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Heuristic Self-Organization in Problems of Engineering
Cybernetics*

Auto-organisation heuristique dans les problémes de cybernétique technique

Heuristische Selbstorganisation bei Problemen der technischen Kybernetik

OBpucTuyeckas camMoopraHuzanus B mpobiemMax TeXHHIeCKOH KUOEPHETUKH

A. G. IVAKHNENKOY

An analysts of engineering cybernetics shows that the current dererministic approach
can only solve comparatively simple problems. A new approach called heuristic self-
organization is neededfor solving complex problems.

Summary—The systems, or programs, of heuristic self-
organization are defined as those which include the generators
of random hypotheses, or combinations, and several layers
of threshold self-sampling of useful information. The com-
plexity of combinations increases from layer to layer. A
known system, Rosenblatt's perceptron, may be taken as an
example.

The Group Method of Data Handling (GMDH) based
on the principles of heuristic self-organization is developed
to solve complex problems with large dimensionality when
the data sequence is very short. Two examples are given to
illustrate how this method applies to problems of predicting
random processes and to identifying characteristics of a
multiextremum plant.

One: Heuristics are groundless decisions which
have no mathematical proofs. They give us
the results which are only good enough for
practice, but they are not the best ones.

Theother: No! Heuristicsaredecisionsin afieldirrel-
evant to the subject and competence of
mathematics. The results of heuristics are
often much better than those which can be
obtainedfrom a formalized approach.

HEURISTIC SELF-ORGANIZATION

A DISPROPORTIONAL development of two basic parts
of cybernetics may now be seen: a dominance of
work using deterministic approaches and an
amost complete lack of work concerning practical
use of heuristic self-organization. Although the
ideas of self-organization have been discussed
many times in the well known papers of N. Wiener,
J. von Neumann, G. Pask, R. Ashby, S. BEER [1],
A. Ya Lerner, V. S. Fain and others, the papers
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and books of the sixties only repeat concepts which
had already been stated 10 or 20 years ago. There
has been amost no progress in this field.

But it is clear that only self-organization and
ideas associated with it canjustify the very existence
of cybernetics as a science on the general approach
to problems which are different by their nature.
The present-day deterministic approach is as
sociated with the analysis of system inputs and
outputs. The specific features of each particular
problem is of main importance, and this results
in a situation where dl problems related to com-
puters are related to cybernetics. Such a viewpoint
and the more universal original idea of cybernetics,
given by N. Wiener, are at variance. Certain
methods often associated with cybernetics, such
as the "black box" idea, are now considered not
to be constructive. Instead, self-organization
concepts must re-establish the general ideas of
cybernetic sand show their constructiveness.

Moreover, too much confidence in the deter-
ministic approach nonpluses us. It is now clear that
it is impossible to solve many practical problems,
such as the problem of automatic synchronous
trandation from one language into another, or the
problem of classification when 200-300 classes are
involved, and so on, by deterministic methods.
Self-organization must be used to find a way out
of this impasse. However, in order to do this,
it is necessary to begin with practical problems,
and having decided to make an attempt, we took
some first steps by solving various problems of
pattern recognition, of random processes predic-
tion, and multiextremum plant identification [2-6].

For the present we cannot given an exact mathe-
matical definition of "self-organization”, but it is
clear that self-organization is necessary when it is
impossible to trace al input-output relations
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throughout an entire system which is too complex
for the purpose [1]. Therefore, we must use the
notion of general "integra influences' which act
upon a network of components, each having its own
"elementary algorithm" of action.

The integra influence is defined to be one which
is not found from an analysis of a complex system.
It does not use information about the state of
each particular component of the system, but it is
chosen by the summary result of active responses.

Automatic control theory, as mathematics
itself, has been developed as a pure deductive
theory for investigating causes and consequences,
inputs and outputs. The arrows and squares of
block diagrams are embedded in our consciousness
so deeply that we may say for certain that the
control theory actually impedes the development
of spontaneous processes control.

As previously indicated, self-organization is the
art of controlling spontaneous processes through
use of integral influences.

An income tax is a good example of integral
influence, because market spontaneity can be con-
trolled by changing a nonlinearity—the income tax.
If the nonlinearity is high, the income tax may
become an integral action of a threshold type:
nothing from the poor and al from the rich.

The simplest redlization of integra influences in
cybernetics, for example, in the perceptron [7],
is a threshold unit permitting only some inputs to
pass. In fact, we have used this simplest type of
integral influence in solving the three interpolation
problems mentioned above.

Findly, self-organization should be associated
with heuristics which we mean to be conjecturesin
evaluating a course of problem solution by man.
In this respect, self-organization resembles a
sandwich: after mathematical processing of infor-
mation, a "layer" of heuristic evaluation of the
results follows, and this process is repeated severd
times. Man controls the course of the solution by
continuously directing its way to desired results
by means of integral influences. That is why
heuristic self-organization ensures an accuracy
which could not be reached by the use of routine
mathematical methods. The influence of heuristics
is so potent that it is possible to apply a mathe-
matical tool of less sophistication than those which
are usually used. Heuristics are creative thought
processes of men, and their results are decisions.
They are connected with the wishes of man, with
factors associated with his motives. They pertain
neither to the subject, nor to competence of mathe-
matics, therefore no mathematical tool can be
perfected to compensate for them nor can one even
be compared with them with regard to their effect
on the accuracy of a solution.

