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Abstract

 

—To increase accuracy in interpolation problems of artificial intelligence (pattern recognition, depen-
dence detection, object identification, stepwise forecasting of random processes, etc.), the inductive algorithms
are integrated in more extensive algorithms which consist of several gradually complicated stages of searching
for the output value optimization. At the first stage, a simple threshold analysis of the efficiency of the input
variables is performed. At the final stage, the twofold and threefold multirow neural networks with active neu-
rons are self-organized. Geometrically, the steps of complication can be represented as a gradient descent along
the axis of accuracy. Each step of descent should increase the accuracy of problem solving, which is controlled
by the depth of the minimum of the external accuracy criterion. At each step of descent, the main problems that
need to be further developed and investigated are considered. Beginning with the second step, each step of
descent can include both the search GMDH algorithms and the search for the analogs from the history accord-
ing to some external criterion.
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1. THE CONCEPT OF OPTIMIZATION 
INDEPENDENCE

Not only the search for model structures or analogs,
generated according to a predefined reference function,
but also a number of gradually complicated algorithms
for solving interpolation problems of artificial intelli-
gence (based on such a search) are to be further devel-
oped and investigated.

The complication of the GMDH algorithm and of its
optimization undergoes four stages or steps of descent.
At the first step of descent, the common multirow
GMDH algorithms are used. Here, we find an optimal
physical clustering and choose necessary clusters; in
addition, we exclude the points (sample rows) which
are not efficient enough. At the same time, the variable
space is extended due to generation of the so-called
secondary features. As a result of the first step of
descent, many efficient input variables are found,
which are fed in the GMDH algorithms. Clustering
decreases the number of rows in the data sample, and
modeling (performed on the second step of descent)
reduces the number of columns of the initial sample to
the required minimum. These two independent opera-
tions are performed in turn. At the second step of
descent, perceptron-type algorithms are used [1]. The
third step of descent is the only step where the number
of rows and columns are decreased simultaneously, by

gradually increasing the efficiency threshold for rows
and columns. To do this, an extended combinatorial
GMDH algorithm is used at the third step of descent. At
the fourth step of descent, the twofold and threefold
multirow neural networks are constructed by using one
of the above-mentioned combinatorial GMDH algo-
rithms as active neurons.

Usually, the more complex the GMDH algorithm,
the more accurate the solution to the problem. In prac-
tice, however, one should confine oneself to a certain
degree of the algorithm’s complexity. This is due to the
following reasons:

—if the data are corrupted by noise, increasing com-
plexity of the GMDH algorithm may not yield the more
accurate solution;

—the more complex GMDH algorithms may
require more information than that contained in the
data sample.

To choose an optimal degree of the algorithm’s
complexity, one can use the 

 

concept of optimization
independence

 

. According to this concept, all the subse-
quent optimizations do not change the preceding ones,
and such independence makes it possible to refer to
optimizations as the stages or steps of descent along the
axis of accuracy in solving interpolation problems.

There are two ways of performing all four steps of
descent.

(a) by using the model’s self-organization;
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(b) by using model-free algorithms, i.e., by search-
ing for the analogs in the history of the investigated
object, when the object itself is used as a model [3, 7].

Figure 1 illustrates the concept of the four steps of
descent. The first step begins with the coefficient of
determination 

 

Q

 

 = 0 and 

 

RR

 

 = 1.
If the initial data are accurate and complete, then the

rule “the more complex the algorithm, the more accu-
rate it is” is followed. However, if the data are imperfect
and noisy, a so-called overfitting of the algorithm can
occur. In this case, a transition from less complex algo-
rithms to more complex ones does not improve accu-
racy in solving interpolation problems. If the self-orga-
nization is used (i.e., the variants are searched for
according to the external criterion), the algorithm’s
complexity which yields the maximum accuracy is set
automatically. For example, working with the twofold
multirow neural network may reveal that it should con-
sist of one row of active neurons; i.e., there is no need
in using it. Next, it may also happen that, when the
threefold multirow neural network is self-organized,
better results are obtained if all variables are predicted
from the same data sample; i.e., the process of the algo-
rithm’s complication can be halted on the simpler two-
fold multirow neural network, etc. Thus, self-organiz-
ing algorithms can achieve the optimal complexity.

We can state a certain similarity of the choice of the
optimal complexity of the model structure according to
some external criterion and the choice of the degree of
complexity of the GMDH algorithm during its descent
along the complexity axis. Both problems can be
regarded as examples of problems of the optimal com-
plexity choice of the device for receiving inaccurate
and noisy data, where the Shannon paradigm is valid
[4]. It is known that, according to Shannon’s Second
Theorem, the complexity of the optimal receiving
device decreases with increasing noise variance [5].

In both problems, the risk of overfitting arises only
if the initial data are inaccurate or noisy.

