
A Design of EA-based Self-Organizing Polynomial Neural Networks using
Evolutionary Algorithm for Nonlinear System Modeling

Dong-Won Kim and Gwi-Tae Park

Department of Electrical Engineering, Korea University,

1, 5-ka, Anam-dong, Seongbuk-ku, Seoul 136-701, Korea.

Tel: +82-2-929-5185, Fax: +82-2-929-5185

E-mail: dwkim@elec.korea.ac.kr

Abstract: We discuss a new design methodology of self-organizing approximator technique (self-

organizing polynomial neural networks (SOPNN)) using evolutionary algorithm (EA). The SOPNN dwells

on the ideas of group method of data handling. The performances of SOPNN depend strongly on the

number of input variables available to the model, the number of input variables and type (order) of the

polynomials to each node. They must be fixed by designer in advance before the architecture is

constructed. So the trial and error method must go with heavy computation burden and low efficiency.

Moreover it does not guarantee that the obtained SOPNN is the best one. In this paper, we propose EA-

based SOPNN to alleviate these problems. The order of the polynomial, the number of input variables, and

the optimum input variables are encoded as a chromosome and fitness of each chromosome is computed.

So the appropriate information of each node is evolved accordingly and tuned gradually throughout the EA

iterations. We can show that the EA-based SOPNN is a sophisticated and versatile architecture which can

construct models for limited data set as well as poorly defined complex problems. Comprehensive

comparisons show that the performance of the EA-based SOPNN is significantly improved in the sense of

approximation and prediction abilities with a much simpler structure compared with the conventional

SOPNN model as well as previous identification methods.

 2

Keywords: SOPNN, evolutionary algorithm, approximation and prediction abilities, identification

methods.

1. Introduction

System modeling and identification is important for system analysis, control, and automation as well as

for scientific research. So a lot of attention has been directed to developing advanced techniques of system

modeling. Neural networks and fuzzy systems have been widely used for modeling nonlinear systems. The

approximation capability of neural networks, such as multilayer perceptrons, radial basis function (RBF)

networks, or dynamic recurrent neural networks has been investigated by many authors [1-3]. On the other

hand, fuzzy systems have been proved to be able to approximate nonlinear functions with arbitrary

accuracy [4-5]. But the resultant neural network representation is very complex and difficult to understand

and fuzzy systems require too many fuzzy rules for accurate function approximation, particularly in the

case of multidimensional input. As another method, there is a GMDH-type algorithm. Group Method of

Data Handling (GMDH) was introduced by Ivakhnenko in the early 1970’s [6-10]. GMDH-type algorithms

have been extensively used since the mid-1970’s for prediction and modeling complex nonlinear processes.

The main characteristics of GMDH is that it is a self-organizing and provides an automated selection of

essential input variables without using a prior information on the relationship among input-output variables

[11]. Self-organizing Polynomial Neural Networks (SOPNN) [12-13] is GMDH-type algorithm and one of

useful approximator techniques. SOPNN has an architecture similar to feedforward neural networks whose

neurons are replaced by polynomial nodes. The output of the each node in SOPNN structure is obtained

using several types of high-order polynomial such as linear, quadratic, and modified quadratic of input

variables. These polynomials are called as partial descriptions (PDs). SOPNNs have fewer nodes than

Artificial Neural Networks (ANNs), but the nodes are more flexible. The SOPNN shows a superb

performance in comparison to the previous fuzzy modeling methods. Although the SOPNN is structured

by a systematic design procedure, it has some drawbacks to be solved. If there are sufficiently large

 3

number of input variables and data points, SOPNN algorithm has a tendency to produce overly complex

networks. On the other hand, if a small number of input variables are available, SOPNN does not maintain

good performance. Moreover, the performances of SOPNN depend strongly on the number of input

variables available to the model, the number of input variables and types or order in each PD. They must

be chosen in advance before the architecture of SOPNN is constructed. In most cases, they are determined

by the trial and error method with a heavy computational burden and low efficiency. Moreover, the

SOPNN algorithm is a heuristic method so it does not guarantee that the obtained SOPNN is the best one

for nonlinear system modeling. Therefore, more attention must be paid to solve the above-mentioned

drawbacks.

In this paper we will present a new design methodology of SOPNN using evolutionary algorithm (EA)

in order to alleviate the above-mentioned drawbacks of the SOPNN. We call this new network the EA-

based SOPNN.

Evolutionary Algorithm (EA) has been widely used as a parallel global search method for optimization

problems [14-17]. The EA is used to determine that how many input variables are chosen to each node,

which input variables are optimally chosen among many input variables, and what is the appropriate type

of the polynomials in each PD.

This paper is organized as follows. The design procedure of the conventional SOPNN is briefly

described in Section 2. A design methodology of EA-based SOPNN is described in Section 3. Coding of

the key factors of the SOPNN, the representation of chromosome and fitness function are also discussed in

Section 3. The proposed EA-based SOPNN is applied to nonlinear systems modeling to show its

performances compared with other methods including conventional SOPNN in Section 4, Finally

conclusions are given in Section 5.

 4

2. Design procedure of SOPNN

The SOPNN algorithm is based on the GMDH method and utilizes a class of polynomials such as linear,

quadratic, and modified quadratic types. By choosing the most significant input variables and polynomial

types among various types of forms available, we can obtain the PDs in each layer. The framework of the

design procedure of the SOPNN comes as a sequence of the following steps.