The history of civilization is full of examples
where various control problems have been solved
by self-organization. For example, the problem
of raising the yield of farms with a minimum of
human labour has been solved so successfully that
soon only 5 per cent of world population will be
involvedinfarming.

Some scientists tell us that the problem of "large”
or "complex" systems is a new one. but it is only
natural to advise the scientists interested in the
complex plant control to investigate the experience
of the mankind in this respect. It may seem strange,
but mathematics has no tool capable of solving
practical complex system problems. Mathematics
is not prepared to meet the challenge of problems
involving self-organization.

"HYPOTHESIS OF SELECTION" IN
COMPLEX SYSTEMS THEORY

The threshold type of integral influence, which
may be considered as "an examination” are widely
used in the mass sdlection of plants and animals.
To obtain plants which have certain desired
characteristics, for example, a portion of seeds is
selected from several generations of the plants in
which these properties are more predominant than
in others. In what follows we use a similar "hypo-
thesis of selection” process to solve engineering
cybernetics problems. This hypothesis states that
methods of selection are the best for solving
interpolation problems of prediction, pattern
recognition or identification.

The "hypothesis of selection" has a probabilistic
character. The more the value of a given variable
exceeds the threshold value, the more is the pro-
bability that it isjust this variable which provides
us with information about the best, or optimal,
decison. Therefore, each threshold has a single
optimal setting corresponding to the maximum of
the accuracy in the result.

For example, when selecting plants the following
three questions are answered in a purely heuristic
way:

(1) Which seeds must be used for the first crop?
This is the first heuristic.: Choosing elementary
algorithms for producing input signals.

(2) Which criteria should be used to select the
best plants? Thisis the second heuristic: Choosing
criteriafor self-samplings.

(3) According to which laws are the crossing of
the plants to be determined? This is the third
heuristic: Choosing laws for generating combina-
tions.

Having answered these questions we can aso
answer the next two:
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(4) What portion of seeds is to be sdected in
each generation? This illustrates that there is an
optimum level for each threshold of self-sampling.

(5) After which generation is the selection to be
stopped? This question must be answered because
after a certain number of generations, the desired
plant characteristics begin to degenerate.

The systems of heuristic self-organization con-
sidered below are based on the same sort of heur-
istics that have been illustrated above.

THE PERCEPTRON AND OTHER EXAMPLES OF
SYSTEMS HAVING
HEURISTIC SELF-ORGANIZATION

Let us define the system, or a program, of
heuristic self-organization as a system which has
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of random combinations of arguments are pro-
vided, so that the complexity of variables increases
with each successive layer. |If the combinations are
not numerous, al of them may be subject to
exhaustive search. It is clear from the example
above, that the selection of seeds may be used as
an agorithm for a heuristic self-organization
system.

Figure 1 shows severa other examples of self-
organizing systems which are known in engineering.
The first example in Fig. la is the well-known
perceptron, the model of the brain perception
function, designed by ROSENBLATT [7]. Random
connections of links between perceptron layers are
considered to be a kind of generation of new
combinations, to complete the analogy previously
made.
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Fic. 1. Examples of system structures having heuristic
self-organisation: (a) the Perceptron; (b) the Stanford

University system and (c)

a multilayered or a hierarchical algorithm, i.e. a
structure where self-sampling thresholds of useful
data are used in each layer. To make these sdlf-
samplings moreeffective, one or severa generators

the structure of GMDH

The second example shown in Fig. 1b is the
structure of a system designed at the Stanford
University. The problem is solved to predict the
structure of organic molecules [8]. Only one
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"generator of hypotheses' and three threshold for
self-samplings are used here each having a different
heuristic criterion.

The third example in Fig. Ic is the structure of
agorithms of the Group Method of Data Handling
(GMDH). Here the combination generators receive
as their inputs only small groups of arguments.
This algorithm will be thoroughly explained below.

Some other examples of the self-organizing
systems are dso known. For instance, the method
of the S-matrix in theoretical physics and the
algorithms of the so-cdled "evolutionary pro-
gramming” may aso be considered as examples
of systems of heuristic self-organization [9, 10].

HEURISTICS IN THE GROUP METHOD OF
DATA HANDLING (GMDH)

The GMDH is developed for solving various
interpolation problems of engineering cybernetics.
Here in place of selecting seeds for growing plants
with desired characteristics, we deal with some
functions of inputsand intermediate variables. The

S¢ S7 Sg
QOO
S

A

S S

. S, S; S; Ss
(a)
2229

A. G. IVAKHNENKO

mean sgquare error criterion and the correlation
criterion.