2. FIRST STEP OF DESCENT: GENERATION
OF THE SECONDARY FEATURES
OR ARGUMENTS–CANDIDATES, 

THEIR BEING ESTIMATED AND CHOSEN 
ACCORDING TO SOME EFFICIENCY 

THRESHOLD

The main problem at the first descent step consists
in the choice of the efficient data sample to be subse-
quently processed. The important role here belongs to
the efficiency analysis of the primary and secondary
input variables. The primary features or model argu-
ments are the variables taken from the initial data sam-
ple. The secondary features are the variables whose val-
ues are calculated by using simple functions of the pri-
mary features. Most often the covariance of the primary
features (the products of normalized values [6]), the
coordinates of the first analogs [3, 7], and the output

estimates of the variables obtained by GMDH algo-
rithms [2] are used.

All the secondary features–arguments are ranked
according to their efficiency regardless of their origin.
The efficiency threshold is chosen and the features-
arguments whose efficiencies are below this threshold
are excluded from the consideration [6]. Only efficient
primary and secondary input variables are inputted in
GMDH algorithm. For the continuous input variables,
the modulus of correlation coefficient estimated by the
variable with the output value is usually regarded as the
efficiency criterion. For the binary features, such crite-
rion may be the number of resolved arguments [8].

3. SECOND STEP OF DESCENT: THE CHOICE 
OF REFERENCE FUNCTION AND OF THE WAY 

OF SEPARATING INITIAL DATA 
INTO LEARNING AND TEST SAMPLES

The main problems of the second step of descent
consist in the choice of the reference function and of the
way of separating initial data into the compact sets of
the points or clusters which correspond to the classes
(patterns) under recognition or to the levels of the pre-
dicted process. The reference function is necessary for
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Fig. 1.

 

 Picture explaining the concept of optimization inde-
pendence: 1—a descent by using the common GMDH algo-
rithms; 2—a descent by using the perceptron-type algo-
rithms; 3—a descent by using the extended combinatorial
GMDH algorithm; 4—a descent by constructing neural net-
works with the active neurons; 
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5—the complexity of
the algorithm; 
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—an external criterion.
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generating the set of models–candidates and for esti-
mating them according to the external criterion. Until
now, a very limited number of different reference func-
tions are employed. Most researchers use a linear, with
respect to the coefficients, polynomial as the reference
functions [9]. They justify it by the fact that this poly-
nomial is a discrete analog of the general function
decomposition into the Volterra series, although only a
small part in the beginning of this series is actually
used. Several examples prove that, for most modeling
tasks, the more efficient models are obtained for the
fractionally polynomial reference functions considered
in [10]. A separate line of modeling uses harmonic and
exponential reference functions, but only the cases with
the small number of time variables are considered [9].
The problem of choosing reference functions is still to
be considered.

Another insufficiently developed problem consists
in separating data into learning and test parts in order to
obtain the external criterion of the model evaluation. It
is stated in [12] that an optimal (according to any crite-
rion) model can be obtained only by using information
from without, which is called the external complement.
This complement either is introduced by an expert (who
performs the modeling) or it takes the form of the external
criterion, which is calculated on a separate test sample of
the initial data. In practice, two main ways of separating
initial sample are worth considering.

The first one uses the so-called cross-validation cri-
terion. The test part consists of all sample rows taken in
turn, i.e., all cluster points in turn, and the results are
averaged. The cross-validation criterion is time-con-
suming and, therefore, it can be applied only to samples
with no more than a hundred rows. Another external
criterion is called the regularity criterion. To calculate
it, all points of the cluster reduced to the single-moment
form are ranked according to the variance and each
third point goes to the test part. The rest of the points
are used to obtain the coefficient estimates by the Gaus-
sian method or the Khaletskii procedure. If the number
of arguments is too high, the size of the test sample can
be reduced. For the polynomial models, one can use the
formula for changing the rate of data selection to the

test sample: 

 

∆

 

 = , where 

 

S

 

 is a number of polyno-
mial terms. If, for example, there are two terms in the
polynomial, the test sample should consist of each sec-
ond point of the sample ranked according to variance.

In the problems of pattern recognition, the input
vector is assigned to a cluster according to the proxim-
ity criterion. A single cluster division is sufficient for
the combinatorial GMDH algorithm. In the iterative or
adaptive algorithms, the external character of the accu-
racy criterion is reduced with each iteration. This man-
ifests itself in less sharp minimums of the criterion.
Thus, the problem of pertaining the external character
by the criterion through iterations arises. Perhaps, sep-
arating the cluster’s points should be repeated before
each iteration. The advantage of the combinatorial
algorithm becomes evident.

2S

 

3.1. Two Forms of the External Accuracy Criterion.

 

In the problems of step-by-step prognosis and
dependence detection, it is convenient to use the rela-
tive form of external criterion [10]:

where 

 

x

 

i

 

 is a real value of the variable,  is its value

found from a model,  is an average value of the pre-
dicted variable, 

 

A

 

 is the number of rows in a learning
sample, and 

 

B

 

 is the number of rows in a test sample.
The averaging interval should be the same for all

models and algorithms compared. The external crite-
rion is calculated on the independent material, i.e., on
the separate data sample which contains 

 

N

 

 rows. The

determination criterion 

 

Q

 

 =   max could
be practically equivalent.

