extraction from

data" (Lemke, 1997).

Such "data mining" methods have been considered theoretically

unacceptable in many areas of economic and educational research and are often

informally referred to as "going fishing."  Yet how or why, then, have they gained

acceptance in fields such as financial analysis (Lemke, 1997), medicine

(Buchman et. al., 1994) and real estate valuation (Worzala, Lenk and Silva,

1995)?  One could contend that the difference in the competitive nature of the

fields has something to do with it.  In financial analysis in particular, to achieve

the competitive edge, it is extremely important for the analyst to find emerging

patterns and understand the complexity of the financial system in ways that other

analysts do not.  In educational policy research, there is little or no competitive

edge to be gained by greater understanding of the system because the system itself

is generally non-competitive. Thus, while we recognize the importance of

developing a greater understanding of the system, we are not similarly driven to

seek out competitive advantage in analyzing the system.

                                                       
12 It should be noted that because these analyses are all ultimately deterministic and

lacking measures of uncertainty, in Bankes’ typology they would more likely be
classified as Consolidative Modeling than actual exploratory modeling.  For a more
detailed discussion see Bankes (1993) p. 435.
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Neural Networks are a class of self-organizing algorithms typically used

for knowledge extraction.  The algorithms are referred to as Neural Networks

because, to some extent, they mimic the pattern recognition processes of the

brain.  There are, however, many types of neural networks, the most common

being backpropagation algorithms which identify non-linearities in data through

an iterative estimation procedure similar to maximum likelihood estimation.13

Other Neural Network methods include the Generalized Regression Neural

Network (GRNN) (Specht, 1991), a single pass non-linear estimation algorithm

and Group Method of Data Handling (GMDH) (Farlow, 1984), a self-organizing

polynomial optimizing algorithm.  Lemke (1997) and Liao (1992) note the

particular value of the GMDH algorithm for inductive data mining.  Each of these

methods is applied in the following analysis to determine its relative usefulness,

in combination with currently accepted methods, for understanding educational

productivity.

A Primer on Neural Networks

Model Structure

There are two basic differences between simple linear regression models

and Neural Network models.  The first is that the linear regression model, by

                                                       
13 The primary difference being the number and type of coefficients estimated and the

existence of the "Hidden Layer" where non-linear connections are established between
inputs.
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definition, is linear in its parameters and the second is that the linear regression

model contains no additional functions such as those which are found in the

additional layers of a neural network (McMenamin, 1997).  In Neural Network

terms, the simple linear model:

Y = XB + u

can be viewed as a “single output, feed forward system with no hidden layer and

with a linear activation function” (McMenamin, 1997).  To dissect this

description of the linear model, let us compare the simple linear form with that of

a relatively simple three layer feed forward Neural Network:

Figure 1: Network Diagram with 3 Inputs and Two Hidden Neurons

Adapted from McMenamin (1997)

The general form for the network presented in Figure 1 is:

Y

H2H1

X3X2X1

Output Layer

Hidden Layer

Input Layer
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Y = F[H1(X), H2(X), …, HN(X)] + u

where the dependent variable, Y is a function, F, of explanatory variables, X,

which have been re-scaled through a series of neural network functions, H.  In

general, these functions consist of a logistic, or “S” shaped activation function,

sometimes referred to as a “hidden layer transfer function” (McMenamin, 1997).14

These functions may also be referred to as Squashing functions (Rao and Rao,

1993).

Note in Figure 1 that all inputs feed forward into each hidden layer

neuron.  This is why some refer to Neural Network models as connectionist

models (Buchman et. al., 1994). Duplication of inputs in the middle layer neurons

appears to create irresolvable multicollinearities in the model.  Duplication of

inputs presents greater concern when the goal is to interpret the parameters and

weightings of the middle layer.  Most frequently, however, neural networks are

applied for predictive purposes, rather than inference.  The advantage gained by

including two or more different mathematical treatments of the same inputs is that

some of the inputs may be emphasized in one neuron, while others are

emphasized in another neuron.  Likewise, the degree of non-linearities and

interactions between inputs in neurons may vary.

