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Abstract

In this study, we introduce and investigate a class of neural architectures of Poly-

nomial Neural Networks (PNNs), discuss a comprehensive design methodology and

carry out a series of numeric experiments. PNN is a flexible neural architecture whose

structure (topology) is developed through learning. In particular, the number of layers

of the PNN is not fixed in advance but becomes generated on the fly. In this sense, PNN

is a self-organizing network. The essence of the design procedure dwells on the Group

Method of Data Handling (GMDH). Each node of the PNN exhibits a high level of

flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic)

between input and output variables. The experimental part of the study involves two

representative time series such as Box–Jenkins gas furnace data and a pH neutralization

process. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Polynomial Neural Networks; Group Method of Data Handling; Design

procedure; High-order polynomial; Multi-variable systems; Time series

1. Introduction

Recently, a lot of attention has been directed to advanced techniques of
system modeling. The panoply of the existing methodologies and detailed
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algorithms is confronted with nonlinear systems, high dimensionality of the
problems, a quest for high accuracy and generalization capabilities of the
ensuing models. Nonlinear models can address some of these issues but they
require a vast amount of data. The global nonlinear behavior of the model
may also cause undesired effects (the well-known is a phenomenon of data
approximation by high-order polynomials where such approximation leads
to unexpected ripples in the overall nonlinear relationship of the model).
When the complexity of the system to be modeled increases, both experi-
mental data and some prior domain knowledge (conveyed by the model
developer) are of paramount importance to complete an efficient design
procedure. It is also worth stressing that the nonlinear form of the model
acts as a two-edge sword: while we gain flexibility to cope with experimental
data, we are provided with an abundance of nonlinear dependencies that
need to be exploited in a systematic manner. One of the first approaches
along systematic design of nonlinear relationships comes under the name of
a Group Method of Data Handling (GMDH). GMDH [1] was developed in
the late 1960s by Ivahnenko as a vehicle for identifying nonlinear relations
between input and output variables. The GMDH algorithm generates an
optimal structure of the model through successive generations of Partial
Descriptions of data (PDs) being regarded as quadratic regression polyno-
mials with two input variables. While providing with a systematic design
procedure, GMDH has some drawbacks. First, it tends to generate quite
complex polynomial for relatively simple systems (data). Second, owing to
its limited generic structure (quadratic two-variable polynomial), GMDH
also tends to produce an overly complex network (model) when it comes to
highly nonlinear systems.
In this study, in alleviating the problems with the GMDH algorithm, we

introduce a new class of Polynomial Neural Networks (PNNs). In a nutshell,
these networks come with a high level of flexibility as each node (processing
element forming a PD) can have a different number of input variables as well as
exploit a different order of the polynomial (say, linear, quadratic, cubic, etc.).
In comparison to well-known neural networks whose topologies are commonly
prior to all detailed (parametric) learning, the PNN architecture is not fixed in
advance but becomes fully optimized (both structurally and parametrically).
Especially, the number of layers of the PNN architecture can be modified with
new layers added, if required.
In this study, we provide with a general taxonomy of the PNNs, discuss

detailed learning schemes and include detailed experimental studies. The ma-
terial is organized into six sections. First, in Section 2 we discuss the GMDH
algorithm that is regarded as an underlying design method of the PNN
architecture. Section 3 is devoted to various architectures of the PNN and
their development. A suite of experimental studies is covered in Section 4.
Concluding remarks are included in Section 5.
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2. The GMDH algorithm

The GMDH algorithm uses estimates of the output variable obtained from
simple primeval regression equations that include small subsets of input vari-
ables [2]. To elaborate on the essence of the approach, we adhere to the fol-
lowing notation. Let the original data set consist of a column of the observed
values of the output variable y and N columns of the values of the independent
system variables, that is x ¼ x1; x2; . . . ; xN . The primeval equations form a PD
which comes in the form of a quadratic regression polynomial

z ¼ Aþ Buþ Cvþ Du2 þ Ev2 þ Fuv: ð1Þ

In the above expression A;B;C;D;E; and F are parameters of the model, u; v
are pairs of variables standing in x whereas z is the best fit of the dependent
variable y.
The generation of each layer is completed within three basic steps:
Step 1. In this step we determine estimates of y using primeval equations.