[Step 1] Determine system’s input variables.

We define the input variables such as 1 2, ,i i Nix x xL related to output variables iy , where N and i are the

number of entire input variables and input-output data set, respectively. The normalization of the input data

is also performed if required.

[Step 2] Form training and testing data.

The input - output data set is separated into training (trn) data set and testing (ten) data set. Obviously

we have tetr nnn += . The training data set is used to construct a SOPNN model. And the testing data set is

used to evaluate the constructed SOPNN model.

[Step 3] Choose a structure of the SOPNN.

The structure of SOPNN is strongly dependent on the number of input variables and the order of PD in

each layer. Two kinds of SOPNN structures, namely, the basic SOPNN structure and the modified SOPNN

structure can be available. Each of them comes with two cases. Table 1 summarizes the various SOPNN

structures.

(a) Basic SOPNN structure – The number of input variables of PDs is the same in every layer.

 Case 1. The polynomial order of the PDs is the same in each layer of the network.

 Case 2. The polynomial order of the PDs in the 2nd or higher layer is different from the one of PDs in

the 1st layer.

(b) Modified SOPNN structure – The number of input variables of PDs varies from layer to layer.

Case 1. The polynomial order of the PDs is same in every layer.

Case 2. The polynomial order of the PDs in the 2nd layer or higher is different from the one of PDs

 5

in the 1st layer.

Table 1. Taxonomy of various SOPNN structures

PD Type
Layer

No. of input
variables

Order of
Polynomial SOPNN structure

1st layer i Type I

2-5th layer j Type J

(1) i=j: Basic SOPNN
a) I=J: Case 1
b) I≠J: Case 2

(2) i≠j: Modified SOPNN
 a) I=J: Case 1
 b) I≠J: Case 2

 (i, j=2, 3, …, ; I, J=1, 2, 3)

[Step 4] Determine the number of input variables and the order of the polynomial forming a PD.

We determine arbitrarily the number of input variables and the type of the polynomial in PDs. The

polynomials are different according to the number of input variables and the polynomial order. Several

types of polynomials are shown in the Table 2. The total number of PDs located at the current layer is

determined by the number of the selected input variables (r) from the nodes of the preceding layer, because

the outputs of the nodes of the preceding layer become the input variables to the current layer. The total

number of PDs in the current layer is equal to the combination N rc , that is
()

!
! !

N
r N r−

, where N is the

number of nodes in the preceding layer.

Table 2. Different types of the polynomial in PDs.

 No. of inputs
Order of
the polynomial

1 2 3

1 (Type 1) Linear Bilinear Trilinear

2 (Type 2) Quadratic Biquadratic Triquadratic

2 (Type 3) Modified
quadratic

Modified
biquadratic

Modified
triquadratic

• Bilinear PD = 22110 xcxcc ++

• Biquadratic PD = 22110 xcxcc ++ + 215
2
24

2
13 xxcxcxc ++

 6

• Modified biquadratic PD = 22110 xcxcc ++ 213 xxc+

• Trilinear PD = 3322110 xcxcxcc +++

• Triquadratic PD= 3322110 xcxcxcc +++ + 329318217
2
36

2
25

2
14 xxcxxcxxcxcxcxc +++++

• Modified triquadratic PD = 3322110 xcxcxcc +++ + 326315214 xxcxxcxxc ++

[Step 5] Estimate the coefficients of the PD.

The vector of coefficients of the PDs as shown in Table 2 is determined using a standard mean squared

errors (MSE) by minimizing the following index

()
2

1

1 !() , 1,2,
! !

trn

k i ki
itr

NE y z k
n r N r=

= − =
−∑ L (1)

where, kiz denotes the output of the k-th node with respect to the i-th data and trn is the number of training

data subset.

This step is completed repeatedly for all the nodes in the current layer and, in the sequel, all layers of the

SOPNN starting from the input to the output layer.

[Step 6] Select PDs with the good predictive capability.

The predictive capability of each PD is evaluated by performance index using the testing data set. Then

we choose w PDs Among N rc PDs in due order from the best predictive capability (the lowest value of the

performance index). Here, w is the pre-defined number of PDs that must be preserved to next layer. The

outputs of the chosen PDs serve as inputs to the next layer.

There are two cases as to the number of the preserved PDs in each layer

If
()

!
! !

N w
r N r

〈
−

 then the number of the chosen PDs retained for the next layer is equal to
()

!
! !

N
r N r−

If
()

!
! !

N w
r N r

≥
−

 then the number of the chosen PDs retained for the next layer is equal to w

[Step 7] Check the stopping criterion.

The SOPNN algorithm terminates when the number of layers predetermined by the designer is reached.

[Step 8] Determine new input variables for the next layer.

If the stopping criterion is not satisfied, the next layer is constructed by repeating step 4 through step 8.

 7

The overall architecture of the SOPNN is shown in Fig. 1. When the final layer has been constructed, the

node with the best predictive capability is selected as the output node. All remaining nodes except output

node in the final layer are discarded. Furthermore, all the nodes in the previous layers that do not have

influence on the output node are also removed by tracing the data flow path of each layer.

Possible inputs Optimal modelChoice of estimated models/
stop conditions

...

x 1i
x 2i

x 3i
x 4i

xNi

xN- 1i

Z1
1

Z1
N!/{(N-r)!r!}

...

PD

PD

PD
... ...

