Modified GMDH Method and Models Quality Evaluation by Visualization

Pavel Kordik, Pavel Naplava, Miroslav Snorek, Marko Genyk-Berezovskyj
Department of Computer Science and Engineering, CTU, FEE
Karlovo nam. 13, Prague, Czech Republic
kordikp@cs.felk.cvut.cz, naplava@fel.cvut.cz

KEYWORDS: Group Method of Data Handling (GMDH), Back-
Propagation, Perceptron, Quasi-Newton method, Unconstrained
Optimization

INTRODUCTION

The goal of this paper is to describe the Modified GMDH for inductive
model generation and new visualization technique of model responses
for the evaluation of model qualities.

Our method develops on a data set a group of models representing a
complex system. The data set contains records of input and output
variables of the system (description of system behaviour).

Inductive models are able to derive values of dependent output
variable for all configurations of input variables (simulate the system
behaviour).

The appropriate way for accessing the information enfolded in the
model is to visualize its responses.

We introduce the visualization technique facilitating the evaluation of
information included in the data set. It allows evaluating the quality
of models too. Comparison of several models responses for the same
values of input variables can indicate the quality of these responses.
For any configuration of inputs, we can get not only the response (the
estimated value of the output), but we would soon be able to determine
the accuracy of this response too. This can grow into the big
advantage of inductive models over the deductive ones.

Inductive Modeling

The most common modeling approach is the deductive one. The model
is created using well known statistical methods such as Exploratory
Data Analysis. The behaviour of modeled system is described using
math equations.

We use the inductive approach that is not so spread. It is the data
driven approach. The data nature is crucial for inductive modeling. It
uses Artificial Intelligence methods for the automatic development of
the black-box models on a data set.

These models simulate the behaviour of the system described by the
data set.

MODIFIED GMDH

The Modified GMDH, which is being developed at our university,
proceeds from GMDH introduced by Ivachknenko in 1966 [1]. It uses
a data set to construct a model of a complex system. The model is

@ second layer

output layer

represented by a network (see Figure 1). Layers of units transfer input
signals to the output of the network. The coefficients of units transfer
functions are estimated using the data set describing the modelled
system.
Major modifications of the original GMDH input variables
are: .
* The transfer function of the unit is of . @ @ input layer
several types (linear, polynomial, ',»'“
logistic, etc.) and it can be provided G'Q
by a perceptron network too. Each
type of unit has its own learning \
algorithm for coefficients estimation. 3inputs ’
Which types of units are selected to (P) (P) (©) third Iayer
make up the network depends just on interlayer connection
the data nature. 4 inputs unit "
= The number of unit inputs increases
together with the depth of the unit in output variable
the network. Transfer functions of
units reflect growing number of
inputs. Figure 1. Modified GMDH network
= There exist interlayer connections in
the network.
= The network construction process does not search all possible
layouts of units'. It searches just the random subset of these
layouts. The original GMDH produces one optimal model. Our
method produces the group of models that are locally optimal,
each for its specific subset of unit layouts.

The topology of the Modified GMDH neural network

The models (Modified GMDH neural networks) develop inductively on

a data set. The data set includes vectors that consists of independent

input variables (x1,x2,...,xn) and one dependent output variable Y.

During the learning process, forward multilayer neural network is

developed in the following steps:

= The data set is split into the training and the testing data sets.

= In the input layer of the network n units with an elementary transfer
function y = x; are constructed. These are used to provide values of
independent variables from the learning set to following layers
(hidden layers, output layer) of the network.

= When constructing a hidden layer an initial population of units is
generated.

"When producing the initial population of a layer, it is not computationally maintainable to
generate units for all combinations of inputs. It is possible for the original GMDH with
invariable two inputs of the unit and no interlayer connections.

= There are several types of units in the initial population. Each type
of unit has a unique transfer function and the learning algorithm.
The type and inputs of the unit placed to the initial population of
the layer is selected randomly.

= All units in the layer use its own learning algorithm to estimate
coefficients using the learning set.

= The mean square error between the dependent variable y and the
response of each unit is computed for all vectors from the testing
set.

= Units are sorted out by the mean square error and just a few units
with minimal error survive. The rest of units is deleted. This step
guaranties that just the units with the best approximation ability are
chosen.

* Further hidden layers are constructed while the weighted mean
square error of units for the layer decreases.

= The output of the network is considered as the response of the best
unit in the layer with the minimal weighted mean square error.

Units in the network can be of various types. It brings the data
independence. Just the units of transfer function proper to data set
nature survive.