Here, u and v are taken out of all independent system variables x1; x2; . . . ; xN . In
this way, the total number of polynomials we can construct via (1) is equal to
NðN � 1Þ=2. The resulting columns zm of values, m ¼ 1; 2; . . . ;NðN � 1Þ=2,
contain estimates of y resulting from each polynomial that are interpreted as
new ‘‘enhanced’’ variables that may exhibit a higher predictive power than the
original variables being just the input variables of the system, x1; x2; . . . ; xN .

Step 2. The aim of this step is to identify the best of these new variables and
eliminate those that are the weakest ones. There are several specific selection
criteria to do this selection. All of them are based on some performance index
(mean square, absolute or relative error) that express how the values zm follow
the experimental output y. Quite often the selection criterion includes an
auxiliary correction component that ‘‘punishes’’ a network for its excessive
complexity. In some versions of the selection method, we retain the columns
(zm) for which the performance index criterion is lower than a certain prede-
fined threshold value. In some other versions of the selection procedure, a
prescribed number of the best zm is retained. Summarizing, this step returns a
list of the input variables. In some versions of the method, columns of
x1; x2; . . . ; xN are replaced by the retained columns of z1; z2; . . . ; zk, where k is the
total number of the retained columns. In other versions, the best k retained
columns are added to columns x1; x2; . . . ; xN to form a new set of the input
variables. Then the total number N of input variables changes to reflect the
addition of zm values or the replacement of old columns xN with zm new total
number of input variables.
If Step 2 is completed within the generation of the current layer (or the

current iteration) of the design procedure, the iteration of the next layer (or the
next iteration) begins immediately by repeating step 1 as described above,
otherwise we proceed with step 3.
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Step 3 consists of testing whether the set of equations of the model can be
further improved. The lowest value of the selection criterion obtained during
this iteration is compared with the smallest value obtained at the previous one.
If an improvement is achieved, one goes back and repeats steps 1 and 2,
otherwise the iterations terminate and a realization of the network has been
completed. If we were to make the necessary algebraic substitutions, we would
have arrived at a very complicated polynomial of the form which is also known
as the Ivahnenko polynomial

ŷy ¼ aþ
Xm

i¼1
bixi þ

Xm

i¼1

Xm

j¼1
cijxixj þ

Xm

i¼1

Xm

j¼1

Xm

k¼1
dijkxixjxk � � � ; ð2Þ

where a; bi; cij; dijk and so forth are the coefficients of the polynomial.

3. The PNN algorithm and its generic structure

In this section, we elaborate on algorithmic details of the optimal identifi-
cation method related to two types of the PNN structures.

3.1. PNN algorithm

The PNN algorithm is based on the GMDH method and utilizes a class of
polynomials such as linear, modified quadratic, cubic, etc. By choosing the
most significant input variables and polynomial order among these various
types of forms available, we can obtain the best of the extracted partial de-
scriptions according to both selecting nodes of each layer and generating ad-
ditional layers until the best performance is reached. Such methodology leads
to an optimal PNN structure. Let us recall that the input–output data are given
in the form

ðXi; yiÞ ¼ ðx1i; x2i; . . . ; xNi; yiÞ; i ¼ 1; 2; 3; . . . ; n: ð3Þ

The input–output relationship of the above data by PNN algorithm can be
described in the following manner:

y ¼ f ðx1; x2; . . . ; xN Þ: ð4Þ

The estimated output ŷy reads as

ŷy ¼ f̂f ðx1; x2; . . . ; xN Þ

¼ c0 þ
X

k1

ck1xk1 þ
X

k1k2

ck1k2xk1xk2 þ
X

k1k2k3

ck1k2k3xk1xk2xk3 þ � � � ; ð5Þ

where ck’s denote the coefficients of the model.
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To determine the estimated output ŷy, we construct a PD form for each pair
of independent variables in the first iteration according to the number of the
input variables. Here one determines the parameters of PD by the least square
method by using given training data. Furthermore we choose the optimal
model forming the first layer. In the sequel, we construct new PDs using in-
termediate variables (for example zm) being generated in the current iteration.
Afterwards, we take another pair of new input variables, and repeat operation
until the stopping criterion has been satisfied. Once the final layer has been
constructed, the node characterized by the best performance is selected as the
output node. The remaining nodes in that layer are discarded. Furthermore, all
the nodes of previous layers that do not have influence on the estimated output
node are also removed by tracing the data flow path of each iteration. Overall,
the framework of the design procedure of the PNNs comes as a sequence of the
following steps.

Step 1: Determine system’s input variables
Here, we define the input variables as xi; i ¼ 1; 2; . . . ;N related to output

variable y. If required, the normalization of input data is also completed.
Step 2: Form a training and testing data
The input–output data set ðXi; yiÞ ¼ ðx1i; x2i; . . . ; xNi; yiÞ, i ¼ 1; 2; 3; . . . ; n is

divided into two parts, that is a training and testing data set. Denote their sizes
by ntr and nte respectively. Obviously we have n ¼ ntr þ nte. The training data
set is used to construct a PNN model (including an estimation of the coeffi-
cients of the PD of nodes situated in each layer of the PNN). Next, the testing
data set is used to evaluate the estimated PNN model.

Step 3: Choose a structure of the PNN
The structure of PNN is selected on the basis of the number of input vari-

ables and the order of PD in each layer. Two kinds of PNN structures, namely
a basic PNN and a modified PNN structure are distinguished. Each of them
comes with two cases. Table 1 summarizes all the options available. More
specifically, the main features of these architectures are as follows:

Table 1

A taxonomy of various PNN structures

Layer PD Type PNN structure

No. of input variables Order of polynomial

First layer p P (1) p ¼ q: Basic PNN
(a) P ¼ Q: Case 1
(b) P 6¼ Q: Case 2

Second to fifth layer q Q (2) p 6¼ q: Modified
PNN

(a) P ¼ Q: Case 1
(b) P 6¼ Q: Case 2

(p ¼ 2; 3; 4, q ¼ 2; 3; 4; P ¼ 1; 2; 3, Q ¼ 1; 2; 3).
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(a) Basic PNN structure – The number of input variables of PDs is the same
in every layer.

Case 1. The polynomial order of PDs is the same in each layer of the
network.

Case 2. The polynomial order of PDs in the second layer or higher has a
different or modified type in comparison with the one of PDs in the first layer.
(b) Modified PNN structure – The number of input variables of PDs varies

from layer to layer.
Case 1. The polynomial order of PDs is same in every layer.
Case 2. The polynomial order of PDs in the second layer or higher has a

different or modified type in comparison with the one of PDs in the first layer.
The outstanding feature of the modified PNN structure is its high flexibility.

Not only the order but the number of independent input variables may vary
between PDs located at each layer. Therefore the complex PDs as well as the
simple PDs can be utilized effectively according to the various kinds of mod-
ified PNN structures by taking into consideration both compactness and mu-
tual input–output relationships encountered at each layer.

Step 4: Determine the number of input variables and the order of the poly-
nomial forming a partial description (PD) of data
We determine the regression polynomial structure of a PD related to PNN

structure; for details refer to Table 2. In particular, we select the input variables
of a node from N input variables x1; x2; . . . ; xN . The total number of PDs lo-
cated at the current layer differs according to the number of the selected input
variables from the nodes of the preceding layer. This results in k ¼ N !=
ðN � rÞ!r! nodes, where r is the number of the chosen input variables. The
choice of the input variables and the order of a PD itself helps select the best
model with respect to the characteristics of the data, model design strategy,
nonlinearity and predictive capability.