In pattern recognition problems, the determination
of an average value is connected with some difficulties. It
should be 

 

a priori

 

 known and equal to the most probable
value of the discriminant function. Here, the accuracy is
determined by the number of recognition errors on the
independent material [6]. The accuracy of a recognition
model can also be determined by the proximity of the
determinant function to the value +1, which corresponds
to the accurate recognition. In this case, we can calculate
the absolute criterion of regularity [5], 

if the total number of rows is 

 

N

 

 = 

 

A

 

 + 

 

B

 

.

4. THIRD STEP OF DESCENT: ADDITIONAL 
OPERATIONS IN A COMBINATORIAL GMDH 

ALGORITHM IN THE CASE
WHEN A PROCESSED CLUSTER CONTAINS 

TOO MANY (OR FEW) POINTS

To estimate model coefficients by using the least
square method (the Gaussian procedure), the number of
sample rows should be two or three times as many as
the number of terms in the polynomial model. In many
clusters subject to processing, this requirement is not
fulfilled. In this case, we recommend that the initial
data sample should be extended by taking into account
the coordinates of the arithmetic and geometrical mean
points according to the following formulas:

—with the geometrical mean coordinates
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This recommendation should be used pragmatically,
i.e., only in the case when it leads to the deeper mini-
mum of the external accuracy criterion.

In another frequently occurring case, the cluster to
be processed includes too many points, which drasti-
cally prolongs the processing time. Then we recom-
mend evaluating all sample elements according to their
efficiency and calculating the average efficiency of
each row and column of the sample. Setting some
threshold value for efficiency, we can exclude ineffi-
cient rows and columns from the sample, thus reducing
it to the size determined by computer capabilities [10].
At the same time, by decreasing the threshold value, we
increase not only the accuracy of the model, but also the
calculation time. Vice versa, increasing the threshold
value reduces both the accuracy and calculation time.
Thus, we have a typical problem of the choice of opti-
mal decision based on two criteria.

 

4.1. An Extended Combinatorial GMDH Algorithm 
with Simultaneous Optimization of the Numbers

of a Sample’s Rows and Columns Used in Modeling

 

The third degree of complexity characterizes
GMDH algorithms which combine the optimization
operations of the number of a sample’s rows and col-
umns used. This can be achieved by using the following
formula for calculating the efficiency of all elements in
the sample:

where 

 

W

 

 is the initial value,  is its mean value, 

 

V

 

 is
the value of the argument in the given sample element,
and  is the mean value of the variable, to which the
given sample element belongs.

Beginning with the value close to unity and gradu-
ally decreasing the threshold, we study the dependence
of the external accuracy criterion from the value of the
threshold. The minimum error corresponds to the opti-
mal threshold value, which determines the optimal
number of the used rows and columns of a data sample.
Only a learning sample is subject to optimization. The
test sample is used for calculating the external criterion.
Generation of the models–candidates and their estima-
tion is performed in the following order. If the effi-
ciency threshold of sample elements is unity, the sam-
ple contains no elements, i.e., it is empty. We gradually
decrease the threshold until at least one, the most effi-
cient, variable appears in a sample which has several
rows. Then, by using the first-row combinatorial
GMDH algorithm (with the equation 

 

y

 

 = 

 

a

 

0

 

 + a1xi), we
find the simplest and most accurate model and deter-
mine the value of the external criterion by using the
second-row combinatorial GMDH algorithm (with the
equation y = a0 + a1xi + a2xj). Next, by repeatedly
reducing the threshold of efficiency, we find a model

e
W W–( ) V V–( )

max W W–( ) V V–( )( )
-------------------------------------------------------,=

W

V

)

and a value of the third-row criterion and do this until
the model’s accuracy improves. The optimum model
corresponds to the minimum of the external criterion.
The extended GMDH algorithm is designed for use on
large samples. For the small samples containing less
than a hundred of rows, the models obtained by using
extended and normal combinatorial algorithms usually
coincide.

5. FOURTH STEP OF DESCENT: 
SELF-ORGANIZATION

OF THE TWO- AND THREEFOLD MULTIROW 
NEURAL NETWORKS WITH ACTIVE NEURONS 

THAT WORK WITH GMDH ALGORITHMS

The fourth step of descent consists of the two- and
threefold multirow neural networks with active neurons
which are represented by the units working according
the above-described GMDH algorithms. A neural net-
work is a committee of the active neurons which differ
in the output variable only. In a neural network, all the
variables from the sample are regarded as output vari-
ables. If in this connection one variable, chosen in turn,
is considered to be an output variable, it leads to the use
of explicit templates. If all the variables are considered
output, it leads to the use of implicit templates [10]. In
the latter case, at each row of the net’s self-organiza-
tion, a system of linear algebraic equations should be
solved in order to find the values of all output variables
in this row.

