Proceedings of ACEDC’96
PEDC, University of Plymouth, UK

PRACTICAL IMPLEMENTATION AND USE OF GROUP METHOD OF DATA
HANDLING (GMDH): PROSPECTS AND PROBLEMS

S A Dolenko, Yu V Orlov, and I G Persiantsev

Nuclear Physics Institute, Moscow State University, Moscow, 119899 Russia

E-mail at Internet: dolenko@micnel.npi.msu.su

Issues of practical implementation of Group Method of
Data Handling (GMDH) are discussed. The method was
tested on a wide range of artificial and real-world
problems. The method allows to find an analytical
formula, which expresses the dependence of modeled
system output on the values of most significant inputs of
the system. GMDH proved to be most effective to solve
small and medium-sized problems with continuous
output.

Basics of the Method

One of the most common problems in engineering
design and control is the problem of mathematical
modeling. Consider the object under investigation as a
"black box" with several input variables (inputs) and
one output variable (output). The purpose of modeling is
to find some means of predicting the value of output for
any values of inputs, based on a set of learning data.

One of the methods of mathematical modeling is the
Group Method of Data Handling (GMDH) [Ivakhnenko,
(1), Farlow, ed. (2), Ivakhnenko et al (3)]. The idea of
GMDH is the following: we are trying to build an
analytical function (called "model") which would
behave itself in such a way that the predicted value of
the output would be as close as possible to its actual
value. For many applications such an analytical model is
much more convenient than the "distributed knowledge"
representation that is typical for neural network
approach.

The most common way to deal with such a problem is to
use linear regression approach. In this approach, first of
all we must introduce a set of basis functions. The
answer will then be sought as a linear combination of the
basis functions. For example, powers of input variables
along with their double and triple cross-products may be
chosen as basis functions.

To obtain the best solution, we should try all possible
combinations of terms, and choose those which give best
predictions. The decision about quality of each model
must be made using some numeric criterion. (Correct
choice of the criterion is a separate problem.) However,
it is clear that full testing for a problem with many
inputs and a wide set of basis functions is practically
impossible, as it would take too much time and it would
require too much computer memory. To reduce
computational expenses, one should reduce the number
of basis functions (and the number of input variables),
which are used to build the tested models. To do that,

one must change from a one-stage procedure of model
selection to a multi-stage procedure.

Let us take first two input variables and let us combine a
simple set of basis functions. For example, if we denote
input variables as x; and X, let the set of basis functions
be {1, Xy, Xy, X;"X»}. (1 corresponds to constant bias and
must be always included in the set.) Now we check 2°-
1=15 possible models, and choose one that is the best.
(Any one of the tested models is often called partial
description, or PD.)

After that, we take another pair of input variables, and
repeat operation, resulting in one more PD with its own
value of criterion. Doing the same for each possible pair
of n input variables, we obtain n-(n-1)/2 PDs, each with
its own value of the used criterion.

Then we compare these values and choose several PDs
which give better approximation for the output variable.
Usually we select a pre-defined number F of best PDs
that must be preserved at the next step of algorithm.

The values predicted by the preserved PDs (called
Survivors), serve at the next iteration as input variables
along with initial input variables of the whole system.
All the described actions are repeated again with the
broadened set of input variables, then the next iteration
goes, etc.

The work of this algorithm has a straightforward
analogy with work of a gardener during selection of a
new hybrid plant. The gardener sows some seeds, waits
for the plants to grow and selects several plants that bear
the property desired for the hybrid to stronger extent.
Then he collects seeds from the selected plants and sows
these seeds again, bringing up a second generation, etc.,
until he obtains a plant with the desired property.