We defined the following types:

= Unit with a linear transfer function
According to the growing complexity scheme, the transfer function
has the following structure:

y=ax +ta,x,+.+a,x, +a

n+l»

Where y is the output of the unit,
Xps Xy X, are inputs to the unit,
a,,a,,.,a,,a,, are coefficients computed by Gauss-Jordan
Method or estimated by an optimisation
method using whole learning set,
n is the number of the layer being created.

= Unit with a polynomial transfer function

n

m
_ ki ;
y=2la]]x" [+a,..

i=1 Jj=1

where v,Xx;,a,,n have the same meaning as in the previous type of

the unit,
k., e(0,1,.n) 1is random integer exponent (growing
complexity),
m=n+1 1s experimentally derived number of terms.
Coefficients are estimated by using unconstrained
optimisation routines [2].

= Unit with a perceptron structure
The perceptron network as a unit of the GMDH
network has the following structure: n input
neurons, small random number of hidden layers
and neurons in each layer and one neuron in the
output layer. The Back-Propagation Algorithm is
used for setting up the weights of the perceptron
network.

* The unit with the logistic transfer function

Perceptroﬁ* .

to

This unit attempt to approximate the input-output relationship using

the nonlinear logistic transfer function.

i 1
y_é(;aixi—l_@j ‘f((ﬁ)—m

where is the output of the unit,

is the coefficient of the i-th input,
is the value of the i-th input,

is the bias of the unit,

is the sigmoid function,

R @ B o

Coefficients a,a,,..,a
method.

is the sensitivity coefficient of sigmoid function.

., are estimated using the Quasi-Newton

Detailed information about the Modified GMDH can be found in [4].

The group of models and the quality evaluation

The Modified GMDH generates a group of models on
a single training data set. The random processes
influence the construction procedure. Weights and
coefficients of units are randomly initialized.
Transfer functions of many units types are defined
pseudo-randomly when the unit is initialized. Inputs
for units are selected pseudo-randomly, as well. It
results in the fact, that the topology of models
developed on the same training data set differs.

The question is how to determine the quality of
models in the group.

We can compare the mean square error of models
responses on the testing data set. To compute the
mean square error we can use the following function.
The testing set contains T ([x,x,,..x,}0) vectors,
with the meaning ([input_vector];relevant output).
When we put the input vector to the input of model,
we get the response y.

=)

e

ModGMDH

| Yo

i

ModGMDH

Y

s

ModGMDH

Vet 1

The mean square error summarises the square deviation of the response
from the desired value o for all vectors from the testing set:

T

8 =72 0i-0)

i=1

where Vi is the response of the model to the i-th input vector,
0 is the output part of the i-th testing vector (desired
response),
T is the number of testing vectors,
82

is the mean square error of the model.

When we compute mean square error of all models in the group, we
can usually find a few models with the error much bigger than the rest
of the group. The quality of these models is lower (in the area of the
input space defined by the presence of testing vectors). These models
were not successfully generated and should be eliminated from the
group.

The remaining models have always approximately the same mean
square error.

To check if models in the group are equivalent, we designed method
facilitating visualization of their responses.

VISUALIZATION OF MODEL RESPONSES

By visualization of model responses we can access the information
abstracted by the model from a data set. The easiest way to visualize
how the model approximates the system is to change values of input
variables and record the output of the network.

A
constant+— X1 V| xi=x3 = const.

moving «—p X2 Vi

constant —— X3

moving «—% X

moving €4+—p X

constant +— x3

ModGMDH

min X2 max

Figure 2. The principle of visualization of Modified GMDH model responses

The basic principle of visualization techniques is illustrated on the
Figure 2. When we vary just one input variable whereas others stay
constant, we can plot a curve. The curve shows us the influence of
selected input variable to the output variable in the configuration
specified by the others input variables. If we change the input
configuration, the shape of the curve changes often too.

If we vary two of the input variables whereas others stay constant, we
can plot a surface. The surface represents the relationship between two
input variables and the response of the model in the configuration
defined by the constant inputs.

The intersection in one dimension of the input space (curve)

If we assume input variables as dimensions of the input space, we can
display the input vectors as points in the input space.

A

>

max

Figure 3. The intersection of the input space in one dimension.

For three independent input variables we get the three dimensional
input space (Figure 3). The input vectors V located on the intersection
i of the input space, are used as the inputs for the model. The output
of the model plots a curve. The curve expresses the relationship
between input variable x; and the dependent output variable y for the
configuration x;=X1, x3=X3.

V[X1,i,X3]; X1,X3 = invariable, ie(x,min,x,max);
vy = f(x2); x1=X1, x3=X3;

The intersection in two dimensions of the input space (surface)

Just as in the previous technique, we can visualize responses for
mutual combinations of two independent input variables (Figure 4).
For the plane intersection ij of the input space the shape of the
surface expresses the relationship between independent input variables
x1, x, and the dependent output variable y in the configuration x;=X3.