                                                       
14 A hyperbolic tangent function can also be used (Rao and Rao, 1993)
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Estimation

While the model structure for Neural Networks is a departure from

traditional regression modeling, methods for estimating network coefficients can

be quite similar.  In neural networks, the coefficients are referred to as connection

strengths, or weights, constant terms are called biases and, at times, slopes are

called tilts (McMenamin, 1997).  In general, estimation procedures consist of

some type of iterative algorithm that converges on a solution identified by a preset

criterion such as mean square error. For example, a typical backpropagation

network begins by randomly assigning weights.  The residuals of the output are

then assessed and the weights adjusted in the appropriate direction15, until the

network converges on the best predicting deterministic solution.

Another estimation procedure that is gaining popularity uses genetic

algorithms to select optimum equation structures from a pool of randomly

generated equations.  Neuroshell 2, the software used in this study, includes this

algorithm for selecting smoothing parameters in type of hybrid neural network

known as a Generalized Regression Neural Network (GRNN).16 While consistent

predictive accuracy is generally attainable by such methods, equation structures

and coefficient values may vary widely from one model to the next, making the

                                                       
15 Momentum terms are used to keep the weights changing in the established direction.

One benefit of these terms is that they often keep the network from getting stuck in
local minima (Rao  and Rao, 1993)

16 See Neuroshell 2 User’s manual p. 138.
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inferential value of the models questionable.

Model Testing

With most Neural Networks, data are segregated into two classes:

Training Data and Test Data.   The training set data are the data to which the

weights or coefficients are initially applied.  In regression, training data are

equivalent to the sample data used for estimation.  For neural networks to

converge on a generalizable solution through iteration there must be a test set, or

extracted non-sample data, against which prediction accuracy is compared.  The

test set may be randomly extracted from the larger sample or, in the case of time-

series, may consist of the most recent few events.  Neuroshell 2 includes an option

to extract an additional subset of data called the production set (WSG, 1995 p.

101).  The production set may include predictors for which the outcome measure

(Y) is still unknown.  The trained network is applied to the production set

predictors to determine the new predicted outcomes.

A commonly expressed concern over flexible non-linear estimation

methods is the tendency to overfit sample data (Murphy, Fogler and Koehler,

1994). In regression, as the number of predictors approaches the number of cases,

we can achieve a near perfect fit to the outcome measure, but sacrifice the

significance of the individual parameters, inferences that can be drawn from

parameters, and the ability to generalize.  It is assumed that due to the relatively
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high number of weights in Neural Networks that overfit would be equally likely

and yield similar complications.  Murphy, Fogler and Koehler (1994) note that as

tolerance, nodes or layers are increased in backpropagation networks, while

training set errors are asymptotic, test set errors fail to improve beyond an

identifiable optimum.  These findings provide bases for using test set error to

optimize the model structure during training.

Neural Network Architectures

Until recently, backpropagation neural networks made up approximately

80% of all neural network applications (Caudill, 1995a).  Use of backpropagation

has declined due to the relatively long required training times for the iterative

algorithm and the development of new, quicker estimation procedures

(McMenamin, 1997). Figure 1 displays a structure common to backpropagation

neural networks.  Permutations of this structure include: (1) number of layers of

the network (2) numbers of neurons in each layer and (3) numbers and locations

of the connections. Backpropagation has been proven an effective tool for both

time-series prediction (Hansen and Nelson, 1997; Lachtermacher and Fuller,

1995) and cross-sectional prediction (Buchman et. al., 1994; Odom and Sharda,

1994; Worzala, Lenk and Silva, 1995).

In addition to backpropagation, this study applies two hybrid methods that

rely on neural network estimation methods to identify optimal non-linear
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regression models. Specht (1991) developed a flexible form of non-linear

regression referred to as the Generalized Regression Neural Network (GRNN).

GRNN removes the necessity to specify a functional form by making use of the

probability density function of the observed data. The GRNN model interpolates

the relationship between each input, and between the input and outcome

measures, applying a smoothing parameter, α, to each relationship to moderate

the degree of non-linearity.   Optimized models generally include different

smoothing parameters for each input (Specht, 1991).  The difficulty is in

estimating these parameters.