GMDHTEST: the Opportunities of the Software
Package

The described algorithm was implemented as a
computer program running under Microsoft Windows
3.1 and called GMDHTEST. The main features of the
program are:

e This version of the algorithm uses polynomial basis
functions. The set of these functions (and thus
possible Partial Descriptions) may be affected by
special parameters.

e The formula obtained at each iteration, analytically
expresses the output in terms of initial inputs, rather
than in terms of previous iteration.

e We may choose from several types of selection
criteria. Six types of these has been used before
[Farlow, ed. (2), Ivakhnenko et al (3), Barron and
Xiao (4)]. In this work, we have also used a new type
of selection criterion.

e After the model is obtained, it should be checked if
some insignificant terms may be removed from the
model. Such procedure is called Optimization. There
are several modes of optimization which trade
thoroughness for speed.

e Besides non-linear models, the algorithm may
consider extended linear models with up to 15 most
significant input variables.

e Besides usual sequential testing of all the possible
combinations of inputs, the program allows random
selection of the next tested combination.

e Scaling of all inputs and the output is possible into
[0..1], [-1..1] or [#variance] for each variable.
Scaling may be also turned off.

Results

The program described above was used to get optimal
models for several artificial (generated) and real-life
problems.

Estimation Criteria. We used two main criteria for
estimation of method performance: the linear correlation
coefficient C and the coefficient of multiple
determination R, which is expressed by the formula:

actual — predicted)?
Roq predicted)

Z(actual - mean)2

The values of R and C for tested problems are
summarized in Table 1.

Modeling of Complex Functions. To test the ability of
GMDH to select really important input variables, we
used two artificial problems from the work by Friedman
(5). Each of these problems had 10 inputs and one
output. The underlying formulae were in both cases
complex non-linear functions of only five first input
variables, using polynomials, exp() and sin() functions.
All the input variables were generated in [0..1] range by
random. The train and test sets had 200 patterns each.
The algorithm demonstrated a stable ability of
approximation of the target dependencies without using
any phantom variables in the resulting formulae, unless
the train set was too small (less than 100 patterns).

Sunspot Activity Forecasting. This well-known
benchmark problem [de Groot and Wurtz, (6)] was used
to test the forecasting ability of the algorithm. Fifteen
years’ data were used to predict sunspot activity one
year ahead. From the whole set of data (1700-1979

years) we formed 265 patterns, with first 200 used for
training and the rest for testing. Each variable (all inputs
and the output) was scaled into +variance. The obtained
formula was:

S¢=9.3-107 +1.3-S¢y - 0.61-S, + 0.23-S +
+0.32-8% ;- 710%-8% 5 - 0.43-S¢.; S, +
+6.9-102-8-S¢0 - 6.2-10%-S,-S¢.s,

where S; denotes sunspot activity in the year t.

In Fig. 1, the forecasting results on test set are presented
together with actual sunspot activity values.

1915 1925 1935 1945 1955 1965 1975
Year

Figure 1. Sunspot activity values on test set: actual (line)
and predicted (crosses).

Prediction of Deterministic Chaotic Time Series. The
algorithm was applied to predict a well-known Logistic
Parabola [de Groot and Wurtz, (6)], described by the
formula

2
X =1-2X%,

defined on the interval [-1..1]. Each pattern contained 10
successive values that were analysed by the algorithm to
predict the value one step ahead. Both the train and test
sets included 200 patterns. To make the task more
difficult, the data were blurred by addition of white
noise to the actual target values in the train set. GMDH
algorithm successfully restored the correct formula with
noise levels up to 30%.

Financial Prognosis. The algorithm was applied to a
number of financial data to forecast different important
market parameters. Typical values of R and C for this
kind of problems are presented in Table 1.

Iris Classification. To perform classification of
classical Fisher’s iris data [Fisher, (7)], three GMDH
models were created (one for each class). Activity of
each model output served as measure of confidence that
a pattern belongs to the corresponding class. Then the
class of the pattern was determined by the maximal
output activity among the three models. Use of this
approach resulted in 2 misclassifications out of 75 train
patterns and 2 misclassifications out of 75 test patterns.