Step 5: Estimate the coefficients of the PD
The vector of coefficients Ci is derived by minimizing the mean squared error

between yi and zmi

Table 2

Regression polynomial structure

Order No. of inputs

1 2 3

1 Linear Bilinear Trilinear

2 Quadratic Biquadratic-1 Triquadratic-1

Biquadratic-2 Triquadratic-2

3 Cubic Bicubic-1 Tricubic-1

Bicubic-1 Tricubic-1

1: Basic type; 2: Modified type.
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E ¼ 1

Ntr

XNtr

i¼0
ðyi � zmiÞ2: ð6Þ

Using the training data subset, this gives rise to the set of linear equations

Y ¼ XiCi: ð7Þ

Apparently, the coefficients of the PD of the processing nodes in each layer are
derived in the form

Ci ¼ ðXTi XiÞ�1XTi Y; ð8Þ

where

Y ¼ ½y1y2 � � � yntr 	
T; Xi ¼ ½X1iX2i � � �Xki � � �Xntri	

T;

XTki ¼ ½1xki1xki2 � � � xkin � � � xmki1xmki2 � � � xmkin	;

Ci ¼ ½c0ic1ic2i � � � cn0i	T

with the following notations: i the node number, k the data number, ntr the
number of the training data subset, n the number of the selected input
variables, m the maximum order, and n0 the number of estimated coeffi-
cients.
This procedure is implemented repeatedly for all nodes of the layer and also

for all layers of PNN starting from the input layer and moving to the output
layer.

Step 6: Select PDs with the best predictive capability
Each PD is estimated and evaluated using both the training and testing data

sets. Then we compare these values and choose several PDs which give the best
predictive performance for the output variable. Usually we use (i) a predeter-
mined numberW of PDs or (ii) the prespecified cutoff value of the performance
index the PD has to exhibit in order to be retained at the next generation of the
PNN algorithm. Especially the method of (ii) uses the threshold criterion hm to
select the node with the best performance in each layer. A new PD is preserved
(retained) if the following condition holds:

Ej < hm ¼ E� þ d; ð9Þ

where Ej is a minimal identification error of the current layer, hm stands for a
threshold value while E� is a minimal identification error of the previous layer.
Furthermore d is a positive constant whose value is specified by the model
developer.
The second method has some practical drawbacks. It cannot effectively re-

duce a large number of nodes and avoid a large amount of time-consuming
iterations of PNN layers. The first method is better with this regard as it
confines the computing to the predetermined value of W.
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Step 7: Check the stopping criterion
Two termination methods are exploited here:

(i) The stopping condition shown in (10) indicates that an optimal PNN model
has been accomplished at the previous layer, and the modeling can be ter-
minated. This condition reads as

Ej PE�; ð10Þ

where Ej is a minimal identification error of the current layer whereas E�
denotes a minimal identification error that occurred at the previous layer.

(ii) The PNN algorithm terminates when the number of iterations predeter-
mined by the designer is reached.
It is prudent to take into consideration a stopping condition for better

performance and the number of iterations predetermined by the designer. This
criterion helps achieve a balance between model accuracy and its complexity.

Step 8: Determine new input variables for the next layer
If Ej (the minimum value in the current layer) has not been satisfied (so the

stopping criterion is not satisfied), the model has to be expanded. The outputs
of the preserved PDs serve as new inputs to the next layer. This is captured by
the expression

x1i ¼ z1i; x2i ¼ z2i; . . . ; xwi ¼ zwi: ð11Þ

The PNN algorithm is carried out by repeating steps 4–8 of the algorithm.

3.2. The PNN structure

We introduce two kinds of PNN structures, namely the basic and the
modified PNN. While their structure has been captured in Table 1, here we
discuss their architectural details.

3.2.1. Basic PNN structure
The design of the PNN structure continues and involves a generation of

some additional layers. These layers consist of PDs for which the number of
input variables is the same in every layer. Two cases (Case 1 and Case 2) for the
regression polynomial in each layer are considered.