The main problem of the fourth step of descent con-
sists in the development of the theory and the algorithm
of a neural net’s self-organization, which is rather sim-
ple. By applying the combinatorial GMDH algorithm
to each of the output variables, the first row of neurons
is obtained (see Figs. 2 and 3). The first estimates of all
the variables are obtained at the outputs of neurons of
the first row; then, they are fed as additional secondary
features or arguments at the second row of neurons,
which also work according the combinatorial GMDH
algorithm. The neuron’s rows grow as long as the accu-
racy of the estimate of the variable under consideration
increases.

5.1. Self-organization of the Architecture
of the Twofold Multirow Neural Network

At the fourth step of descent, the twofold multirow
neural network with the active neurons is self-orga-
nized; it was thoroughly described in [2]. The models,
obtained at the previous steps of descent, can serve as
the first row of the neural network. The output values of
the first row are efficient arguments for the models of
the second row, and the output values of the second row
are included in the set of variables of the third row
(Fig. 2). In this figure, the following notation is used:
I-1, I-2, I-3, I-4,…, III-3, and III-4 are active GMDH
neurons.
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The descent continues (i.e., the neural net’s rows are
growing) as long as the external criterion of accuracy
decreases. As an alternative to the neural network con-
structed over the neurons which implement GMDH
algorithms, we may suggest the construction of the
neural network, which uses model-free analog algo-
rithms [3].

5.2. Self-organization 
of the Threefold Multirow Neural Network

At the fourth step of descent, the problem of the
stepwise prognosis of the processes requires two or
more samples obtained on several similar objects. The
prognosis model uses the variable from the sample,
where this variable is predicted more accurately
according to the value of external criterion. Here, for
example, it turns out that for forecasting the efficiency
of the New York Stock Exchange, the dollar rate should
be forecasted on the basis of data from the New York

Stock Exchange; sterling rate, from the London Stock
Exchange, etc. This simple idea is implemented with
the help of the threefold multirow neural network with
active neurons, which are twofold multirow neural net-
works (Fig. 3), denoted as I-1, I-2, II-1, II-2, III-1, and
III-2.

At this step of descent, the further extension of the
search for efficient secondary arguments takes place.
The descent continues until the external criterion
decreases.

6. PARAMETRIC FILTERING (THE KALMAN 
FILTER TYPE) OF ADDITIVE NOISE RESISTANT 

TO FORMALIZING AND MEASURING BY 
GMDH ALGORITHMS

There are two consistent explanations of the effi-
ciency of the neural network with active neurons.
According to the first, a neural networks is treated as a
generator of the efficient secondary features. According
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Fig. 2. The twofold multirow neural network with the active neurons constructed by GMDH algorithm for four variables.
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to the second, as a noise filter. The GMDH algorithms
can be employed as parametric noise filters for obtain-
ing the values of the variables indicated in the data
sample.

The output variable indicated in the data sample can
be considered as a sum of some true signal, set by the
arguments indicated in the sample and algebraic sum of
actions which were not included in the data sample [5].
This sum is called additive noise and can include ill-
formalizable actions, e.g., psychological actions. If the
noise variance is more than true signal variance, the
dependence of external criterion upon the complexity
of model structure is no longer minimal and GMDH
algorithms do not work. To make them work, one
should preliminary filter the additive noise.

Self-organization of the twofold multirow neural
network is aimed at every possible reduction of every
type of noise, including noise resistant to formalization
and measurement.

It is known that noise filtration is actual in commu-
nication theory (frequency and synchronous filters) and
in the automatic control systems where the estimates of
the noisy output variables are obtained by the paramet-
ric Kalman filters [13, 14].

A combinatorial GMDH algorithm can be used as a
parametric filter. In the twofold multirow neural net-

work, each variable is processed along the chain of neu-
rons, acting in accordance with GMDH algorithms.
Moreover, in the chain, it is sufficient to search for the
structure models by the external criterion in the last
algorithm only, because only there a signal is consider-
ably filtered from noise. The degree of filtering is con-
trolled according to an external criterion. The number
of rows for processing each element from the sample
grows as long as the external accuracy criterion
decreases. As a result, there can be an unequal number
of rows for different variables in a neural network.
Noisier variables demand more filtering rows [2].

Figure 4 exemplifies noise filtering by the use of a
committee of twofold multirow neural networks in
problems of multialternative pattern recognition. Here
are some explanations to the figure:

1—The partitioning of data sample into k clusters.
Data are normalized by the largest value of each vari-
able. After the analysis of sample elements, inefficient
rows and columns are excluded. A sample is partitioned
into classes and clusters automatically or by experts by
comparing two balance clusterization trees [1].

2—Various formations of samples for two-alterna-
tive recognition of each class (pattern).