The third heuristic. Laws for constructing a
complete description of the plant or processes are
chosen according to severa partial descriptions.
In other words: it is necessary to choose the
GMDH agorithm. Each GMDH algorithm has
a complete description of the complex plant or
process in some form which is replaced by several
partial descriptions. The complete description
takes into account all the arguments, the partial
description only a group of them, perhaps only
two for example.

Examples of GMDH Algorithms

The GMDH can be redized by many algorithms
which differ with respect to construction of the
complete description of a complex plant. About
twenty algorithms have been proposed up to the
present time. Let us consider, for brevity, only
three which seem to be most significant. The three
will be considered for the case where only four
input arguments are avilable as discussed below.
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Fi1G. 2. The algorithm ot: the Group Method of Data Handling (GMDH) with probabilistic graphs: three
partial graphs are used in (b) instead the one complete graph in (a).

selection heuristics, formulated above, may be
interpreted for this system as follows:

The first heuristic. "Elementary algorithms' are
to be chosen. This term in GMDH case concerns
laws of non-linear transformations of arguments and
intermediate variables. For example, we shall use
hereafter the covariations and the first, second,
second, third, and fourth powers of input argu-
ments.

The second heuristic. Heuristic criteria are to be
chosen for threshold self-samplings. We use the

1. A GMDH algorithm usingprobabilistic graphs.
Four binary arguments x,, x,, x;, x, can give us
sixteen combinations which we call theinput states.
Thee daes can be connected with two binary
responses of the automata Z= R, and Z=R, by
the use of the transmition probability graph shown
in Fig. 2a. This graph is the complete description
of some complex automaton.

According to the GMDH method, this complete
graphisto be replaced by three partial graphs, each
for two arguments only, and Fig. 2b shows an
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example of graphs for the combination of argu-
ments x, —x, and x;—x,. Such graphs can be
constructed for al combinations of arguments,
particularly for x, —x, and x, —x; or x;,—x; and
x,—x,4 In this example. To learn the structure of
graphs, the probabilities of connecting input states
and responses are calculated. When calculating the
probabilities, we assume y,=y,=2, determine
variables y,y, as functions of time, and use them
in the last graph. Note that the calculation of
probabilities for two arguments in the partial graph
requires a much shorter learning sequence of data
than the calculation of probabilities for four
arguments which is needed for the complete graph.
The algorithm has a multilayered structure.
Therefore it is possible to insert a threshold self-
sampling after each layer to sdect the useful infor-
mation.

2. A GM DHalgorithm using the Bayesformulas.
The Bayes formula in a complete form

ZZKP(XI/RI') . P(x,/R;) . _P(xxleRi) .
P(xy) P(x3) P(x1x5)
P(x,x;3/R;) P(x;x,x3x4/R;)
P(xyx3) o P(xyx;x3x,)

can be replaced by three partial Bayes formulas, for
example to combine the arguments x,—x, and
’Y3—“\.4:

y =K P(x,/R;) . P(x,/R)) . P(x;x,/R;)
PGy Py P(xyxy)

=K P(x3/Ri). P(x4/R;}) . P(x3X4/R;)
PPy P(x,)  P(xixy)

Z==K;P(y1/Ri) . P(y,/R;) ) P(y1y,/R)
P(yy) P(y,) P(yiy,) ~°

where v, and y, are decisions made from the two
first formulas. Such formulas may also be written
for the other combinations of arguments: x; —x,
and x,--x; of x;,—x~, and x,—x,. When cd-
culating the probabilities we as:ume y, =y, =2,
then we determine variables y, and y, as a func-
tion of time, and we use them n the third formula.
Note that for the calculation of probabilities for
two arguments, such as P(x,x,/R;), P(x;x,/R;) Of
P(y.y./R;), much shorter sequences of learning
data are necessary as compared to the calculation
of probabilities for three of four arguments.

The algorithm is multilayered, and thus it is
possible to use self-sampling thresholds.

V2

3. A GMDH dgorithm using polynomials of
second order. The algorithm using polynomials of
second order actually uses several short partia
polynomials instead of one very long discrete

Kolmogorov—-Gabor polynomial which is usually
used to approximate an unknown decision func-
tion. For example, with four arguments x,,
X5, X3, X4, thecomplete polynomial including terms
of al powers and al covariations of arguments
has 70 terms.

The complete polynomial is:

Z=ay+a,X,+a,X;+a3%3+a,x, +asx? +agx;
FasX3+AgXi+a9X X+ A1oX X3+ a1 XXy
12X X3+ Ay 3XX Ay 4X 53X, + Ay 5%}
+a16X3+a17X3+ a1 5X5+ a1oXTx, +az0x TN,
Fay XTXg+A25X3X, +A53X3X3+A24X5%,
+ay5X3%, Fa36X3%, + Ay7X3x,+ areX3x,
FAy9X2X 5+ A30X2X3 4+ 031X X3X3+ 032X X3 X4
33X, X3X + A34X,X3X4 + A3 5XT +A36X5
+a37X3 + 3XG+ A30X TIN5+ dyoX X3
+ 41 XTX3 4 a4 x3X3 4 a3 X3x5 4 agaxixng
+a45X3Xy + A46X7X3 F Ag7X]Xs + 45X TX0 X5
Fa40X Xy X4+ A50XTX3 X+ A51X3%;

+ u52x§x3x4 + as3x§x1x4 + 054x§x3 + (155)(3.\'4
FA56X3X3%,+A57X3X X, +F UsgX3X | +As59X3X5
F Ao X3X g+ o X5X X0 F g2 X3X X,

F A3 NGX (N a F A1 XIX X3+ ag5XaxX,

+ A6 X1X2X3 A6 X3%) + A Xixy
+agoX X3 X3Xy.