PD

zj-1
p

zj-1
q

order
Type 2

selected inputs: (j-1)th layer
zj-1

p, z
j-1

q

PD: j th layer

PD

zi

Z1
2

j th layer

c0+c1z
j-1

p+c2z
j-1

q+c3(z
j-1

p)2+c4(z
j-1

q)2+c5z
j-1

pzj-1
q

zj-1
p

zj-1
q

...

zj-1
1

zi

... yi
∧

Fig. 1. Overall architecture of the SOPNN

The SOPNN is a flexible neural architecture whose structure is developed through modeling process. In

particular, the number of the layers and the number of nodes in each layer of the SOPNN are not fixed in

advance (it usually happens in the case of multilayer perceptron) but generated in a dynamic way. Its each

node exhibits a high level of flexibility and realizes a polynomial type of mapping between input and

output variables. As a result, SOPNN provides a systematic design procedure but the performances depend

strongly on a few factors stated in the section 1. In the following section, we propose the new design

procedure using EA for the systemic design of SOPNN with the optimum performance.

 8

3. Design of EA-based SOPNN

In this section, a new design technique of SOPNN using EA is described. In the SOPNN algorithm, the

problems are how to determine the optimal number of input variables, which input variables are chosen,

and how to select the order of the polynomial forming a PD in each node. In this paper, these problems are

solved by using EA. The EA is implemented using crossover and mutation probably rates for better

exploitation of the optimal inputs and order of polynomial in each node of SOPNN. All of the initial EA

populations are randomized, which implies that minimum heuristic knowledge is used. The appropriate

inputs and order are evolved accordingly and are tuned gradually throughout the EA iterations.

In the evolutionary design procedure, key issues are how to encode the order of the polynomial, the

number of input variables, and the optimum input variables as a chromosome and how to define a criterion

to compute the fitness of each chromosome. In what follows, the detailed representation of the coding

strategy and choice of fitness function are given.

3.1 Representation of chromosome for appropriate information of each PD

When we design the SOPNN using EA, the most important consideration is the representation strategy,

that is how to encode the key factors of the SOPNN into the chromosome. We employ a binary coding for

the available design specification. We code the order and the inputs of each node in the SOPNN as a finite-

length string. Our chromosomes are made of three sub-chromosomes. The first one is consisted of 2 bits

for the order of polynomial (PD), the second one is consisted of 3 bits for the number of inputs of PD, and

the last one is consisted of N bits which are equal to the number of entire input candidates in the current

layer. These input candidates are the node outputs of the previous layer. The representation of binary

chromosomes is illustrated in Fig. 2.

 9

00 11 0 1 01 •••10

The 1st sub-chromosome:
2 bits for the order of PD

The 2nd sub-chromosome:
3 bits for the number of

inputs of PD

The 3rd sub-chromosome: N bits
equal to input candidates in the

current layer

Fig. 2. Structure of binary chromosome for a PD

The 1st sub-chromosome is made of 2 bits. It represents several types of order of PD. The relationship

between bits in the 1st sub-chromosome and the order of PD is shown in Table 3. Thus, each node can

exploit a different order of the polynomial.

Table 3. Relationship between bits in the 1st sub-chromosome and order of PD.

Bits in the 1st sub-
chromosome Order of polynomial(PD)

00 Type 1 – Linear
01
10 Type 2 – Quadratic

11 Type 3 – Modified quadratic

The 3rd sub-chromosome has N bits, which are concatenated a bit of 0’s and 1’s coding. The input

candidate is represented by a 1 bit if it is chosen as input variable to the PD and by a 0 bit it is not chosen.

This way solves the problem of which input variables to be chosen.

If many input candidates are chosen for model design, the modeling is computationally complex, and

normally requires a lot of time to achieve good results. In addition, it causes improper results and poor

generalization ability. Good approximation performance does not necessarily guarantee good

generalization capability [18]. To overcome this drawback, we introduce the 2nd sub-chromosome into the

chromosome. The 2nd sub-chromosome is consisted of 3 bits and represents the number of input variables

to be selected. The number based on the 2nd sub-chromosome is shown in the Table 4. Input variables for

 10

each node are selected among entire input candidates as many as the number represented in the 2nd sub-

chromosome. Designer must determine the maximum number in consideration of the characteristic of

system, design specification, and some prior knowledge of model. With this method we can solve the

problems such as the conflict between overfitting and generalization and the requirement of a lot of

computing time.

Table 4. Relationship between bits in the 2nd sub-chromosome and number of inputs to PD.

Bits in the 2nd sub-
chromosome

Number of inputs to
PD

000 1
001 2
010 2
011 3
100 3
101 4
110 4
111 5

The relationship between chromosome and information on PD is shown in Fig. 3. The PD corresponding

to the chromosome in Fig. 3 is described briefly as Fig. 4.

Information on PD Forming a PD

x6

x5

x4

x3

x2

x1

Input cadidates Chromosome

1st sub-
chromosome

3rd sub-
chromosome

2nd sub-
chromosome

selected

0

0

1

1

0

0

0

1

0

1

0

selected

ignored

ignored

ignored

ignored

Order of
polynomial

No. of inputs

ŷf

Fig. 3. Example of PD whose various pieces of required information are obtained from its chromosome

 11

x6

x1

PD2
2 ŷ

:quadratic
(Type 2)

: 2 inputs

Fig. 4. Node with PD corresponding to chromosome in Fig. 3.

Fig. 3 shows an example of PD. The various pieces of required information are obtained its chromosome.