3—The construction of a committee of twofold
multirow neural networks, where the noise filtering is
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Fig. 3. The threefold multirow neural network with the active neurons being twofold multirow neural GMDH networks for four
variables.
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performed. At the outputs of neural networks, we
obtain the discriminant functions for each class. The
output value which indicates a membership of the fea-
ture vector in the given class is +1 for all vectors of the
given class and –1 for all vectors of other classes. The
number of rows in the lower and upper parts of the sam-
ple should be the same and contain the most efficient
sample rows.

4—The choice of the most accurate estimates and
models.

5—The calculation of discriminant functions.

6—The comparison of the discriminant functions.

X—The input signal which is received by all dis-
criminant functions and belongs to the class whose
function is closest to +1.

A committee of twofold multirow neural networks
can be treated as a first row in a threefold multirow neu-
ral network outlined above.

7. MULTIALTERNATIVE PATTERN 
RECOGNITION

Figure 4 presents an algorithm which can serve as an
example of multialternative pattern recognition. An
input signal should be either referred to one of several
patterns or rejected. Here, the various samples of two-
alternative recognition are constructed along with the
samples where the classes close according to some
external criterion are combined into one general class.
In the problems of multialternative pattern recognition,
one should choose between the following two ways of
designing the algorithm for a given problem.

(i) One can design all possible algorithms of
two-alternative recognition and use the so-called voting
[15, 16], where the recognition accuracy is achieved
either if the number of patterns is small or if the voting
has several rounds. In this case, an expert should vote
at least two or three times.

(ii) One can rank all the features according to their
efficiency and compose the new samples of two-alter-
native recognition which contain a set of points from
each class and sets with the same number of points of
all other classes (Fig. 4). A combinatorial GMDH algo-
rithm yields a discriminant model for each sample. The
input signal belongs to the class whose discriminant
function is closest to +1.

Both algorithms of multialternative recognition
were tested. However, we need to determine the field of
application for each algorithm more thoroughly. If the
voting is confined to one round, the determination coef-
ficient, being an index of accuracy, rapidly decreases
when the number of alternatives grows. In the second
algorithm, the coefficient decreases slower. The deter-
mination coefficients are equal when the number of
alternatives approximates seven.

8. AN EXAMPLE: THE ACTIVITY OF THE NEW 
YORK STOCK EXCHANGE FORECASTED 
BY USING DATA OF THE FIRST CLUSTER 

OF OPTIMAL PHYSICAL CLUSTERING 
AND ITS INTERMEDIATE GEOMETRICAL 

MEAN POINTS

By this example, we show that the accuracy of prog-
nosis of the random process can be considerably
increased by decreasing the number of rows in input
data up to the vector set, defined by the first cluster of
physical clustering, and by extending a sample with
mean points. As an object, information from the New
York Stock Exchange over the period May 11–July 17,
1991 was used.

The initial sample of experimental data contains
four activity indices, shown in Table 1, where X1 is the
minimum value of activity index; X2 is the maximum
value of activity index; X3 is the activity index at the
close of the trading; and X4 is a sum of total operations
per day.

1 2 Ck
2 + K

3

2

1

4

5

6

V1 V2 V3 V4

RR → min
Q → max

X

Fig. 4. The algorithm of multialternative pattern recognition
with noise filtering:
1—the partitioning of data sample (performed automati-
cally or by experts) into k clusters; 2—various formations of
samples for two-alternative recognition; 3—the committee
of twofold multirow neural networks; 4—the choice of the
most accurate estimates and models; 5—the calculation of
discriminant functions (models); 6—the comparison of the
discriminant functions and decision making; X—input sig-
nal.
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Table 2 shows the sample in a single-moment form.
For the forecast, we chose the 54th day of the work of
the stock exchange. The forecasted value was chosen to
be variable X3.

To find optimal physical clustering, we used a com-
puter program for calculating an M-type curve which
expressed the dependence of the balance criterion from
the number of construction step of the two classifica-