VI[j,i,X3]; X3 = invariable, je(x min,x;max), ie(x,min,x,max);
y = f(x1,x2); x3=X3;

A
max

>

min IX1 X1 max

Figure 4. The plane intersection of the input space in two dimensions

To be able to see, how models approximate the training data, we need
to find a projection of training vectors to the graph of the input-
output relationship. We developed the following method.

Projection of data vectors into the Input-Output relationship graph

A
max

V([A1,A2,A3],Y)

V([AL,A2,A3];Y)

min X1 X max min i =x, A2 max
Figure 5. The projection of data vectors into the IO relationship graph

Each data vector consists of two parts. The first is the input vector
and the second is the requested output for this input vector.

We plot the crosses representing data vectors to the graph (Figure 5).
The position of the cross is given by the value of the vector for the
dimension of intersection (x,) and by the output value [A2,Y].

We compute the Euclid distance of input part of each data vector
V from the axis of the input space intersection.

The size of the cross that represents the data vector is inversely
related to its distance from the axis of intersection.

. 1 .
Size = Doy 1 > 0 Dist = JAL-X1Y +(A3-X3) ,
where H is small number to limit the cross size,
Size is the size of the cross in the graph,
Dist is the Euclid distance of the vector from axis of
intersection,
Al,..,A3 are values of the data vector in input dimensions,

X1,..,X3 are the constant values of model inputs (input
configuration).

The upper part of the curve in the graph (Figure 5) shows responses of
the model for input vectors located on the axis of intersection. The
thickness of the curve represents the density of data vectors in the
input space. The more vectors are present and in defined
neighborhood, the higher the density is.
You can consider the quality of the model simply by looking at the IO
relationship graph and checking how it approximates the training or
testing vectors.

EXPERIMENTS ON THE ARTIFICIAL DATA SET

First experiments were performed on an artificial data set to show the
functionality of our method. We generated small data set (40 data
vectors) describing the artificial system. The output variable depends
on input variables in conformity with the following equation:

_sinh(x, —x,) +x,”(x, —0.5)°
2
where »is the dependent output variable, x,x, are input variables.

9

Our Modified GMDH method developed a group of models (networks)
on the data set. Models have different inner structure but the
responses are almost the same.

- - > - >
0.0 J =X 1 0.0 J =X 1.0 0.0 J =X 1.0

Figure 6. Group of models developed on the Artificial data set

Training data vectors are distributed uniformly in the area x;, x;
€(0,1). Whereas in the center of the area we can notice a good match
of models, at the borders there is remarkable difference in responses
of models.

The 10 relationship graph for the group of models

We plot responses of models in one graph, to be able to compare how
these differ for particular input vectors.

To explore responses of models in areas where data vectors are
defined, on the borders of such areas and outside where no training
vectors are present, we prolong the intersection of the input space.

b/

xz =0.01

data defined

-1.0 00 j=x 10 2 -1.0 0.0 i=x, 10 2

Figure 7. Responses of nine Modified GMDH networks developed on the
Artificial data set

When models are randomly initialised, responses of these models are
chaotic before the learning process begins. The iterative learning
process is shifting their responses towards to training data outputs.
After the learning phase, models approximate the training data.

The learning iteration process affects just the areas where some
training vectors are present. With growing distance from the vectors
the influence of the learning process declines. Responses of models
stay chaotic within the areas far from training data vectors.

THE QUALITY EVALUATION OF THE MODEL RESPONSES

When you look at the Figure 7, you can find areas where models have
compromise response and the areas where the models responses
considerably differ. The areas of the compromise response correspond
to the areas where some training vectors are present.

We found out that if there is a satisfactory density of training vectors
with suitable distribution (uniform) in the input space, there would
exists a compromise response of models in the output space. On the
other hand when there are not enough vectors in the input space, the
responses would differ.

This fact can be used to estimate the quality of the models responses.

The quality of models for any configuration of input variables depends
on the models responses dispersion for this input vector.

We demonstrate in an example how important information carries the
dispersion of models responses.

Imagine we have developed an inductive or deductive model on a data
set. Later on we would like to get response for an input vector. How
we can determine the quality of the model response for this input
vector?

If we have training data, we can compute the distance of the input
vector from training vectors. Using this distance we can estimate the
quality. If the distance is small the response for the input vector will
be good, if it were big the response would have been probably bad.

When we use the Modified GMDH to generate a group of models, we
do not need the training data set any more. If models responses for the
input vector considerably differ, we can say the quality of models is
bad for this input vector. If responses match, models are of good
quality at this area of the input space.