The 1st sub-chromosome shows that the polynomial order is Type 2 (quadratic form). The 2nd sub-

chromosome shows two input variables to this node. The 3rd sub-chromosome tells that x1 and x6 are

selected as input variables. The node with PD corresponding to Fig. 3 is shown in Fig. 4. Thus, the output

of this PD ŷ can be expressed as (2).

2 2
1 6 0 1 1 2 6 3 1 4 6 5 1 6ˆ (,)y f x x c c x c x c x c x c x x= = + + + + + (2)

where coefficients c0, c1, …, c5 are evaluated using the training data set by means of the standard LSE.

The polynomial function, PD, is formed automatically according to the information of sub-

chromosomes.

The design procedure of EA-based SOPNN is shown in Fig. 5. At the beginning of the process, the

initial populations comprise a set of chromosomes that are scattered all over the search space. The

populations are all randomly initialized. Thus, the use of heuristic knowledge is minimized. The

assignment of the fitness in EA serves as guidance to lead the search toward the optimal solution. Fitness

function with several specific cases for modeling will be explained later. After each of the chromosomes is

evaluated and associated with a fitness, the current population undergoes the reproduction process to create

the next generation of population. The roulette-wheel selection scheme is used to determine the members

of the new generation of population. After the new group of population is built, the mating pool is formed

and the crossover is carried out. The crossover proceeds in three steps. First, two newly reproduced strings

are selected from the mating pool produced by reproduction. Second, a position (one point) along the two

 12

strings is selected uniformly at random. The third step is to exchange all characters following the crossing

site. We use one-point crossover operator with a crossover probability of Pc (0.85). This is then followed

by the mutation operation. The mutation is the occasional alteration of a value at a particular bit position

(we flip the states of a bit from 0 to 1 or vice versa). The mutation serves as an insurance policy which

would recover the loss of a particular piece of information (any simple bit). The mutation rate used is fixed

at 0.05 (Pm). Generally, after these three operations, the overall fitness of the population improves. Each of

the population generated then goes through a series of evaluation, reproduction, crossover, and mutation,

and the procedure is repeated until a termination condition is reached. After the evolution process, the final

generation of population consists of highly fit bits that provide optimal solutions. After the termination

condition is satisfied, one chromosome (PD) with the best performance in the final generation of

population is selected as the output PD. All remaining other chromosomes are discarded and all the nodes

that do not have influence on this output PD in the previous layers are also removed. By doing this, the

EA-based SOPNN model is obtained.

YES

NO

Start

Results: chromosomes which have
good fitness value are selected for the
new input variables of the next layer

Generation of initial population:
the parameters are encoded into a

chromosome

Termination condition

Evaluation: each chromosome is
evaluated and has its fitness value

End: one chromosome (PD)
characterized by the best

performance is selected as the output
when the 3rd layer is reached

A`: 0 0 0 0 0 0 0 0 0 1 1 A`: 0 0 0 1 0 0 0 0 0 1 1

before mutation after mutation

A: 0 0 0 0 0 0 0 1 1 1 1
B: 1 1 0 0 0 1 1 0 0 1 1

A`: 0 0 0 0 0 0 0 0 0 1 1
B`: 1 1 0 0 0 1 1 1 1 1 1

before crossover after crossover

The fitness values of the new chromosomes
are improved trough generations with

genetic operators

---: mutation site

---: crossover site

A: 0 0 0 0 0 0 0 1 1 1 1 B: 1 1 0 0 0 1 1 0 0 1 1

Reproduction: roulette wheel

One-point crossover

Invert mutation

Fig. 5. Block diagram of the design procedure of EA-based SOPNN.

 13

3.2 Fitness function for modeling

The important thing to be considered for the EA is the determination of the fitness function. The

genotype representation encodes the problem into a string while the fitness function measures the

performance of the model. It is quite important for evolving systems to find a good fitness measurement.

To construct models with significant approximation and generalization ability, we introduce the error

function such as

(1)E PI EPIθ θ= × + − × (3)

where [0,1]θ ∈ is a weighting factor for PI and EPI, which denote the values of the performance index for

the training data and testing data, respectively. Then the fitness value is determined as follows:

1
1

F
E

=
+

 (4)

Maximizing F is identical to minimizing E. The choice of θ establishes a certain tradeoff between the

approximation and generalization ability of the EA-based SOPNN.

4. Simulation results

In this section, we show the performance of our new EA-based SOPNN for two well known nonlinear

system modeling. One is a time series of gas furnace (Box-Jenkins data)[19] which was studied previously

in [20-27]. The other is a nonlinear system already exploited in fuzzy modeling [28-33].

4.1 Gas furnace process

The delayed terms of methane gas flow rate u(t) and carbon dioxide density y(t) such as u(t-3), u(t-2),

u(t-1), y(t-3), y(t-2), and y(t-1)are used as input variables to the EA-based SOPNN. The actual system

output y(t) is used as target output variable for this model. We choose the input variables of nodes in the

1st layer from these input variables. The total data set consisting of 296 input-output pairs is split into two

parts. The first one (consisting of 148 pairs) is used for training. The remaining part of the data set serves

 14

as a testing set. Using the training data set, the coefficients of the polynomial are estimated using the

standard LSE. The performance index is defined as the mean squared error

2

1

1 ˆ() ()
m

i i
i

PI EPI y y
m =

= −∑ (5)

where iy is the actual system output, iŷ is the estimated output of each node, and m is the number of

data.