Table 1.  Initial data sample

X1 X2 X3 X4 X1 X2 X3 X4

1 375.0000 375.5000 376.5000 130.0000 36 371.0000 378.0000 378.0000 170.0000

2 371.0000 377.0000 372.0000 220.0000 37 377.0000 378.0000 378.0000 160.0000

3 366.0000 373.0000 368.0000 190.0000 38 372.0000 377.0000 373.0000 140.0000

4 369.0000 373.0000 373.0000 155.0000 39 374.0000 376.0000 375.0000 159.0000

5 369.0000 374.0000 373.0000 175.0000 40 372.0000 375.0000 374.0000 170.0000

6 372.0000 374.0000 373.0000 110.0000 41 371.0000 378.0000 378.0000 140.0000

7 373.0000 377.0000 376.0000 185.0000 42 376.0000 378.0000 376.5000 155.0000

8 375.0000 377.0000 377.0000 160.0000 43 376.0000 380.0000 376.0000 180.0000

9 374.0000 378.0000 375.0000 177.0000 44 376.0000 378.0000 377.5000 160.0000

10 375.0000 378.0000 377.0000 128.0000 45 376.0000 381.0000 380.0000 177.0000

11 378.0000 380.0000 379.0000 130.0000 46 380.0000 383.0000 383.0000 162.0000

12 377.0000 383.0000 383.0000 165.0000 47 381.0000 383.0000 382.0000 183.0000

13 382.0000 384.0000 383.0000 187.0000 48 381.0000 383.0000 381.0000 195.0000

14 383.0000 388.0000 387.0000 235.0000 49 381.0000 386.0000 386.0000 200.0000

15 385.0000 390.0000 390.0000 230.0000 50 384.0000 386.0000 385.0000 190.0000

16 387.0000 390.0000 388.0000 175.0000 51 382.0000 385.0000 383.0000 150.0000

17 385.0000 388.0000 388.0000 180.0000 52 379.0000 385.0000 379.5000 160.0000

18 384.0000 388.0000 385.0000 185.0000 53 378.0000 380.5000 380.3000 160.0000

19 383.0000 386.0000 384.0000 170.0000 54 380.0000 381.0000 381.0000 145.0000

20 379.0000 384.0000 380.0000 170.0000 55 380.0000 382.0000 381.0000 130.0000

21 387.0000 380.0000 379.0000 130.0000 56 380.0000 384.0000 384.0000 136.0000

22 379.0000 382.0000 381.0000 162.0000 57 384.0000 387.0000 387.0000 170.0000

23 374.0000 381.0000 376.0000 170.0000 58 387.0000 388.0000 388.0000 168.0000

24 375.0000 377.0000 377.0000 145.0000 59 387.0000 388.0000 387.6000 170.0000

25 377.0000 383.0000 383.0000 174.0000 60 387.0000 389.0000 387.5000 162.0000

26 380.0000 382.0000 380.0000 135.0000 61 385.0000 387.0000 385.5000 127.0000

27 378.0000 382.0000 378.0000 159.0000 62 384.0000 391.0000 391.0000 175.0000

28 375.0000 378.0000 376.0000 160.0000 63 390.0000 391.5000 390.0000 170.0000

29 374.0000 376.5000 375.0000 165.0000 64 388.0000 392.0000 389.0000 165.0000

30 375.0000 378.0000 378.0000 195.0000 65 387.0000 390.0000 387.5000 145.0000

31 371.0000 378.0000 371.0000 140.0000 66 386.0000 388.0000 388.0000 146.0000

32 360.0000 373.0000 371.0000 159.0000 67 388.0000 392.0000 390.0000 215.0000

33 368.0000 373.0000 372.0000 185.0000 68 389.0000 392.0000 390.0000 195.0000

34 372.0000 374.0000 374.0000 159.0000 69 389.0000 391.0000 389.0000 176.0000

35 368.0000 374.0000 371.0000 165.0000 70 385.0000 390.0000 395.0000 190.0000
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Table 2.  Sample in the single-moment form

Y1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

3 373.00 366.00 373.00 368.00 190.00 371.00 377.00 372.00 220.00 375.00 375.50 376.50 130.00

4 373.00 369.00 373.00 373.00 155.00 366.00 373.00 368.00 190.00 371.00 377.00 372.00 220.00

5 373.00 369.00 374.00 373.00 175.00 369.00 373.00 373.00 155.00 366.00 373.00 368.00 190.00

6 376.00 372.00 374.00 373.00 110.00 369.00 374.00 373.00 175.00 369.00 373.00 373.00 155.00

7 377.00 373.00 377.00 376.00 185.00 372.00 374.00 373.00 110.00 369.00 374.00 373.00 175.00

8 375.00 375.00 377.00 377.00 160.00 373.00 377.00 376.00 185.00 372.00 374.00 373.00 110.00

9 377.00 374.00 378.00 375.00 177.00 375.00 377.00 377.00 160.00 373.00 377.00 376.00 185.00

10 379.00 375.00 378.00 377.00 128.00 374.00 378.00 375.00 177.00 375.00 377.00 377.00 160.00

11 383.00 378.00 380.00 379.00 130.00 375.00 378.00 377.00 128.00 374.00 378.00 375.00 177.00

12 383.00 377.00 383.00 383.00 165.00 378.00 380.00 379.00 130.00 375.00 378.00 377.00 128.00

13 387.00 382.00 384.00 383.00 187.00 377.00 383.00 383.00 165.00 378.00 380.00 379.00 130.00

14 390.00 383.00 388.00 387.00 235.00 382.00 384.00 383.00 187.00 377.00 383.00 383.00 165.00

15 388.00 385.00 390.00 390.00 230.00 383.00 388.00 387.00 235.00 382.00 384.00 383.00 187.00

16 388.00 387.00 390.00 388.00 175.00 385.00 390.00 390.00 230.00 383.00 388.00 387.00 235.00