Case 1. As stated, in this case the order of the polynomial of PDs is the same
across the entire network. The resulting network is visualized in Fig. 1.
It becomes apparent that all PDs are the same and the design of the network

repeats (that is we use the same technique as applied to the first layer).
Case 2. The order of the polynomial of PDs in the second layer or higher is

different in comparison with the units located in the first layer, see Fig. 2.
In this figure, the notations Z 0

i related to the second layer and more point out
that the order of the polynomial is different in comparison to the one ðZiÞ
encountered at the first layer.
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3.2.2. Modified PNN structure
The outstanding feature of the modified PNN structure resides in its in-

creased variability. Not only an order of the regression polynomial varies but
the number of the input variables of each PDs can be changed. Therefore, the
simplex PDs as well as the complex PDs can be utilized effectively by taking
into consideration a structural form of input–output relationships between the
nodes of each layer. Two cases for the regression polynomial in each layer can
be sought as well.

Case 1 – The order of PDs is the same in every layer, see Fig. 3. For ex-
ample, consider that the PDs of the first layer are the form of the 2nd order
(quadratic) regression polynomial:

z ¼ c0 þ c1xp þ c2x2p: ð12Þ

We estimate the parameters of the PDs and determine the best group of the
PDs. In the second layer, the PDs are the second-order polynomials with two

Fig. 1. Configuration of the basic PNN structure – Case 1.
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variables. Even though the polynomial order of PDs is the same as that of the
first layer, the number of input variables can be different from that of the first
layer.

Fig. 2. Configuration of the basic PNN structure – Case 2.

Fig. 3. Configuration of the modified PNN structure – Case 1.
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Case 2 – The order of the polynomials of PDs in the second and higher
layers differs in comparison with the PDs existing in the first layer, Fig. 4.

4. Experimental studies

In this section we illustrate the performance of the network and elaborate on
its development by experimenting with data coming from the gas furnace
process [3] and pH neutralization process [18]. These two are representative
examples of well-documented data sets used in the realm of fuzzy modeling.
We also contrast the performance of the model introduced here with those
existing in the literature.

4.1. Gas furnace process

The time series data resulting from the gas furnace process have been in-
tensively studied in the previous literatures [3–15]. For easy reference, we
highlight the main design steps discussed in the previous section.

Step 1: Determine system’s input variables
The delayed terms of methane gas flow rate, uðtÞ and carbon dioxide density,

yðtÞ are used as system input variables such as uðt � 3Þ, uðt � 2Þ, uðt � 1Þ,
yðt � 3Þ, yðt � 2Þ, and yðt � 1Þ. yðtÞ is a single output variable. We choose the
input variables of nodes in the first layer of PNN structure from these system
input variables. We use two types of system input variables of PNN structure,
Type I and Type II to design an optimal model from gas furnace process data.

Fig. 4. Configuration of the modified PNN structure – Case 2.
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Type I utilizes four system input variables such as uðt � 2Þ, uðt � 1Þ, yðt � 2Þ;
and yðt � 1Þ and Type II utilizes six system input variables explained above.

Step 2: Form a training and testing data set
The total data set includes 296 input–output pairs for the proposed PNN

modeling. The total data set is divided into two parts, one is used for training
purposes (148 input–output data) and the remaining serves for testing pur-
poses.

Step 3: Choose a structure of the PNN
We consider two kinds of PNN structures – the basic and modified one.
Step 4: Determine the number of input variables and the order of the poly-

nomial forming a partial description (PD) of data
We determine the number of the input variables and the order of PD from N

system input variables obtained in step 1. Step 3 concerns the decision as to the
structure of the PNN. The PDs differ according to the number of input vari-
ables and the polynomial order of a node. Here Type 1, Type 2, and Type 3
stand for a linear, quadratic, and modified quadratic regression polynomial,
respectively.

Step 5: Estimate the coefficients of a PD
Using the training data subset obtained in step 2, the coefficients ðciÞ of a PD

are estimated by the standard least squares method.
Step 6: Select PDs with the best predictive capability
Using both the training and testing data subset obtained in step 2, each PD

of the current layer is evaluated by computing the performance index defined
as the mean squared error

PIðEPIÞ ¼ 1

m

Xm

i¼1
ðyi � ŷyiÞ

2
; ð13Þ

where yi is the actual output, ŷyi is the estimated one of each PD, and m stands
for the total number of data.
Then we compare these values and choose several PDs by a predefined

number, 30, which give better predictive performance than remaining PDs of
the current layer. Such selected PDs of the current layer are retained as the
inputs to the successive layer.