Learning consists in determining coefficients of
this polynomial. To determine the coefficients by
solving Gaussian normal eguations, it would be
necessary to invert matrices with dimension of
70 x 70 components and to use learning sequences
having no less than 70 data points of interpolation.
Such an extensive number of calculations generally
exceeds the capabilities of the most modern com-
puters. However, if there are morethan four inputs,
the solution becomes completely impossible, for
example, when there are ten inputs, the polynomial
contains about 200,000 terms. This is the source
of Bellman's "curse of multidimensionality” which
explains why no actual complex problem has yet
been solved.

In the example with four inputs, or arguments,
the GMDH wuses three partial second order
polynomials instead of one complete polynomial.

Partial polynomials for the combination of
arguments x, ~x, and x; —x, are:

¥i=bg+bx +byx, +b3x]+bx3+bsx X,
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Va=Co+C1X3+CXa+C3X5 4 CaXt+ C5X3Xy,
Z=do+dy,+dyy,+dsyi +dyys+dsy,ys.

The other combinationsarex; —x, and x,—ux; or
x—x; and x,—x,. We can choose any combina-
tion which gives us better accuracy. When calculat-
ing the coefficients, we assumey,=v,— Zand then
determine the variables y, and y, as functions of
time, which are used in the third polynomial.

After substituting the first and the second
polynomials into the third, we obtain a polynomial
in which sixteen covariations of the 4th power would
be omitted. It is known that the omission of any
term of the complete polynomia or the super-
position of any links upon its coefficients can de-
crease the accuracy of approximation although the
decrease is small when these links are "optimal”
or the polynomials are orthogonal. The basic
result of our calculation is that the use of heuristic
thresholds for the self-sampling of useful informa-
tion provides an increase in accuracy which cannot
be even compared with that which can be attained
by perfecting a mathematical tool of approximation.
Thus, the heuristics employed in the field of self-
organization are more effective than the heuristics
used to perfect a mathematical tool.

Let us consider the case when all the four argu-
ments are binary thus taking on only two values:
— 1 and + 1. Then the complete polynomial is:

Z=ag+a x| +a,xX,+asxz+a,x,+asx;x,
FTAX X3+ aA7X X4+ AgXpX3+AgXyX 4+ 10X 3V,
F A 1X X X3 F 015X XX 4 F 03X X3X,
F A 4X X3 X4+ A1 5X1X7X3X,.

The partial polynomials, for the combinations of
X;-¥, and x;-x,4, are:

Yi=bo+byx;+byx,+b3x Xy,
Ya=Cot €1 X3+ X+ C3X3xy,
Z=do+d\y,+drys+dsyps.

Using this combination of equations, the coefficients
of the complete polynomial can obviously be
constructed by thefollowing formulas:

ag=dy+diby+drco+d3bcy,
ay=db;+dsb,co,
a,=db,+d;b cq,

ag =dsb,cy,
ag, =dsbycy,
ajo=dsb,c,,

a3:l/1b2+d3bocl, au='d3b3(7‘,
a,=dyc; +dibgc,, a;,=dzbscy,
as=dby+dibscy, a3 =ds3bscq,

ayy=d3bycs,
ais=dybycs.

dg=dyc3+dybycs,
a,=dbcq,

It is easy to find similar formulas from the other
two combinations of argumentsif they prove to be
more accurate than those shown above. However,

note that not a single term of the complete poly-
nomial is lost. However, this does not mean that
there are no additional limitations on the choice of
coefficients. Using the complete polynomial does
give more freedom when we attempt to minimize
the mean square error.

Coefficients of partial polynomials may aso be
found by solving the Gaussian normal eguations.
The minimum number of interpolation points is
equal to number of unknown coefficients whereas,
in the last example, only four points instead of 16
were needed.

CRITERION OF OPTIMALITY FOR THE
GMDH ALGORITHM WITH
POLYNOMIALS OF SECOND DEGREE

The GMDH algorithm with polynomials of
second order guarantees a choice of coefficients of
the partial polynomials whereby the minimum
mean sguare error may be obtained. Then the
coefficients of the complete polynomial may be
calculated from the formulas determined by the
chosen structure of the algorithm.

To raise the accuracy and to get the well-con-
ditioned matrices, al possible combinations of
arguments are tried. Only combinations producing
the smallest error are allowed to pass through a
threshold to the next layer. For accuracy, the
number of eguations averaged, according to the
Gaussian rule, is increased as much as possible for
stationary processes. If N=n, the complete poly-
nomial and partial polynomials give the same value
of mean square error.