17 385.00 385.00 388.00 388.00 180.00 387.00 390.00 388.00 175.00 385.00 390.00 390.00 230.00

18 384.00 384.00 388.00 385.00 185.00 385.00 388.00 388.00 180.00 387.00 390.00 388.00 175.00

19 380.00 383.00 386.00 384.00 170.00 384.00 388.00 385.00 185.00 385.00 388.00 388.00 180.00

20 379.00 379.00 384.00 380.00 170.00 383.00 386.00 384.00 170.00 384.00 388.00 385.00 185.00

21 381.00 387.00 380.00 379.00 130.00 379.00 384.00 380.00 170.00 383.00 386.00 384.00 170.00

22 376.00 379.00 382.00 381.00 162.00 387.00 380.00 379.00 130.00 379.00 384.00 380.00 170.00

23 377.00 374.00 381.00 376.00 170.00 379.00 382.00 381.00 162.00 387.00 380.00 379.00 130.00

24 383.00 375.00 377.00 377.00 145.00 374.00 381.00 376.00 170.00 379.00 382.00 381.00 162.00

25 380.00 377.00 383.00 383.00 174.00 375.00 377.00 377.00 145.00 374.00 381.00 376.00 170.00

26 378.00 380.00 382.00 380.00 135.00 377.00 383.00 383.00 174.00 375.00 377.00 377.00 145.00

27 376.00 378.00 382.00 378.00 159.00 380.00 382.00 380.00 135.00 377.00 383.00 383.00 174.00

28 375.00 375.00 378.00 376.00 160.00 378.00 382.00 378.00 159.00 380.00 382.00 380.00 135.00
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Table 2.  (Contd.)

Y1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

29 378.00 374.00 376.50 375.00 165.00 375.00 378.00 376.00 160.00 378.00 382.00 378.00 159.00

30 371.00 375.00 378.00 378.00 195.00 374.00 376.50 375.00 165.00 375.00 378.00 376.00 160.00

31 371.00 371.00 378.00 371.00 140.00 375.00 378.00 378.00 195.00 374.00 376.50 375.00 165.00

32 372.00 360.00 373.00 371.00 159.00 371.00 378.00 371.00 140.00 375.00 378.00 378.00 195.00

33 374.00 368.00 373.00 372.00 185.00 360.00 373.00 371.00 159.00 371.00 378.00 371.00 140.00

34 371.00 372.00 374.00 374.00 159.00 368.00 373.00 372.00 185.00 360.00 373.00 371.00 159.00

35 378.00 368.00 374.00 371.00 165.00 372.00 374.00 374.00 159.00 368.00 373.00 372.00 185.00

36 378.00 371.00 378.00 378.00 170.00 368.00 374.00 371.00 165.00 372.00 374.00 374.00 159.00

37 373.00 377.00 378.00 378.00 160.00 371.00 378.00 378.00 170.00 368.00 374.00 371.00 165.00

38 375.00 372.00 377.00 373.00 140.00 377.00 378.00 378.00 160.00 371.00 378.00 378.00 170.00

39 374.00 374.00 376.00 375.00 159.00 372.00 377.00 373.00 140.00 377.00 378.00 378.00 160.00

40 378.00 372.00 375.00 374.00 170.00 374.00 376.00 375.00 159.00 372.00 377.00 373.00 140.00

41 376.50 371.00 378.00 378.00 140.00 372.00 375.00 374.00 170.00 374.00 376.00 375.00 159.00

42 376.00 376.00 378.00 376.50 155.00 371.00 378.00 378.00 140.00 372.00 375.00 374.00 170.00

43 377.50 376.00 380.00 376.00 180.00 376.00 378.00 376.50 155.00 371.00 378.00 378.00 140.00

44 380.00 376.00 378.00 377.50 160.00 376.00 380.00 376.00 180.00 376.00 378.00 376.00 155.00

45 383.00 376.00 381.00 380.00 177.00 376.00 378.00 377.50 160.00 376.00 380.00 376.00 180.00

46 382.00 380.00 383.00 383.00 162.00 376.00 381.00 380.00 177.00 376.00 378.00 377.00 160.00

47 381.00 381.00 383.00 382.00 183.00 380.00 383.00 383.00 162.00 376.00 381.00 380.00 177.00

48 386.00 381.00 383.00 381.00 195.00 381.00 383.00 382.00 183.00 380.00 383.00 383.00 162.00

49 385.00 381.00 386.00 386.00 200.00 381.00 383.00 381.00 195.00 381.00 383.00 382.00 183.00

50 383.00 384.00 386.00 385.00 190.00 381.00 386.00 386.00 200.00 381.00 383.00 381.00 195.00

51 379.50 382.00 385.00 383.00 150.00 384.00 386.00 385.00 190.00 381.00 386.00 386.00 200.00

52 380.30 379.00 385.00 379.50 160.00 382.00 385.00 383.00 150.00 384.00 386.00 385.00 190.00

53 381.00 378.00 380.50 380.30 160.00 379.00 385.00 379.50 160.00 382.00 385.00 383.00 150.00

54 381.00 380.00 381.00 381.00 145.00 378.00 380.50 380.30 160.00 379.00 385.00 379.50 160.00
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tion trees developed by A.P. Sarychev. The first cluster
was proved to include the last twelve rows of Table 2.