Step 7: Check the stopping criterion (condition)
Because of a large amount of computing, we follow a practical guideline to

confine the depth of the PNN to a maximum of five layers. It will be shown
that this selection is well supported by experimental evidence gained through
intensive experimentation.

Step 8: Determine new input variables for the next layer
If the stopping condition of step 7 has not been not satisfied, the output

values estimated in the first layer serve at the second layer as input variables.
The algorithm goes through steps 4–8 and generates PDs at the next layer.
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In the sequel, we discuss the results produced by various PNNs.

(a) The basic PNN structure
Case 1 – The values of the performance index vis-�aa-vis number of layers of

the PNN with Type 3 in Type II architecture are shown in Fig. 5. Considering
the training and testing data sets, the best results for the network of Type I are
obtained when using three inputs of Type 1, (that are quantified as PI ¼ 0:0175,
EPI ¼ 0:1486). The best results for the network of Type II coming with
PI ¼ 0:0124 and EPI ¼ 0:0849 have been reported when using four inputs and
Type 3.

Case 2 – Fig. 6 visualizes the performance index of the PNN structure. The
notation used here, namely ‘‘Type 1! Type 2’’ states that the polynomial
order of the PDs changes from Type 1 (those are PDs in the first layer) to Type
2 (when dealing with PDs in the second layer or higher). When the polynomial
order of PDs changes from Type 3 to Type 1, the best results for the Type I
network are quantified by PI ¼ 0:0175 and EPI ¼ 0:1476. These values are
obtained for the PNN structure with three node inputs. When the order of the
polynomial of the PDs changes from Type 1 to Type 2 (Type 1! Type 2), this
gives better results for the Type II network both for the training and testing
sets. Especially in this case, the PNN structure with three node inputs is
characterized by the best results (PI ¼ 0:021, EPI ¼ 0:0849, respectively).

Fig. 5. Performance index for training and evaluation in Type II (each layer includes neurons of

Type 3).
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Fig. 7 illustrates the detailed topology of the network. The shadowed nodes
in Fig. 7 identify optimal nodes in each layer, namely those with the best
predictive performance.

(b) The modified PNN structure
Case 1 – The values of the performance index of the PNN structure with

Type 2 in Type II is shown in Fig. 8.
Case 2 – As before, the performance index summarizes the behavior of the

network, Fig. 9.

Fig. 6. Performance index for training and testing in Type II network (Type 1! Type 2).

Fig. 7. Optimal PNN structure of Type II (three inputs and Type 1! Type 2); see description in

text.
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Table 3 contrasts the performance of the PNN network with other fuzzy
models studied in the literature. The experimental results clearly reveal that the
PNN outperforms the existing models both in terms of better approximation

Fig. 8. Performance index for training and evaluation in Type II (every layer: Type 2).

Fig. 9. Performance index for training and evaluation in Type II (first layer: Type 1, second layer

or higher: Type 2).

S.-K. Oh, W. Pedrycz / Information Sciences 141 (2002) 237–258 251



capabilities (lower values of the performance index on the training data, PIsÞ as
well as superb generalization abilities (expressed by the performance index on
the testing data EPIs).

4.2. pH neutralization process

To demonstrate the high modeling accuracy of the PNN, we apply it to a
highly nonlinear of pH neutralization of a weak acid and a strong base. This
model can be found in a variety of practical areas including wastewater
treatment, biotechnology processing, and chemical processing [16,17,19,22,23].
pH is the measurement of the acidity or alkalinity of a solution containing a
proportion of water. It is mathematically defined, for dilute solution, as the
negative decimal logarithm of the hydrogen ion concentration ½Hþ	 in the so-
lution, that is,