Two methods have generally been employed for estimating smoothing

parameters: (1) the holdout method (Specht, 1991) and (2) genetic algorithms

(WSG, 1995. pp. 198-205).  The holdout method involves using randomly

removed samples as a test set for the prediction accuracy of the model.  Genetic

Algorithms involve the random creation of sets of equations, followed by fitness

testing and selective breeding; that is, equations with poor predictive power cease

to exist, while smoothing parameters in the “fit” equations are randomly

recombined to create a new pool to begin the next cycle.  GRNNs have not been

used as widely as backpropagation but are recommended for use with sparse data

and are less sensitive to the scale of the data (Caudill, 1995c; Specht, 1991).

GRNN has been proven effective as a prediction tool (Buchman and Kubos,

1994).
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A.G. Ivakhnenko, in 1966, proposed an algorithm for fitting polynomial

regression equations.17  The algorithm, known as Group Method of Data

Handling, estimates the best fit polynomial via the Kolmogorov-Gabor

polynomial:

Where X(x1,x2, … xm) is the vector of inputs and A(a1,a2, …am) is the vector of

coefficients or weights (Liao, 1992). While it might seem that the infinitely

complex polynomial would produce the most accurate predictive model, Farlow

(1984) indicates that the relationship between model complexity (on the X axis)

and prediction accuracy (on the Y axis) is actually “V” shaped.  Unlike

backpropagation neural networks, GMDH neural networks generally apply linear

scaling [-1,+1] to all input data.18

Methodologies

Data from the Vermont State Reports (1996-1997) were used in this study.

Data on socioeconomic characteristics of the student population, structural

characteristics of the schools and student achievement were generally available

                                                       
17 See Farlow, 1984
18 X’ = 2*(X – Min)/((Max – Min) – 1)

∑∑∑∑∑∑
= = == ==

+++=
M

i

M

j

M

k
kjiijk

M

i

M

j
iiij

M

i
ii xxxaxxaxaay

1 1 11 11
0



Politics of the Production-function
Draft as of: 01/17/99

Page 18 of 34

with the school as the basic unit (See Appendices A and B).  One major

shortcoming of the data was that only cross-sectional analysis could be performed

at this time, negating the possibility of truly understanding the dynamics of the

system, which of course, must occur over time. Yet, because this is primarily a

test of methodologies and because many other production-function analyses have

been similarly performed on cross-sectional data, this shortcoming in some ways

actually increases the comparability of the findings.

Four methods were applied to the data: 1) multiple linear regression, 2)

backpropagation, 3) GRNN and 4) GMDH.  Multiple linear regression methods

were employed to determine the extent to which the Vermont data conform to our

usual production-function expectations.  In addition, data were entered both in

their original scale and then log transformed (ln).

All of the models were assessed according to two criteria: 1) prediction

accuracy and 2) inferential value.  The prediction accuracy of the models was

used as an initial screening measure to determine which models deserved

additional attention with regard to inferential value.  The prediction accuracy of

the models was determined by randomly withholding sets of schools from the

model specification process.  Then, the specified models were used to predict the

performance of students in the withheld schools. This process was repeated ten

times for each of the elementary schools (10 withheld per trial) and the high

schools (5 withheld per trial). Models were checked for consistency of structure,
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and the Mean Absolute Percent Error of prediction was used to assess prediction

accuracy. This concluded the inductive phase of the analyses.

Because induction alone is of similar value to deduction alone, the issues

raised or patterns identified by the neural network algorithms were then

individually analyzed via traditional deductive methods. Given the results of the

preliminary analyses, parameters, interactions and non-linearities identified in

particular via the GMDH method were tested for their statistical significance

using MLR.

Results and Discussion

Is performance predictable?

Table 1 displays the results of the prediction accuracy assessment.  With

the given data, the GMDH algorithm consistently outperformed all three other

methods.  At the same time, the multiple linear regression model produced the

least accurate predictions. Significant differences also exist between the

predictability of the high school data using the SAT as the outcome measure, and

the elementary school data using an aggregate of the math portfolio assessments.

The results in Table 1 indicate that each pattern recognition algorithm has

extracted more information from the data set than the linear regression model.

The relative predictive power of the nonlinear models suggests the possibility of

non-linear relationships within the data that are actually stronger than many of the
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presumed linear (or log-linear) relationships.

Table 1: Comparative Predictive Capabilities of Regression and Neural Network
Models

High School Elementary
Untreated Transformed (ln) Untreated Transformed (ln)

Linear Regression 6.5 12.7 28.9 28.5
Backpropagation 6.2 6.1 17.7 15.5
GRNN 4.9 4.2 27.6 26.4
GMDH 2.1 1.9 14.4 8.5
MAPE (Mean Absolute Percent Error)

Differences in Model Structures?