This approach has big advantage against computation of the vector
distance from the training data. It takes 1into consideration the
importance of the particular input variables in the neighbourhood of
the input vector.

If training vectors differ a lot from the input vector in the value of an
unimportant input variable, the quality of the model is still high.

On the other hand the small distance of the input vector from training
data in very important dimension can entail the models quality slump.

THE REAL-WORLD APPLICATION:
MANDARIN TREE WATER CONSUMPTION

The main object of our experiments is the data set (provided by the
Hort Research, New Zealand) describing water consumption of a
mandarin tree.

The mandarin tree is the complex system influenced by many input
variables (water, temperature, sunshine, humidity of the air, etc.).

Our data set consists of measurements of these input variables and one
output variable — the water consumption of the tree. It describes how
much water the tree needs in specific conditions.

We used 2500 training vectors (11 input variables, 1 output variable)
to generate group of models using Modified GMHD method.

From this group of eight models we eliminated one because of to high
mean square error on the testing set (1500 vectors).

Seven models that left in the group had approximately equal mean
square error.

~
>

x1_4 J x6-11 = const.

Water consumption

min X5 (PAR) max

Figure 8. The dependence of tree waterconsumption on the PAR variable

The IO relationship graph (Figure 8) shows responses of these seven
models. The intersection of the 1input space is parallel to the
dimension x5 - input variable PAR.

The variable PAR, as the majority of natural variables, has the normal
distribution. This distribution is not very suitable for the shape
definition because the values concentrate in a small dense cloud. If we
expose the tree to very different conditions, we would achieve the
cloud to get bigger and the shape of curves in the graph to be better
defined.

When we look at the figure, all we can say is that there is an interval
defined by the data cloud, where responses of models match.
Unfortunately the interval is too small and we are not able to
determine how the change of the PAR variable influence the water
consumption for the conditions specified by the others input variables.

~
>

Vs

Water consumption

<

%

min X, (Time) max

Figure 9. The dependence of tree water consumption on the Time variable

The Figure 9 shows the relationship graph analogous to that in the
previous figure. The PAR variable is replaced by the variable Time.
The variable Time is monotonous, does not influence the tree and
therefore should not be considered as the input variable for the model
[3]. Curves from the figure have no physical meaning. The reason why
we present the graph is the uniform distribution of the Time variable.

You can see the shape of the relationship is much better defined than
for variable PAR with normal distribution.

Theoretically, if have some input variable we can control (fertiliser,
watering, chemical, etc.), this variable can be included in the data set
with the uniform distribution (the use of various quantities when
treating the tree). Then the IO relationship graph can tell us, what
influence would have increasing or decreasing of some input variable
(watering) on the output (water consumption) in any conditions
(configuration of other input variables). This can be the method
facilitating the search for the optimal treatment of the tree.

IMPLEMENTATION OF THE IDEAS DESCRIBED ABOVE

The java application has been created. It allows the real-time
simulation of the group of Modified GMDH models. You can for
example drag the scrollbar representing some input variable and watch
the visualization of models responses. New types of unit and learning
algorithm can be ecasily integrated to the system. The application
implements powerful configuration option.

E"gﬁMDdEMDH - the modelling tool
File Model Ry

Dizabled [+ |

20 (1D cut of input space) [«]
W MUt2D (sl mocels) ﬂ water 0

30 (20 intersection)]
Bl vater 1
Vizible response areas u-

v Crosses representing data _ n water 2

0.723822

Loading file: Chjavalimmamodelall. net
to restore network 3
jam w| Store o108 Graph disabled - no network selected j

-

Figure 10. The screenshot of the ModGMDH java application

CONCLUSION

We presented the modified GMDH method that can be used to generate
group of models of a system. The responses of these models can be
visualized using techniques introduced above.

The results of visualization showed to be profitable for the knowledge
mining and for models quality evaluation too.

Our next goal is to explore the relationship between the dispersion in
models responses for the specified input vector and the models quality
(accuracy) in this area of the input space.

REFERENCE

[I] Madala, Ivakhnenko: Inductive Learning Algorithm for Complex
System Modelling; 1994, CRC Press, Boca Raton

[2] R.B. Schnabel, J.E. Koontz, and B.E. Weiss: A Modular System of
Algorithms for Unconstrained Minimization, Report CU-CS-240-82,
Comp. Sci. Dept., University of Colorado at Boulder, 1982.

[3] Dorian Pile: Data Preparation for Data Mining; 1999, Kaufman
publishing

[4] Kordik, Naplava, Snorek, Genyk-Berezovskij: The Modified GMDH
Method Applied to Model Complex Systems; proceedings of ICIM’2002
Conference, Ukraine, Lviv

[5] www.gmdh.net