pH ¼ � log10½Hþ	: ð14Þ

Table 3

Comparison of identification error with previous fuzzy models

Model Mean squared error

PI PIs EPIs

Box and Jenkins’ model [3] 0.710

Tong’s model [4] 0.469

Sugeno and Yasukawa’s model [5] 0.355

Sugeno and Yasukawa’s model [6] 0.190

Xu and Zailu’s model [7] 0.328

Pedrycz’s model [8] 0.320

Chen’s model [12] 0.268

Gomez-Skarmeta’s model [14] 0.157

Oh and Pedrycz’ model [9] 0.123 0.020 0.271

Kim et al.’s model [10] 0.055

Kim et al.’s model [11] 0.034 0.244

Leski and Czogala’s model [13] 0.047

Lin and Cunningham’s model [15] 0.071 0.261

Our model Type I Basic

PNN

Case 1 0.057 0.017 0.148

Case 2 0.057 0.017 0.147

Modified

PNN

Case 1 0.046 0.015 0.103

Case 2 0.045 0.016 0.111

Type II Basic

PNN

Case 1 0.029 0.012 0.085

Case 2 0.027 0.021 0.085

Modified

PNN

Case 1 0.035 0.017 0.095

Case 2 0.039 0.017 0.101

PI – performance index over the entire data set, PIs – performance index on the training data,
EPIs – performance index on the testing data.
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In the continuously stirred tank reactor (CSTR) [18,21] investigated acetic
acid (HAC) of concentration Ca flows into the tank at flow rate Fa, and is
neutralized by sodium hydroxide (NaOH) of concentration Cb which flows into
the tank at rate Fb. The equations of the CSTR can be described as follows
(here we assume that the tank is perfectly mixed and isothermal, cf. [18]). The
process equations for the CSTR is given by

V dwa
dt

¼ FaCa � ðFa þ FbÞWa; ð15aÞ

V dwb
dt

¼ FbCb � ðFa þ FbÞWb; ð15bÞ

where the constant V is the volume of the content in the reactor, wa and wb are
the concentrations of the acid and base, respectively.
The above equation describes how the concentration of wa and wb changes

dynamically with time subject to the input streams Fa and Fb. To obtain the pH
in the effluent, we need to find a relation between instantaneous concentrations
wa and wb and pH values. This relationship can be described by a nonlinear
algebra equation known as the titration or characteristic curve. Depending on
the chemical species used, the titration curve varies. Here we consider the case
that a weak influent neutralized by a strong reagent. The words strong and
weak are used to characterize the degree of ionic dissociation in an aqueous
solution. Strong reagents completely dissociate into their hydrogen or hydroxyl
ions whereas weak reagents are only partially ionized.
Consider an acetic acid (weak acid) denoted by HAC being neutralized by a

strong base NaOH (sodium hydroxide) in water. The reactions are

H2O () Hþ þOH� ð16aÞ

HAC () Hþ þAC� ð16bÞ

NaOH ) Naþ þOH� ð16cÞ

According to the electroneutrality condition, the sum of the charges of all
ions in the solution must be zero, i.e.,

½Naþ	 þ ½Hþ	 ¼ ½OH�	 þ ½AC�	 ð17Þ

where the symbol [X] denotes the concentration of the ion X.
On the other hand, the following equilibrium relationships hold for water

and acetic acid:

Ka ¼ ½AC�	½Hþ	=½HAC	; ð18aÞ

Kw ¼ ½Hþ	½OH�	; ð18bÞ

where Ka and Kw are the dissociation constants of the acetic acid and water
with Ka ¼ 1:76� 10�5 and Kw ¼ 10�14.
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Defining wa ¼ ½HAC	 þ ½AC�	 as the total acetate and wb ¼ ½Naþ	 and in-
serting Eqs. (18a) and (18b) into Eq. (17), we have

½Hþ	3 þ ½Hþ	2fKa þ wbg þ ½Hþ	fKaðwb � waÞ � Kwg � KaKw ¼ 0: ð19Þ
Using Eq. (14), Eq. (19) becomes

Wb þ 10�pH � 10pH�pKw � Wa
1þ 10pKa�pH ¼ 0; ð20Þ

where pKa ¼ � log10 ka.
We consider the weak acid–strong base neutralization process described by