DIFFERENCES BETWEEN THE
PERCEPTRON AND GMDH ALGORITHMS WITH
POLYNOMIALS OF SECOND DEGREE

The perceptron has a multilayer structure. In-
stead of accepting fina decisions in the first layer
of data processing, as is recommended by the
modern theory of statistical decision, the signals
pass through severd layers each of which consists
of links with variable gains, summators, and thres-
hold units. The above integra influences, acting
"without human influence', are realized only by
means of threshold units. The value of each thres-
hold is high enough to permit the sampling of about
only 40 per cent of the most probable decisions
beyond each layer; the rest of the signals are not
allowed to pass. This is just "the principle of
nonfinal decisions’, which is realized by the per-
ceptron contrary to conclusions reached through
statistical decision theory. The idea of nonfinal
decisions enables different heuristic criteria to act
on the information flow severa times, and this
results in the exceptionally high accuracy of
systems using heuristic self-organization.
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Our modifications of the perceptron are as
follows:

(1) Coefficients of the perceptron links are
caculated by solving Gaussian normal equations,
formulated for a small group of input signals,
instead of a random search or adaptation.

(2 Integral influences are redlized by different
heuristic criteria and by the use of threshold units,
more often, by the correlation of signals and teach-
ing data, contrary to a scalar multiplication in the
Rosenblatt's perceptron [7]. Instead of the linear
perceptron decision function

Y=(@X)=a;x;+ax,+azx3+ ... +a,x,

a more developed non linear polynomial is used:

N
Y =a,+ ;anx,, 3 Ay X Xy
+ Zzzanzanqan5xn3xn4xn5 + PO

This polynomial is often called the Kolmogorov-
Gabor polynomial [11]. It is stated in N. J
NILSSON'S book [12] that non-linear decision func-
tions were proposed by I. Koford. In fact they
were introduced by D. Gabor around 1960. Note
that for Gaussian random processes, the optimum
filter is linear and the perceptron decision func-
tion is the best function.

(3) The continuous optimization of threshold
values is used to get the highest accuracy.

By correfation criteria
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FiG. 3. Structures of algorithms for self-sampling of
useful information:

(a) in pattern recognition;

(b) in forecasting prediction;

(c) in identification.

The distinctions between the perceptron and
the GMDH are not great nor fundamental;
therefore we often call our systems perceptrons or
"systems of the perceptron type".

Other features of our systems are the same as
those of Rosenblatt's perceptron. The simplest
perceptron is used for pattern recognition. It
involves two thresholds only, both determined by
correlation coefficients (Fig. 3a). The perceptron
for a random process prediction is more compli-
cated. Here the self-sampling of the length of a
current interval of prehistory is added (Fig. 3b).
And finally, two preliminary thresholds are used in
identification problems. First, for choosing the
most active variables, and second, for choosing
data which do not repeat the previous information.
Data which repeat are omitted, and then the two
main correlation thresholds are used.

FOUR REASONS FOR USING
MULTILAYERED ALGORITHMS OF GMDH

There are at least four reasons why the percep-
tron-like multilayered structures of the GMDH
algorithmsare much better than usual, singlelayered
structures:

(1) Only short learning sequences are ever
available when we attempt to predict a process or
try to find the mathematical model of a complex
plant. Thus we must use one and the same points
of interpolation several times, the number of points
isless than the number of members of the complete
polynomial. Only two methods are known which
will work under such conditions: Methods of
stochastic approximation and the GMDH. That
is why we have called them rival methods in Ref.
[2]. But stochastic approximations cannot solve
the problem of identifying the globa maximum of
a multiextremum hill and they do not permit us
to organize self-sampling thresholds to omit
"harmful information". Therefore, the GMDH is
the superior method.

(2) The interval of the data observation is
always limited. Therefore the input data, "fea
tures’, can not be useful or only neutral, but even
harmful too. This statement contradicts Shannon's
information theory, but it is true. We can give
the following definition of the harmful feature.
A given feature is harmful if its average value and
other statistical characteristics in the learning
sequence differ from those in the testing sequence.
Such features are poorly correlated with the
output and they must be eliminated in order to
increase the accuracy. The thresholds provide
self-sampling of the useful information, but they
do not allow "harmful" information to pass.

(3) Even if we could obtain very long learning
seguences, we would not be able to find computers
large enough to solve normal equations based on
complete polynomials.
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(4) The coefficient matrix of the equations for a
complete polynomia is aways ill-conditioned.
However, among many combinations of small

Ay

DeviationsAy=y—y, ., ae shownin Fg. 4. They
are included in the input data, or features, for our
perceptron.

Start of predicting

7 8 9 1o Iz 13 14

Fic. 4. Time variation of Ay: continuous line—the
real variation of y: dotted line—the predicted variation.

partial equations, we can aways find well-condi-
tioned matrices of small dimensionality.

Let us draw attention to the main fact that the
GMDH solves not only the problem of dimension-
ality, but it also permits the use of very short | earn-
ing sequences consisting of only six interpolation
points as a minimum, and, with linear operators,
only three [6].