Negligible significance was found among the predictors in the full linear

regression models. Only parent level of education (ln transformed model)

displayed significance (p<.10) in the high school model and only teacher salary

displayed significance in the elementary school model (p<.10), providing an

intriguing split decision on the traditional argument over the relative roles of

socio-economic factors and fiscal input factors.

Deductive analysis of non-linear and interaction parameters revealed by

the GMDH algorithm, however, paint a somewhat different and more complex

picture of schooling in Vermont (See Table 2). While in many cases the

parameters selected by GMDH were similar to those identified by MLR, the

natures of the relationships were dramatically different. For example, with the un-

transformed data, a strong third order, diminishing return relationship for school

size, was revealed (p<.05).  Interestingly, significance for all three orders of this
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parameter were retained when the natural log transformation was applied (p<.10).

Somewhat more elusive, yet no less interesting, were the interaction terms, such

as the three-way interaction between parent level of education, school size, and

dropout rate with the un-transformed data.

The results of the elementary school analyses were significantly more

complicated (See Table 3).  While only one parameter displayed any level of

significance in the linear model, multiple questions were raised regarding non-

linear and interaction parameters with both the untreated and log transformed

data.  While the third order length of school year relationship was moderated by

transformation, numerous non-linearities related to spending issues (TEASAL,

AVGCS), wealth (PVPS) and school level inputs (ENROLL) emerged.  In

addition, two- and three-way interactions for many of these variables displayed

significance.  Again, the question of the interactive nature of school size and

student background characteristics (such as parent level of education) was raised.
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Table 2: Comparison of MLR Results with Additive Polynomial Produced by
GMDH. (High School Models)

Parameter Linear
Regression

Linear
Regression

(ln)

GMDH
(Polynomial

and
Nonlinear

terms)

Coefficient
GMDH (ln)
(Polynomial

and
Nonlinear

terms)

Coefficient

EDUC 3.062 0.0628* EDUC 3.023*** EDUC 0.053
ENROLL .296 0.026 ENROLL -1.824 ENROLL -1.980*

ENROLL2 4.600** ENROLL2 0.475*
ENROLL3 -1.45** ENROLL3 -0.037*

DROP -5.683 -02024 DROP 5.461*** DROP 0.106
DROP2 -3.853*** DROP2 -0.006
DROP3 0.967*** -

LSY 4.688 0.803 LSY 0.688 LSY 0.393
TEASAL 0.003 0.172* TEASAL -0.575*
LSD -31.02 0.027 LSD 0.097 LSD 5.641

LSD2 -1.491
INSPP -0.013 -0.043 - -
SPECED 1.910 0.003 - -
ATTEND 2.895 0.786 ATTEND 0.043 -
FRLUN 0.504 -0.005 - FRLUN 0.003
PUPTEA -2.562 -0.106 PUPTEA -0.611** -
TECHED -0.173 -0.010 - TECHED 0.125**

TECHED2 -0.058*
TECHED3 0.011**

STUCMP 0.366 0.014 - -
CONST 1095 -2.322 CONST -1.644 CONST 1.943

INTERACTION TERMS
ENROLL
DROP

-1.583*** DROP
FRLUN

-0.038

ENROLL
EDUC

-2.712*** ENROLL
DROP

0

DROP
EDUC

-2.465*** ENROLL
FRLUN

0

ENROLL
DROP
EDUC

2.506*** ENROLL
DROP
FRLUN

0.007

LSY
LSD

-0.095 TECH
DROP

-0.041**

TEASAL
PUPTEA

0.689** LSY
LSD

0

*p<.10,  **P<.05, ***P<.01
1.  GMDH models without log transformation of data still involve data scaling according to the
formula: X’ = 2*(X – Min)/((Max – Min) – 1) where X’ is the scaled form and max and min
values are determined ± 2 standard deviations
2. Coefficients in the Ln Transformed models may appear quite large because the model is
constructed using the product of the ln terms rather than the ln of the products.
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Table 3: Comparison of MLR Results with Additive Polynomial Produced by
GMDH. (Elementary School Models)