Eqs. (15a), (15b) and (20). By fixing the acid flow-rate Fa (81 cc/min) at a
specific value, the process is regarded as a single variable system with base flow-
rate Fb and the pH in the effluent being the input and output, respectively. The
ðFb; ypHÞ data pairs were produced by using the process physical model with the
parameter values given in Table 4.
The base flow rate Fb was given by

Fb ¼ 515þ 51:5 sinð2pt=25Þ for t6 150; ð21aÞ
Fb ¼ 515þ 25:75 sinð2pt=25Þ þ 25:75 sinð2pt=10Þ for t > 150: ð21bÞ

For obtaining such a data pairs, we applied Newton–Raphson method that
is given by Eq. (22):

pHiþ1 ¼ pHi �
f ðpHiÞ
f 0ðpHiÞ

: ð22Þ

The system inputs of the PNN structure consist of the delayed terms of FbðtÞ
and ypHðtÞ which are input and output of the process, i.e.,

ŷypHðtÞ ¼ uðFbðt � 3Þ; Fbðt � 2Þ; Fbðt � 1Þ;
ypHðt � 3Þ; ypHðt � 2Þ; ypHðt � 1ÞÞ; ð23Þ

Table 4

Parameters and initial values for pH process

Variables Meaning Initial setting

V Volume of tank 1000 cc

Fa Flow rate of acid 81 cc/min

Fb Flow rate of base 515 cc/min

Ca Concentration of acid in Fa 0.32 mole/l

Cb Concentration of base in Fb 0.05 mole/l

Ka Acid equilibrium constant 1:76� 10�5
Kw Water equilibrium constant 1:0� 10�14
Wað0Þ Concentration of acid 0.0435 mole/l

Wbð0Þ Concentration of base 0.0432 mole/l
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where ŷypH and ypH denote the PNN model output and the actual process
output, respectively. Five hundred data pairs are generated from Eqs. (21a),
(21b) and (22) where total data are used for training.

Fig. 10. Performance index for the training data (each layer is of Type 2).

Fig. 11. Performance index for the training data ðType 1! Type 2Þ.
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We conducted a series of comprehensive experiments for all four main ar-
chitecture of the PNNs, refer to Figs. 10 and 11 in case of the basic PNN. The
generation procedure of the PNN is carried out until the 15th layer in the basic
PNN structure, see Figs. 10 and 11 and the 10th layer in the modified PNN
structure.
Table 5 provides with a comparative analysis of various fuzzy models. The

two models proposed in [20] (that is an unsupervised self-organizing counter-
propagation network algorithm (USOCPN) and unsupervised self-organizing
counterpropagation network algorithm (SSOCPN)) are characterized by
higher values of the MSE values. The number of rules used there is equal to 31
(USOCPN) and 34 (SSOCPN). As becomes apparent from Table 5, in these
two architectures the resulting performance index assumes far higher values
than reported for the PNN architectures.

5. Concluding remarks

In this study, we introduced a class of self-organizing polynomial neural
networks, discussed a diversity of their topologies, came up with a detailed
procedure, and used these networks to nonlinear system modeling. The key
features of this approach can be enumerated as follows:
• The proposed design methodology helps reach a compromise between
approximation and generalization capabilities of the constructed PNN
model.

• The PNN comes with a diversity of local characteristics (PDs) that are useful
in coping with various nonlinear characteristics of the nonlinear systems.
Based on these, one can proceed with polynomials of different order as well
as vary the number of the input variables associated with the individual pro-
cessing units.

• The depth of the PNN can be selected as a result of a tradeoff between ac-
curacy and complexity of the overall model.

Table 5

Comparison of identification errors with previous modeling methods

Model Performance index

Nie’s model [20] USOCPN 0.230

SSOCPN 0.012

Our model Basic PNN Case 1 0.0015

Case 2 0.0052

Modified PNN Case 1 0.0039

Case 2 0.0124
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• The structure of the network is not predetermined (as in most of the existing
neural networks) but becomes dynamically adjusted during the development
process.
The comprehensive experimental studies involving well-known data sets

show a superb performance of the network in comparison to the existing fuzzy
models.
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