By using the combinatorial GMDH algorithm, we
add the mean geometric points for the first cluster and

find the following forecasting models:

X3k + 1 = 489.203 – 1.3271X1k – 2.2648X2k

+ 1.69759X3k + 0.0771X4k – 0.0258X1k – 1

+ 2.5930X2k – 1 + 2.7702X3k – 1 + 0.0012X4k – 1

+ 1.8739X1k – 2 – 1.5382X2k – 2 + 1.1435X3k – 2

– 0.0472X4k – 2.

X3k + 2 = 304.3073 – 2.0841X1k + 0.4558X3k

+ 0.0280X4k + 1.9017X1k – 1 – 1.3530X2k – 1

+ 1.9908X3k – 1 + 0.1019X4k – 1 + 1.0410X1k – 2

– 0.5349X2k – 2 – 1.1568X3k – 2 – 0.2251X4k – 2.

X3k + 3 = 328.0698 – 1.9519X1k – 0.3918X2k

– 0.6967X3k + 0.0385X4k + 1.4974X1k – 1

– 1.5971X2k – 1 + 2.1631X3k – 1 + 0.0811X4k – 1

+ 1.1755X1k – 2 – 0.6985X2k – 2 – 0.7023X3k – 2

– 0.1941X4k – 2.

X3k + 4 = 295.7382 – 1.6121X1k + 0.3631X3k

+ 0.0304X4k + 1.8292X1k – 1 – 1.2550X2k – 1

+ 1.5520X3k – 1 + 0.0824X4k – 1 + 1.0588X1k – 2

– 0.5752X2k – 2 – 1.0820X3k – 2 – 0.1959X4k – 2.

X3k + 5 = 366.3279 – 2.1159X1k – 0.4593X2k

+ 0.7830X3k + 0.0408X4k + 1.4909X1k – 1

– 1.6150X2k – 1 + 2.3175X3k – 1 + 0.0814X4k – 1

+ 1.1249X1k – 2 – 0.6836X2k – 2 – 0.6733X3k – 2

– 0.1975X4k – 2.

Figure 5 shows the change in the determination
coefficient, which characterizes the accuracy of the
forecast, while the predictive time gradually increases.
Table 3 contains the prognostic values for the variables
and the determination coefficient of the stepwise fore-
cast in two versions:

(a) when the day of the forecast is constant;

Table 3.  Prognostic and real values of X3 and coefficient of determination

Prognostic days 55 56 57 58 59

(a) For the entire table (54 points) 382.54 384.57 384.85 385.09 383.69

0.6559 0.5561 0.4519 0.2796 0.1687

For the first cluster with adding
geometric means of the points

387.04 386.92 388.99 387.17 384.29

0.9987 0.9799 0.9166 0.9125 0.8950

(b) For the entire table (54 points) 382.54 385.55 387.55 386.46 386.86

0.6559 0.6543 0.7259 0.7333 0.7380

For the first cluster with adding
geometric means of the points

387.04 387.78 387.26 386.46 386.86

0.9987 0.9964 0.9961 0.9893 0.9819

Real values 387 388 387.6 387.5 385.5
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Fig. 5. Changing in determination coefficient.
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Fig. 6. Self-organizing of the twofold multirow neural net-
work with the filtering of additive noise.
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(b) when the time of forecast is shifted a step with
each step of a forecast.

The forecast is made for all of Table 2 and for the
first cluster with addition of the points with the geomet-
ric means of the coordinates.

By comparing the forecasts made for the whole
sample and for the first cluster with the addition of the
points with the geometric means of the coordinates, we
make sure that by reducing the sample to the size of the
first cluster and by introducing additional point, we can
actually enhance the accuracy of the forecast. The coef-
ficient of determination of the short-term forecast (one
step forward) is increased from the value Q = 0.6559 to
Q = 0.8950. For the intermediate-term forecast (five
steps forward), the coefficient of determination is
increased from the value Q = 0.1687 to Q = 0.8950, i.e.,
many times. Further enhancement of the accuracy can
be achieved by using the Kalman filter by self-organi-
zation of the twofold multirow neural network (fourth
step of descent). Figure 6 shows an example of the self-
organizing neural network consisting of four neurons
(borrowed from [2]), where δ2 = (1 – )2. It is clear
from the picture that different variables require the use
of chains with a different number of neurons. In prac-
tice, instead of the additional points with the mean geo-
metric coordinates, one can successfully use the addi-
tional points with the mean arithmetic coordinates.
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