The design parameters of EA-based SOPNN for modeling are shown in Table 5. In the 1st layer, 20

chromosomes are generated and evolved during 40 generations, where each chromosome in the population

is defined as corresponding node. So 20 nodes (PDs) are produced in the 1st layer based on the EA

operators. All PDs are estimated and evaluated using the training and testing data sets, respectively. They

are also evaluated by a fitness function and ranked according to their fitness value. We choose nodes as

many as a predetermined number w from the highest ranking node, and use their outputs as new input

variables to the nodes in the next layer. In other words, The chosen PDs (w nodes) must be preserved for

the design of the next layer and the outputs of the preserved PDs serve as inputs to the next layer. The

value of w is different from each layer, which is also shown in Table 5. This procedure is repeated for the

2nd layer and the 3rd layer.

Table 5. Design parameters of EA-based SOPNN for modeling.

Parameters 1st layer 2nd layer 3rd layer

Maximum generations 40 60 80
Population size:(w) 20:(15) 60:(50) 80

String length 11 20 55
Crossover rate (Pc) 0.85
Mutation rate (Pm) 0.05
Weighting factor: θ 0.1~0.9

Type (order) 1~3

w: the number of chosen nodes whose outputs are used as inputs to the next layer

Table 6 summarizes the values of the performance index, PI and EPI, of the proposed EA-based SOPNN

according to weighting factor. These values are the lowest value in each layer. The overall lowest value of

 15

the performance index is obtained at the third layer when the weighting factor is 0.5. If this model is

designed to have the fourth or higher layer, the performance values come to much lower, but the large

computation time is required and the model has much complex network size.

Table 6. Values of performance index of the proposed EA-based SOPNN.

1st layer 2nd layer 3rd layer Weighting factor (θ)
PI EPI PI EPI PI EPI

0.1 0.0214 0.1260 0.0200 0.1231 0.0199 0.1228
0.25 0.0214 0.1260 0.0149 0.1228 0.0145 0.1191
0.5 0.0214 0.1260 0.0139 0.1212 0.0129 0.1086
0.75 0.0214 0.1260 0.0139 0.1293 0.0138 0.1235
0.9 0.0173 0.1411 0.0137 0.1315 0.0129 0.1278

Fig. 6 depicts the trend of the performance index values produced in successive generations of the EA

when the weighting factor θ is 0.5. Fig. 7 illustrates the values of error function and fitness function in

successive EA generations when θ =0.5.

0 20 40 60 80 100 120 140 160 180
0.012

0.014

0.016

0.018

0.020

0.022

PI

3rd layer2nd layer1st layer

Pe
rfo

rm
an

ce
 in

de
x(

PI
)

Generations
0 20 40 60 80 100 120 140 160 180

0.105

0.110

0.115

0.120

0.125

0.130

0.135

0.140

0.145

EPI

3rd layer2nd layer1st layer

Pe
rfo

rm
an

ce
 in

de
x(

EP
I)

Generations

(a) performance index for the training data set (b) performance index for the testing data set

Fig. 6. Trend of performance index values with respect to generations through layers (θ=0.5)

 16

0 20 40 60 80 100 120 140 160 180

0.060

0.065

0.070

0.075

0.080

3rd layer2nd layer1st layer

V
al

ue
 o

f e
rro

r f
un

ct
io

n(
E)

Generations
0 20 40 60 80 100 120 140 160 180

0.925

0.930

0.935

0.940

0.945

3rd layer2nd layer1st layer

V
al

ue
 o

f f
itn

es
s f

un
ct

io
n(

F)

Generations

(a) error function (E) (b) fitness function (F)

Fig. 7. Values of the error function and fitness function with respect to the successive generations

 (θ=0.5)

Fig. 8 shows the proposed EA-based SOPNN model with 3 layers and its identification performance

when the θ =0.5. The model output follows the actual output very well. Where the values of the

performance index of the proposed method are equal to PI=0.012, EPI=0.108, respectively.

u(t-3)•

u(t-2)•

u(t-1)•

y(t-3)•

y(t-2)•

y(t-1)•

PD1
4

PD1
5

PD1
3

PD3
5

PD2
5

PD2
4

PD2
5

PD2
4

PD1
4

PD3
5

PD3
5

PD2
4

PD3
3 ŷ

(a) Proposed EA-based SOPNN model with 3 layers

 17

0 50 100 150 200 250 300
44

46

48

50

52

54

56

58

60

62
Actural output
Model output

testing datatraining data

CO
2 co

nc
en

tra
tio

n

Data number
0 50 100 150 200 250 300

-2.25

-1.50

-0.75

0.00

0.75

1.50

2.25

Er
ro

r

Data number

(b) actual output versus model output (c) error

Fig. 8. Proposed EA-based SOPNN model with 3 layers and its identification performance (θ=0.5)

For the comparison of network size of the proposed EA-based SOPNN with that of conventional

SOPNN, conventional SOPNN models are visualized in Fig. 9. The structure of the EA-based SOPNN is

much simpler than the conventional SOPNN in terms of number of nodes and layers. In addition, the

performance of the EA-based SOPNN provides comparable results. Also, EA-based model outperforms

the existing identification models. The results of the basic SOPNN & Case 1 in Fig. 9 (a) are obtained in

the 5th layer when using 4 inputs and Type 3 to every node in all layers, (that are quantified as PI=0.012,

EPI=0.084). The results of the modified SOPNN and Case 2 in Fig. 9 (b) (PI=0.016, EPI=0.101) have been

reported when using 2 inputs and Type 1 to every node in the 1st layer and 3 inputs and Type 2 to every

node in the 2nd layer or higher.