Many examples of solving various interpolation
problems encountered in engineering cybernetics
by the GMDH have already been published in the
Ukrainian journal “Avtomatika” [26 and on].
This journal is now translated into English as the
"Soviet Automatic Control" journal by the
Institute of Electrical and Electronic Engineers, Inc.,
345 East 47 Street, New York, N.Y. 10017.
Therefore, we shall consider below only the main
results of two examples to show the application of
one GMDH algorithm, particularly the algorithm
with second order polynomials, to the solution of
two rather different interpolation problems.
Example of random process predicting [2]

In Table 1, data about the size of areas used to
grow wheat and other produce for a period of
14 years in one district of the Ukraine are given.
Herey is the area used to grow wheat, 4zwy are
the areas used to grow other produce. The problem
is to predict the area which will be used to grow
wheat y(7) for at least one year in advance.

The first heurigtic, the choice of an "elementary
algorithm" of input features. The preliminary
data processing consists in calculating deviations of
the variable y(¢r) from the non-linear trend described
by the 3rd order equation:

ymed=ao+all+azlz+a313.

The second heuristic, the choice of criteria for
threshold self-samplings. Three thresholds for
self-sampling of useful information were used. The
first one by the length of the prehistory being
considered, the second and the third by the corre-
lation coefficients of the intermediate and predicted
variables.

The third heuristic, the choice of the GMDH
algorithm. An algorithm using polynomials of
second order was chosen. The method of con-
structing the complete description by a series of
partial descriptions was conditioned by this choice.

The results of calculations for one definite value
of three thresholds shown in Fig. 5 are as follows:
when the prehistory length being considered equals
5years(0, = 5), 35 input quantities pass through the
first threshold. (It is easy to calculate that the six
variables being taken into account plus one variable
of deviation shown in Fig. 4 give us 35 ordinates
for 5 years.)

Each of the 35 featuresis considered to berandom
function, and therefore we can calculate their
correlation with the deviation p(¢) from the
average trend. The threshold value of the first
correlation was taken as 0,=0-443. The second
self-sampling passed thefollowingfeatures:

1. Sowing area of wheat 5 yearsago x; =y, _ s
2. Sowing area of wheat 4 yearsago x, =xg._,
3. Sowingarea of produce v 5 years ago

X3 =Vg-s
4. Total area 5 years ago Xy =Xg 5
5. Sowing area of produce w 2 years ago

X5 =Wg_,
6. Total arca 4 years ago X =Xg_4



TABLE 1. INPUT DATA ABOUT SOWING AREAS (LEARNING SEQUENCE)

Sovi ng year after year (in hectares)

Produce 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Wite y 2500 5500 7700 8334 7800 7400 8647 8795 7400 6200 6060 6370 6380 5700

Qher produce n 80 140 280 500 630 1140 1880 2430 3300 3040 2990 3500 3800 3500
z 330 600 1180 1100 1020 920 860 1150 1520 1800 1840 1970 2530 2980
w 630 2740 4530 3400 1390 1280 70 370 380 450 660 1170 1690 1900
v 160 540 980 800 630 780 a0 670 740 1090 1050 1170 1430 1370

Total area z 3750 9250 14,610 14,134 11,470 11,520 13 037 13,415 13,340 12,580 12,600 14,180 15,830 15,450

Devi ati on from

trend Ay -4714 214+7 795:2 4088  —641-8 —11500  302-1 3732 241 —6026  —2371 4153 509-5  —740-0
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The algorithm of the prediction, the GMDH

with polinomials of second degree.

7. Sowing areaof produce w 3 years ago
X7 =Wg_3
8. Total area2 yearsago xXg =Xx_»
9. Deviation from the trend of sowing area
occupied by wheat 2yearsago  x, =Ay,_,
10. Sowing areaof producew 5 yearsago
Xjo=Wg-2

Note that features chosen by the threshold are
quite unexpected, and they cannot be found by any
deductive reasoning. This is why the given method
is said to be one of self-organization. Data on the
fifth, eighth and ninth variablesis obtained for the
most recent past, 2 years ago. Therefore the opti-
mum prediction should be for 2 yearsinthe future.

Ten variables chosen by the correlation threshold
enable us to construct 45 K olmogorov-Gabor poly-
nomials of second order each having 2 arguments.
Each polynomial can be written thirteen times,
according to the length of the learning sequence,
by substituting the input data. After the Gaussian
averaging, we get 45 systems of normal equations,
each having a small matrix of 6x6 elements.
The solution of normal equations determines 45
intermediate variables.