Parameter Linear
Regression

Linear
Regression

(ln)

GMDH
(Polynomial

and Nonlinear
terms)

Coefficient
GMDH (ln)
(Polynomial

and
Nonlinear

terms)

Coefficient

TEASAL -0.001* -0.132 TEASAL 0.755 TEASAL -54.12***
TEASAL2 -0.023 TEASAL2 1.513***
TEASAL3 0.033 TEASAL3 0

FRLUN 0.189 0.090 FRLUN 2.873 FRLUN 0
FRLUN2 -2.141
FRLUN3 0.837**

AGIIND 21.92 0.222 AGIIND 0.163 AGIIND -4170**
AGIIND2 -1.580

STUCMP -0.354 -0.046 STUCMP -0.723 STUCMP 1.042
STUCMP2 -0.495
STUCMP3 0.067

INSPP 0.001 0.088 INSPP -0.168 INSPP 0.191*
SPECED 0.288 0.053 SPECED 0.040 SPECED -0.765
PVPS -0.000 -0.022 PVPS -0.468 PVPS -39.67***

PVPS2 0.401 PVPS2 5.369***
PVPS3 -0.076 PVPS3 -0.218***

PPOV -0.188 -0.061 PPOV 0.020 PPOV 0.431
PPOV2 -0.262 PPOV2 -0.316

EDUC 0.143 0.070 EDUC 0.075 EDUC -100.1***
EDUC2 0.428
EDUC3 -0.045

LSY 0.506 0.468 LSY -7.574*** LSY -2.148
LSY2 4.768*** LSY2 0
LSY3 -0.906*** LSY3 -

AVGCS -0.329 0.057 AVGCS 0.326 AVGCS 259.1***
AVGCS2 -0.433 AVGCS2 -80.78***
AVGCS3 0.171 AVGCS3 9.304***

LSD -0.871 -0.112 LSD -0.053 LSD 18.10**
ENROLL 0.015 0.014 ENROLL 2.170 ENROLL -83.03***

ENROLL2 -1.560 ENROLL2 0.100**
ENROLL3 0.301

RETENT -0.152 -0.009 RETENT 1.971** RETENT -0.034
RETENT2 -0.278*

ATTEND -0.171 0.743 ATTEND -0.412 ATTEND 15.20
PUPTEA -0.062 -0.202 PUPTEA -0.218
CONSTANT -28.99 -1.071 CONSTANT 3.246 CONSTANT 215.5

*p<.10,  **P<.05, ***P<.01
1.  GMDH models without log transformation of data still involve data scaling according to the
formula: X’ = 2*(X – Min)/((Max – Min) – 1) where X’ is the scaled form and max and min
values are determined ± 2 standard deviations
2. Coefficients in the Ln Transformed models may appear quite large because the model is
constructed using the product of the ln terms rather than the ln of the products.
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Table 3 (Continued)

INTERACTION TERMS (ELEMENTARY MODEL)

Parameter Linear
Regression

Linear
Regression

(ln)

GMDH
(Polynomial
and Nonlinear
terms)

Coefficient
GMDH (ln)
(Polynomial
and
Nonlinear
terms)

Coefficient

RETENT
FRLUN

-1.174* ENROLL
TEASAL

9.919***

RETENT
TEASAL

-1.383* ENROLL
EDUC

31.44***

TEASAL
FRLUN

-1.162 TEASAL
EDUC

9.191***

RETENT
FRLUN
TEASAL

1.369* ENROLL
TEASAL
EDUC

-2.992***

AVGCS
FRLUN

-0.601 LSY
AGIIND

805.9**

AVGCS
AGIIND

-0.168 AVGCS
AGIIND

1475**

FRLUN
AGIIND

-0.485 LSY
AVGCS
AGIIND

-285.4**

AVGCS
FRLUN
AGIIND

0.559 STUCMP
AGIIND

-0.025

ENROLL
PPOV

0.382 LSD
PVPS

-2.362**

LSY
PVPS

-0.105 ENROLL
ATTEND

-4.478

ATTEND
STUCMP

0.495 PPOV
EDUC

-0.115

TEASAL
INSPP

0.177 ENROLL
RETENT

0.016

PUPTEA
SPECED

0.268 SPECED
PVPS

0.092

ENROLL
SPECED

-0.241 AVGCS
EDUC

0.883*

INSPP
AGIIND

0.587

AVGCS
TEASAL

-2.759**

*p<.10,  **P<.05, ***P<.01
1.  GMDH models without log transformation of data still involve data scaling according to the
formula: X’ = 2*(X – Min)/((Max – Min) – 1) where X’ is the scaled form and max and min
values are determined ± 2 standard deviations
2. Coefficients in the Ln Transformed models may appear quite large because the model is
constructed using the product of the ln terms rather than the ln of the products.