 18

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD
PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

u(t-3) •

u(t-2) •

y(t-3) •

y(t-2) •

y(t-1) •

u(t-1) •
PD ^y

(a) Basic SOPNN & Case 1

u(t-3) •

u(t-2) •

y(t-3) •

y(t-2) •

y(t-1) •

u(t-1) •

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD ŷ

(b) Modified SOPNN & Case 2

Fig. 9. Conventional SOPNN models with 5 layers

Table 7. Values of performance index of some identification models.

Performance index Model
PI PI EPI

Tong’s model[20] 0.469
Sugeno and Yasukawa’s model[21] 0.190

Xu’s model[22] 0.328
Pedrycz’s model[23] 0.320

Leski and Czogala’s model[24] 0.047
Kang’s model[25] 0.161
Kim’s model[26] 0.034 0.244

Lin and Cunningham’s model[27] 0.071 0.261
Kim’s model [12] 0.013 0.126

Basic &Case 1 0.012 0.084 SOPNN
(5 layers) [13] Modified&Case2 0.016 0.101

EA-based SOPNN (3 layers) 0.012 0.108

Table 7 provides a comparison of the proposed model with other techniques being already proposed in

 19

the literature. The comparison is realized on the basis of the same performance index for the training and

testing data set. Additionally, PI denotes a performance index of the models for the entire data set (not

being split into a training and testing set). PI denotes a performance index of the model for the training

data set while EPI for the testing data. It is obvious that the proposed architecture outperforms other

models both in terms of their accuracy and higher generalization capabilities.

5.2. A Three-Input Nonlinear Function

In this example, we will demonstrate how the proposed EA-based SOPNN model can be employed to

identify the highly nonlinear function. The performance of this model will be compared with earlier works.

The function to be identified is a three-input nonlinear function given by (6)

0.5 1 1.5 2
1 2 3(1)y x x x− −= + + + (6)

which is widely used by Takagi and Hayashi[28], Sugeno and Kang[29], and Kondo[30] to test their

modeling approaches. Table 8 shows 40 pairs of the input-output data obtained from (6) [32]. The

input 4x is a dummy variable which has no relation to (6). The data on Table 8 is divided into training data

set (Nos. 1-20) and testing data set (Nos. 21-40). To compare the performance, the same performance

index, average percentage error (APE) adopted in [28-32] is used.

1

ˆ| |1 100 (%)
m

i i

i i

y y
APE

m y=

−
= ×∑ (7)

where m is the number of data pairs and iy and iŷ are the i-th actual output and model output,

respectively.

Again, a series of comprehensive experiments was conducted and the results are summarized in the

same way as before. The design parameters of EA-based SOPNN in each layer are shown in Table 9.

 20

Table 8. Input-output data of three-input nonlinear function.

Training data (1-20) Testing data (21-40)
No. x1 x2 x3 x4 y No. x1 x2 x3 x4 y
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
1
1
1
1
5
5
5
5
5
1
1
1
1
1
5
5
5
5
5

3
5
1
3
5
1
3
5
1
3
5
1
3
5
1
3
5
1
3
5

1
2
3
4
5
4
3
2
1
2
3
4
5
4
3
2
1
2
3
4

1
1
5
5
1
1
5
5
1
1
5
5
1
1
5
5
1
1
5
5

11.11
6.521
10.19
6.043
5.242
19.02
14.15
14.36
27.42
15.39
5.724
9.766
5.87
5.406
10.19
15.39
19.68
21.06
14.15
12.68

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1
1
1
1
1
5
5
5
5
5
1
1
1
1
1
5
5
5
5
5

1
3
5
1
3
5
1
3
5
1
3
5
1
3
5
1
3
5
1
3

5
4
3
2
1
2
3
4
5
4
3
2
1
2
3
4
5
4
3
2

1
1
5
5
1
1
5
5
1
1
5
5
1
1
5
5
1
1
5
5

9.545
6.043
5.724
11.25
11.11
14.36
19.61
13.65
12.43
19.02
6.38
6.521

16
7.219
5.724
19.02
13.39
12.68
19.61
15.39

Table 9. Design parameters of EA-based SOPNN for modeling .

Parameters 1st layer 2nd layer 3rd layer

Maximum generations 40 60 80
Population size:(w) 20:(15) 60:(50) 80

String length 8 20 55
Crossover rate (Pc) 0.85

Mutation rate (Pm) 0.05
Weighting factor: θ 0.1~0.9

Type (order) 1~3

w: the number of chosen nodes whose outputs are used as inputs to the next layer

The simulation results of the EA-based SOPNN are summarized in Table 10. The overall lowest values

of the performance index, PI=0.188 EPI=1.087, are obtained at the third layer when the weighting factor

(θ) is 0.25.

Table 10. Values of performance index of the proposed EA-based SOPNN model.