Then the correlation coefficients between the
intermediate variables and centred deviations of the
predicted variable are calculated. The threshold
value for the second correlation was 8, =09, and
this allowed only 4 variables to pass the third self-
sampling threshold namely: ys4, V78, Vizs Vs
Four variables make it possible to find two variables
at the next level of complexity, and after combining
result in the output Kolmogorov-Gabor polynomial:

Yy=ao+a1Y1256+2V3478+a3V1 256+ A4Yia7s
+asyi256 " V3ars-
Having written this polynomial thirteen times,

inserting the data and averaging by the Gaussian
rule, we obtain the last system of normal equations,

witha6x 6 matrix. Itssolution gives usthe predic-
tion formula:
(1) =120—"78-7+3529-9¢ —442t* 4 15-9¢>

+1:352y1,556 —0:23y3478 _0'0053yf256
—0-0065y3475+0-0012y 5563475 -

Using this formula we can predict the sowing area
occupied by wheat for the fourteenth year which
is used for the testing. Predicting for each succes-
sive year the formula is redeveloped from the very
beginning to evolve the formula coefficients. The
predictions for the sixth to the fourteenth year
areshown in Fig. 4 by a dashed line. Theaccuracy
of prediction proved to be unusually high since
the mean-root-square error was §=0-0009.

Optimization of thresholds indicated in Fig. 6.
The above algorithm realizes a feedforward heur-
istic self-organization method according to the
principle "by inputs'. To redize the feedback
principle "by outputs® a procedure of threshold
optimization should be used. The portion of the
signds passed by each threshold is to be chosen so
that the accuracy of the results, for a sequence, be
maximal. This optimal portion is equal to about
40 per cent in the first layer and decreases very
rapidly in the next layers of the perceptron. Papers
have been written in which the solution of this
problem is obtained using a probabilistic approach
[7 and 13]. However, we prefer to solve it using the
data of a given testing sequence by the simple
calculation of severa variants of threshold values.

The accuracy decreases if thresholds are too
low or too high. So the problemisto find the single
extremum vaue of accuracy in the space of the
thresholds @,, 0,, 05, using, for example, the
Fibonacci method. The variation of thresholds
mentioned above increases the accuracy even more.

Example of identification of static characteristic
of multiextremum plant [4 and 6]

Thevalue of extremum index ¢, the manipulating
variable p, and the main disturbance A measured
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Fig. 6. The optimisation of thresholds.

for 6 last instants, are input information in the
second example. If memory devices permit the
storage of data for more than 6 instants, the accur-
acy will be multiplied due to reduction in measure-
ment noise.

The first heuristic is the construction of an
"dlementary agorithm”, i.e. simple non-linear
functions of inputs. When identifying the static
characteristic we have used the first, second and
third powers of the inputs

M, la :u'z’ )‘25 I'l's’

When identifying the dynamic characteristic we
have used the integrals of these functions [6].

The second heuristic is connected with the choice
of criteria for the threshold self-samplings of useful
information. As previously stated, we used cor-
relation coefficients between every intermediate
variable and the extremum index.

23

organize the process of self-sampling, we again
used the four-layer perceptron shown in Fig. 7.
Thefirst layer gives us those polynomials of second
order which are best suited to approximate the
complex surface of the multiextremum hill. Only
about 40 per cent of total number of polynomials
are used to construct intermediate variables of the
second layer. In the second layer, new polynomials
of second order are sdlected again, but here they
are constructed from intermediate variables of the
first layer, and because of that they are of fourth
order with respect to the input arguments. Those
polynomials ensuring the best approximation of
the extremum hill surface pass the new threshold
and new polynomials are constructed again and
so on until a degeneracy begins, i.e. until the
accuracy of approximation starts to diminish.
Finaly, only the single best decision is chosen
in the last layer. As a result the surface of the
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FiG. 7. The algorithm of the GMDH with polynomials
of second degree in the problem of identification of a
two modal extremum plant.

The third heuristic is concerned with the choice
of the GMDH algorithm. The algorithm using
second order polynomials was chosen again. To

extremum hill will be described by severa, op-
timal, polynomials of second order, chosen in
all layers. These comparatively simple polynomials
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represent the statical characteristics of the extremum
plant, replacing a very long Kolmogorov-Gabor
complete polynomial.
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Fic. 8. The static characteristics of a two modal
extremum plant.

Let us point out some results: 60 pomts of the
multiextremum hill, shown in Fig. 8, were used as
alearning sequence of data and only 10 as atesting
or examining sequence. The first threshold was
passed by 11 of 15 variables, the second, 10, and the
third, 2. The last threshold passed only one poly-
nomial of the "fourth generation". The accuracy
can be evaluated by the correlation coefficient
Kz4=0-9815. Itisvery high.

Optimization of the thresholds. This accuracy
was reached by the optimum values of dl the
thresholds which were found by the Fibonnacci
search for the maximum accuracy.

CONCLUSION

The examples of the GMDH application to
the solution of different interpolation problems
show the high accuracy of this method. In some
cases, eg. in the case of random process prediction,
the accuracy is quite fantastic. The unusual predic-
tion accuracy of a process which seems to be quite
unpredictable makes us change our estimate of the
role of randomness in our environment. It seems
now that perhaps Laplace was amost correct. The
whole world around us is perhaps more determin-
igic than we usually think. The randomness
exists but it shows up at the 4th or 5th decimal
place.