Politics of the Production-function
Draft as of: 01/17/99

Page 25 of 34

Parsimonious Models

In order to reduce the collinearities in both linear and non-linear models,

and gain a better understanding of the relative significance of the key predictors

identified, parsimonious models were constructed and tested.  Table 3 and Table 4

display options for the linear parsimonious models.  As expected, given the

relatively small "n" for each sample, both parameter significance and the adjusted

R-square values for the models were improved.  In the high school model,

however, only two significant parameters were revealed in each of the

parsimonious forms.  The school size factor (ENROLL) remained significant in

all models (p<.05). Either dropout rate or parent level of education, which display

collinearity in the full model, could be included as the second key feature of the

model. In the elementary parsimonious linear model, only the adjusted gross

income index factor for the community remained significant.

Table 4: Parsimonious High School Models (OLS)
Model Adjusted R2 Predictors Coefficient (P)

Model 1: Untreated data .508 DROP
ENROLL
INTERCEPT

-10.614***
0.600***
979.2***

Model 2: Untreated data .481 EDUC67
ENROLL
INTERCEPT

7.062***
0.319**

876.49***
Model 3: Ln Transformed data .525 ENROLL

EDUC67
INTERCEPT

0.035***
0.073***
6.521***

*P<.05, **P<.01, ***P<.001
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Table 5: Parsimonious Elementary School Models (OLS)
Model Adjusted R2 Predictors Coefficient (P)

Model 1: Untreated data .044 AGIIND
INTERCEPT

13.92*
5.562***

Model 2: Ln Transformed data .056 EDUC67
INTERCEPT

0.115**
3.406***

Model 3: Ln Transformed data .051 AGIIND
INTERCEPT

0.338**
3.785***

*P<.05, **P<.01, ***P<.001

Table 6 displays the parsimonious non-linear models based on the

parameters revealed by the GMDH algorithm.  In the full models (Tables 2 and

3), parameter significance was difficult to assess due to the relatively large

number of terms given the relatively small data set. In the parsimonious high

school non-linear model, as might be expected, the adjusted R-square continued

to display a stronger fit than the linear model.  While the fit of the model was

driven by the same factors (school size and dropout rates) the form of each

relationship was different. In addition, there was recognition of a three-way

interaction (P< .01) between school size, dropout rates and parent level of

education that may yield amplified effects on student outcomes.

The parsimonious non-linear elementary model yielded a variety of

different significant parameters as well as differences in functional forms. While

the parsimonious linear elementary models, on average, explained approximately

5% of the variance in student performance in math, the parsimonious non-linear

model explained nearly 30% of the variance in math performance. This model
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presents some support for the importance of spending related factors such as the

availability of computers (STUCMP), an inverse linear relationship, and length of

school year (LSY), a third order diminishing return pattern. Teacher salaries,

however, displayed an unexpected inverse relationship (P< .01).  None of these

apparently significant relationships were revealed by linear analysis.
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Table 6: Parsimonious Models (GMDH)
High School Model
Adjusted R2 = .638

Elementary School Model
Adjusted R2 = .291

Predictors Coefficient Predictors Coefficient

ENROLL -0.453 AGIIND 0.226
ENROLL2 0.706* ATTEND -0.759*
ENROLL3 -0.373** AVGCS 0.462
LSY 1.113* INSPP -0.245
LSD 0.105 STUCMP -1.125**
DROP -1.197 TEASAL -0.513***
DROP2 -0.689*** FRLUN 1.340
DROP3 0.223*** FRLUN2 -1.550
EDUC -0.903 FRLUN3 0.627**