1st layer 2nd layer 3rd layer Weighting factor
PI EPI PI EPI PI EPI

0.1 5.7845 6.8199 2.3895 3.3400 2.2837 3.1418
0.25 5.7845 6.8199 0.8535 3.1356 0.1881 1.0879
0.5 5.7845 6.8199 1.6324 5.5291 1.2268 3.5526
0.75 5.7845 6.8199 1.9092 4.0896 0.5634 2.2097
0.9 5.7845 6.8199 2.5083 5.1444 0.0002 4.8804

 21

Fig. 10 illustrates the trend of the performance index values produced in successive generations of the

EA when the weighting factor θ is 0.25.

0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

PI

3rd layer2nd layer1st layer

Pe
rfo

rm
an

ce
 in

de
x(

PI
)

Generations
0 20 40 60 80 100 120 140 160 180

1

2

3

4

5

6

7
EPI

3rd layer2nd layer1st layer

Pe
rfo

rm
an

ce
 in

de
x(

EP
I)

Generations

(a) performance index for the training data set (b) performance index for the testing data set

Fig. 10. Trend of performance index values with respect to generations through layers (θ =0.25)

Fig. 11 shows the values of error function and fitness function in successive EA generations when the θ

is 0.25.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

2nd layer 3rd layer1st layer

V
al

ue
 o

f e
rro

r f
un

ct
io

n(
E)

Generations
0 20 40 60 80 100 120 140 160 180

0.1

0.2

0.3

0.4

0.5

0.6

2nd layer 3rd layer1st layer

V
al

ue
 o

f f
itn

es
s f

un
ct

io
n(

F)

Generations

(a) error function (E) (b) fitness function (F)

Fig. 11. Values of the error function and fitness function with respect to the successive generations (θ

=0.25)

 22

Fig. 12 depicts the proposed EA-based SOPNN model with 3 layers when the θ is 0.25. The structure of

EA-based SOPNN is very simple and has a good performance. But for the conventional SOPNN, it is

difficult to structure the model for this nonlinear function. That is why a few number of input candidates

are considered [33].

PD2
3

PD2
3

PD2
3

PD2
3

PD2
3

PD2
2

PD1
3

PD2
2

PD3
2

PD3
3

PD3
2

PD3
1

ŷPD3
5

X1 •

X2 •

X3 •

Fig. 12. Structure of the EA-based SOPNN model with 3 layers (θ =0.25)

Fig. 13 shows the identification performance of the proposed EA-based SOPNN and its errors when the

θ is 0.25. The output of the EA-based SOPNN follows the actual output very well.

5 10 15 20

5

10

15

20

25

30

y_
tr

Data number

 Actual output
 Model output

5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Er
ro

rs

Data number

(a) actual output versus model output of training data set (b) errors of (a)

 23

`

5 10 15 20

5

10

15

20

25

30

y_
te

Data number

 Actual output
 Model output

5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Er
ro

rs

Data number

(c) actual output versus model output of testing data set (d) errors of (c)

Fig. 13. Identification performance of EA-based SOPNN model with 3 layers and its errors

Table 11 shows the performance of the proposed EA-based SOPNN model and other models studied in

the literature. The experimental results clearly reveal that the proposed model outperforms the existing

models both in terms of better approximation capabilities (PI) as well as superb generalization abilities

(EPI). But the conventional SOPNN cannot be applied to the identification of this example.

Table 11. Performance comparison of various identification models.

APE Model
PI (%) EPI (%)

GMDH model[30] 4.7 5.7
Model 1 1.5 2.1 Fuzzy model

[29] Model 2 0.59 3.4
Type 1 0.84 1.22
Type 2 0.73 1.28 FNN [32]
Type 3 0.63 1.25

GD-FNN [31] 2.11 1.54
Conventional SOPNN [13] Impossible

EA-based SOPNN 0.188 1.087

 24

5. Conclusions

 In this paper, we propose a new design methodology of SOPNN using evolutionary algorithm, which is

called as the EA-based SOPNN and study properties of EA-based SOPNN. We can see that the EA-based

SOPNN is a sophisticated and versatile architecture which can construct models for limited data set and

poorly defined complex problems. Moreover, the architecture of the model is not predetermined, but can

be self-organized automatically during the design process. The conflict between overfitting and

generalization can be avoided by using fitness function with weighting factor. The experimental results

show that the proposed EA-based SOPNN is superior to the conventional SOPNN models as well as other

previous models in terms of the modeling performance.

References

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal

approximators,” IEEE Trans. Neural Netw., Vol. 2, pp. 359-366, Mar. 1989.
[2] T. Chen and H. Chen, “Approximation capability to functions of several variables, nonlinear functions,

and operators by radial basis function neural networks,” IEEE Trans. Neural Netw., Vol. 6, pp. 904-
910, July. 1995.

[3] K. Li, “Approximation theory and recurrent networks,” in Proc. IJCNN, Vol. Ⅱ, pp. 266-271, 1992.
[4] L. X. Wang and J. M. Mendel, ”Generating fuzzy rules by learning from examples,” IEEE Trans. Syst.,

Man, Cybern., Vol. 22, pp. 1414-1427, June, 1992.
[5] ____, “Fuzzy basis function, universal approximation, and orthogonal least-squares learning,” IEEE

Trans. Neural Netw., Vol. 3, pp. 807-814, Sep., 1992.
[6] A. G. Ivakhnenko, "Polynomial theory of complex systems", IEEE Trans. Syst., Man, Cybern., Vol.

SMC-1, No. 1, pp. 364-378, 1971.
[7] A. G. Ivakhnenko and N. A. Ivakhnenko, “Long-term prediction by GMDH algorithms using the

unbiased criterion and the balance-of-variables criterion,” Sov. Automat. Contr., Vol. 7, pp. 40-45,
1974.