15-bit Parity Problem. This problem was selected
intentionally to demonstrate that learning of Boolean
functions with many input variables, which is a
challenge to neural networks approach [Kearns and
Valiant, (8)], also cannot be solved by GMDH. The

possible reason why polynomial GMDH algorithm fails
in this case is that it is difficult to create a representative
set for training, as the modelled dependence is
discontinuous everywhere, while we try to model it by a
continuous function. Besides that, the Parity function
obviously can hardly be expressed as a polynomial, as it
contains modulus operation.

Table 1 - Estimations of GMDH performance.

Problem Name R C
Functional Approximation | 0.91-0.98 | 0.96-0.99
Sunspot Activity 0.82 0.92
Logistic Parabola 0.99 1.00
Financial Prognosis 0.56-0.97 | 0.72-0.99
Iris Classification 0.79-0.98 | 0.90-0.99
15-bit Parity Problem 0.001 0.07

Discussion

The main conclusions that can be made are the
following:

e GMDH is a powerful tool for mathematical
modeling that can be used to solve a wide variety of
different real-life problems.

e The most pronounced feature of GMDH is that it can
choose the really significant input variables among
dozens of these, thus actually reducing the dimension
of the solved problem.

e One more useful property of the method is its ability
to generate a formula directly expressing the
algebraic dependence of the output on the inputs.
This allows one to find out some important relations
among the input variables: for example, whether
there are cross-correlations between some variables,
etc.

e GMDH can be also used for purposes of
classification. However, it should not be used for
approximation of complex Boolean logic functions.

e GMDH is hardly suitable for very large problems
with a great number of inputs which are nearly
equally significant. In this case, neural networks are
probably the right choice.

e It is usually useful to perform scaling of all inputs
and the output into *variation. Solving problems
with unnormalized variables is less computationally
stable and may give worse results.

e The result (the quality of the obtained model) is
strongly dependent on the type and coefficient (if

any) of the selection criterion. These are the
parameters that should be varied in the first turn.

e A new type of criterion was introduced in this work,
which usually performs as well as or better than the
other ones.

e It is very important to set the correct mode of
optimization. It also may affect the result
dramatically.

Conclusion

To summarize, GMDH is a powerful technique suitable
to solve a wide range of different problems in
mathematical modeling. Use of GMDH should be
recommended to solve small and medium-sized
problems with continuous output, especially to find out
significant input variables and possible functional
dependencies among them. GMDH should not be used
for very large problems or for problems with discrete
output.

References

1. Ivakhnenko A.G., 1971, ‘Polynomial Theory of
Complex Systems’, IEEE Trans. Syst. Man &
Cybern., SMC-1, 364-378.

2. Farlow S.J., ed., 1984, ‘Self-Organizing Method in
Modeling: GMDH Type algorithms’, Statistics:
Textbooks and Monographs, 54.

3. 3.Ivakhnenko A.G., Ivakhnenko G.A., and Muller
J.A., 1994, ‘Selforganization of Neuronets with
Active Neurons’, Pattern Recognition and Image
Analysis, 4, 177-188.

4. Barron A.R., Xiao X., 1991, ‘Multivariate Adaptive
Regression Splines: Discussion’, Ann. Stat., 19, 67-
82.

5. Friedman J.H., 1991, ‘Multivariate Adaptive
Regression Splines’, Ann. Stat., 19, 1-67.

6. De Groot C., Wurtz D., 1991, ‘Analysis of
Univariate Time Series with Connectionist Nets: A
Case Study of Two Classical Examples’,
Neurocomputing, 3, 177-192.

7. Fisher R.A., 1936, ‘The Use of Multiple
Measurements in Taxonomic Problems’, Ann.
Eugenics, 7, 179-188.

8. Kearns M., Valiant L., 1989, ‘Cryptographic
Limitations on Learning Boolean Formulae and
Finite Automata’, Proc. 21st ACM Symp. Theory
Comp., 433-444,