This high accuracy can be explained in a very
simple way: Everybody who has used prediction
theory knows that the accuracy is higher when the
process itsdf is wel corrdated, i.e. when the

autocorrelation of the process is high. In the
GMDH, thethresholds select only useful variables,
i.e. those which are well correlated with the output.
Thisisthefirst reason why the accuracy is so high.
The second reason is that the GMDH, having
multilayered algorithms, enables us, despite of
brevity of data readings, to take into account the
high order covariationsin the Kolmogorov-Gabor
polynomials, or dependent inputs in the Bayes
formula. Present-day statistical decision theory
has a single-layered structure of algorithms, and
therefore it requires learning data sequence which
are too long to be obtained and used in practice.

We can recommend the following method for
verifying the accuracy: All data except those for
the next predicted moment are always used as the
learning sequence. The testing sequence consists
of only one future point. So we are to repeat all
calculations from the beginning before each next
prediction. We cal this method "the method
predicting formula evolution" because it con-
tinuously changes.

Note that it would not be correct to verify the
accuracy by means of the learning sequence itself
because in this case we cannot reach "degeneracy”
of formulas: more algorithm layers may be taken
—more the accuracy will increase. We must
use a separate testing sequence of data and only
then it is possible to find an optimum number of
layers. The accuracy first increases with each
subsequent layer but then, after exceeding the
optimal number of layers, the accuracy begins to
decrease. There are an optima number of genera-
tionsjust as in the process of plant or animal selec-
tion.

Thisis correct not only for prediction but also for
pattern recognition and for identification problems.
Let me point out finally that only the GMDH
enables us to solve the problem of identifying a
multiextremum plant directly because this method
is specialy developed for solving high dimensional
problems when the data sequences are very short.
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Résumé——Les systémes ou programmes d’auto-organisation
heuristique sont définis comme ceux contenant les généra-
teurs d’hypothéses ou de combinaisons aléatoires et plusieurs
couches d’auto-échantillonage a seuil de I'information utile.
La complexité des combinaisons augmente de seuil en seuil.
Un systéme connu, le perceptron de Rosenblatt, peut étre
pris comme exemple.

La méthode des Groupes du Traitement de I’Information
(MGTI]) basée sur les principes de l’auto-organisation
heuristique est réalisée pour la solution des problémes
complexes A grande échelle lorsque la sequence d’information
est trés courte. Larticle donne deux exemples pour illustrer
la maniére dont cette méthode s’applique aux problémes de
prédiction de procédés aléatoires et d’identification des
caractéristiques d’un systéme réglé & extrema multiples.

Zusammenfassung——Die Systeme oder Programme heuri-
stischer Selbstorganisation sind in der Weise definiert, daB
sie die Generatoren von stochastischen Annahmen oder
Kombinationen und verschiedene Schichten von Schwellen-
selbstabtastung niitzlicher Information einschlieBen. Die
Komplexitit der Kombinationen wichst von Schicht zu
Schicht. Ein bekanntes System, das Perzeptron von Rosen-
blatt, mag als Beispiel dienen.

Die Gruppenmethode der Datenverarbeitung auf der
Grundlage der Prinzipien heuristischer Selbstorganisation
wird entwickelt, um komplexe Probleme hoher Dimension
zu ldsen, wenn die Datenfolge sehr kurz ist. Zwei Beispiele
veranschaulichen, wie diese Methode auf Probleme der
Vorhersage zufélliger Prozesse und der Identifizierung der
Charakteristiken einer Anlage mit vielen Extrema anzu-
wenden ist.

Peztome—Cucrembl UM NPOTPAMMEI  3BPHCTHYECKOM
CaMOOpPraHu3anuy OmpeleeHbl KaK MMEIOIINe TeHEpaTOPLI
Cly4allHbIX TANOTE3 WM KOMOHHAUMHA M HECKOJIBKO CJIOEB
camMOOTOOPOB MO KPUTEPHUIO TIONC3HOCTH HHGOPMAIMH.
CroXHOCTE KOMOWHaLMi pacTeT OT YPOBHA K YDOBHIO.
[MpumepoMm MoxeT ObITh H3BECTHast BCEM CHCTEMArIep-
jentpoH ¢. Posenbnarra.

Meton I'pynnmoBoro VYuera Aprymentos (MI'VA),
OCHOBAHHBI HA NPHMHIMNAX 3BPHCTHYECKOH CaAMOOpPraHM-
3ALUM, CIAYXHUT IUTA PELICHHsT MHOTOMEPHBIX 3aja4, KOoraa
WHTEPBAT HAOMIOAEHUA OYeHb KOPOTOK. B cTaThe HaHbI
ABa TIpMMepa, WLTIOCTPUPYIOLHE, KakuM 00pa3oM 3TO0T
MCTOI APUMEHEATCA K MpobiieMam NpecKa3aHns CnyvyaiiHeIX
TIPOLECCOB M HMIOCHTH(GHUKALIMH XapaKTEPHCTHK YIPaBIA-
eMOoro 06°’ exTa cO MHOTHMM 3KCTPEMYMAaMH.