[8] ____, “Long-term prediction by GMDH algorithms using the unbiased criterion and the balance-of-
variables criterion, part 2,” Sov. Automat. Contr., Vol. 8, pp. 24-38, 1975.

[9] A. G. Ivakhnenko, V. N. Vysotskiy, and N. A. Ivakhnenko, “Principal version of the minimum bias
criterion for a model and an investigation of their noise immunity,” Sov. Automat. Contr., Vol. 11, pp.
27-45, 1978.

[10] A. G. Ivakhnenko, G. I. Krotov, and N. A. Ivakhnenko, “Identification of the mathematical model of a

 25

complex system by the self-organization method,” in Theoretical Systems Ecology: Advances and
Case Studies, E. Halfon, Ed. New York: Academic, 1970, ch. 13

[11] S. J. Farlow, Self-Organizing Methods in Modeling, GMDH Type-Algorithms, New York: Marcel
Dekker, 1984.

[12] D. W. Kim, “ Evolutionary Design of Self-Organizing Polynomial Neural Networks,” Master’s thesis,
Dept. Control Instrum., Wonkwang Univ., 2002(in Korean).

[13] S. K. Oh and W. Pedrycz, “The design of self-organizing Polynomial Neural Networks,” Inf. Sci., Vol.
141, pp. 237-258, 2002.

[14] Y. Shi, R. Eberhart, and Y. Chen, ”Implementation of Evolutionary Fuzzy Systems,” IEEE Trans. Syst.,
Man, Cybern., Vol. 7, No. 2, pp. 109-119, April, 1999.

[15] K. Kristinnson and G.A. Dumont, “System identification and control using genetic algorithms,” IEEE
Trans. Syst., Man, Cybern., Vol. 22, No. 5, pp. 1033-1046, 1992.

[16] S. Uckun, S. Bagchi, and K. Kawamura, “Managing genetic search in job shop scheduling,” IEEE
Expert, Vol. 8, No. 5, pp. 15-24, 1993.

[17] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA:
Addison-Wesley, 1989.

[18] S.Y. Kung and J.S. Taur, "Decision-based neural networks with signal/image classification
applications," IEEE Trans. Neural Netw., Vol. 6, pp. 170-181, Jan. 1995.

[19] G.E.P. Box and F.M. Jenkins, Time Series Analysis : Forecasting and Control 2nd ed. Holden-day,
1976.

[20] R.M. Tong, "The evaluation of fuzzy models derived from experimental data", Fuzzy Sets Syst.,
Vol.13, pp.1-12, 1980.

[21] M. Sugeno and T. Yasukawa, "A fuzzy-logic-based approach to qualitative modeling", IEEE Trans.
Fuzzy Syst., Vol. 1, No. 1, pp. 7-31, 1993.

[22] C.W. Xu, and Y. Zailu, "Fuzzy model identification self-learning for dynamic system, IEEE Trans.
Syst., Man, Cybern., Vol. SMC-17, No.4, pp.683-689, 1987.

[23] W. Pedrycz, "An identification algorithm in fuzzy relational system", Fuzzy Sets Syst., Vol. 13,
pp.153-167, 1984.

[24] J. Leski, and E. Czogala, "A new artificial neural networks based fuzzy inference system with moving
consequents in if-then rules and selected applications", Fuzzy Sets Syst., Vol. 108, 289-297, 1999.

[25] S.J. Kang, C.H. Woo, H.S. Hwang, and K.B. Woo, “Evolutionary Design of Fuzzy Rule Base for
Nonlinear System Modeling and Control,” IEEE Trans. Fuzzy Syst., Vol. 8, No. 1, Feb., 2000.

[26] E. Kim, H. Lee, M. Park, M. Park, "A simple identified Sugeno-type fuzzy model via double
clustering," Inf. Sci., Vol. 110, pp. 25-39, 1998.

[27] Y. Lin, G.A. Cunningham Ⅲ, "A new approach to fuzzy-neural modeling", IEEE Trans. Fuzzy Syst.,
Vol. 3, No. 2, pp. 190-197, 1995.

[28] H. Takagi and I. Hayashi, “NN-driven fuzzy reasoning,” Int. J. Approx. Reasoning, Vol. 5, No. 3, pp.
191-212, 1991.

 26

[29] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets Syst., Vol. 28, pp.
15-33, 1988.

[30] T. Kondo, “Revised GMDH algorithm estimating degree of the complete polynomial,” Tran. Soc.
Instrum. Control Eng., Vol. 22, No. 9, pp. 928-934, 1986(in Japanese)

[31] S. Wu, M.J. Er, and Y. Gao, “A Fast Approach for Automatic Generation of Fuzzy Rules by
Generalized Dynamic Fuzzy Neural Networks,” IEEE Trans. Fuzzy Syst., Vol. 9, No. 4, pp. 578-594,
2001.

[32] S.I. Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy modeling Using Fuzzy Neural Networks
with the Back-Propagation Algorithm,” IEEE Trans. Neural Netw., Vol. 3, No. 5, pp. 801-806, 1992.

[33] Dong-Won Kim, Sung-Kwun Oh, and Hyun-Ki Kim, “A Study on the Self-organizing Fuzzy
Polynomial Neural Networks,” Journal of KIEE, Vol. 11, No. 2, pp. 79-89, 2001.