LSY -5.407***
LSY2 3.153***
LSY3 -0.553***
PPOV -0.041
PPOV2 -0.072
RETENT 0.830***
RETENT2 -0.306***

INTERACTION TERMS

DROP
EDUC

0.194 ATTEND
STUCMP

0.823*

ENROLL
DROP

0.618 AVGCS
AGIIND

-0.225

ENROLL
EDUC

0.127 AVGCS
FRLUN

-0.571

ENROLL
DROP
EDUC

0.323*** AGIIND
FRLUN

-0.087

LSY
LSD

-0.130* AVGCS
FRLUN
AGIIND

0.290

TEASAL
INSPP

0.293**

*p<.10,  **P<.05, ***P<.01
1. GMDH models without log transformation of data still involve data scaling according to the
formula: X’ = 2*(X – Min)/((Max – Min) – 1) where X’ is the scaled form and max and min
values are determined ± 2 standard deviations
2. Coefficients in the Ln Transformed models may appear quite large because the model is
constructed using the product of the ln terms rather than the ln of the products.
3. While this analysis does not employ Ln transformation, the GMDH algorithm contains and
internal scaling of the data. The differences in model “fit” and predictive accuracy between
methods is negligible.
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Conclusions and Recommendations

The computer-assisted inductive methods used in this experiment yielded

both differences in functional form and parameter selection when compared with

typical linear regression methods.  The non-linearities identified could not

necessarily be expected based on our current understanding of educational

productivity, thus it is unlikely that we would find such patterns by traditional

deductive methods.  The predictive abilities of the GMDH models in particular,

and the relative stability of the model structure19 suggest that this approach in

particular may deserve closer attention as a potentially useful tool for data mining

in education policy analysis.  GMDH provides the added benefit of generating

results that can be deductively tested and interpreted by methods already

commonly used.

Do these methodologies help us in any way to answer the now age-old

question: “Does money matter?”  While the outcomes of these models may or

may not directly address the role of fiscal resources in influencing student

performance, the models do, at the very least, enhance our understanding of the

system as a whole. As a result, we may become more attuned to significant

features of the educational system that are ultimately cost-related, such as school

size in the high school model and teacher salaries in the elementary school model

                                                       
19 While each of the model outcomes are not reported here, it should be noted that for a

given data set, regardless of sub-sample, the GMDH algorithm repeatedly yielded the
same parameters, including non-linear and interaction terms.
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(ln).20

Do these methodologies entirely obviate political or personal influence?

While this would be a clearly impossible task, these methods do, at the very least,

open the door to potential research questions that are not already embedded in the

minds of policy analysts. But, like the deductive process, induction cannot exist in

a vacuum.  Even the example presented herein has left a number of questions

unanswered regarding the interactive nature of school and student level inputs that

need to be further addressed. While in the end the true nature of these interactions

may evade our reasoning, taking the time to explore their meaning can only serve

to enhance our understanding of educational productivity.

                                                       
20 If, in fact, these parameters hold up to more rigorous subsequent analysis.
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APPENDIX: VARIABLE DESCRIPTIONS
(Source: 1996&1997 Vermont School Reports. Vermont State Department of

Education)

Variable Name Definition Model
EDUC67 Percent of parents with BA or higher HS/ELEM
FRLUN Percent of students receiving free or reduced lunch HS/ELEM
AGIIND Average adjusted gross income indexed against

median district
ELEM

PPOV Percent of students living in poverty ELEM
PVPS Property value per student ELEM
SPECED Percent of students receiving special education

services
HS/ELEM

TECHED Percent of students participating in technical education HS
DROP High-school drop-out rate HS
ENROLL Average enrollment per grade level HS/ELEM
ATTEND Average daily rate of attendance HS/ELEM
RETENT Percent of  students held back from grade

advancement
ELEM

LSY Length of school year (days) HS/ELEM
LSD Length of school day (hours) HS/ELEM
AVGCS Average class size ELEM
PUPTEA Pupil to teacher ratio HS/ELEM
STUCMP Pupil to computer ratio HS/ELEM
INSPP Instructional expenditures per pupil HS/ELEM
TEASAL Teacher salary HS/ELEM
SATT Average combined SAT HS
PASS_MATH Average percent of students successful in each of four

categories 1)numbers and operations, 2) geometry and
measurement, 3) functions and algebra and 4)
probability and statistics in portfolio assessment at the
4th grade level

ELEM


