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Polynomial Theory of Complex Systems
A. G. IVAKHNENKO

PAPER EDITOR'S PREFACE
The work of Academician A. G. Ivakhnenko, which appears

regularly in Avlomatika (translated as Soviet Automatic Control},
represents the approach of what might be called the "Kiev school"
to the problems of modeling cybernetic systems. My colleague,
R. L. Barren, first met Acad. Ivakhnenko in the Soviet Union in 1968
while attending technical conferences in that country and, at that time,
invited him to submit a paper for this TRANSACTIONS to acquaint U.S.
readers with his work. It is an impressive accomplishment that Acad.
Ivakhnenko was able to write such a highly technical paper in a language
that is not his native tongue. Parenthetical remarks have been inserted
wherever the meaning might be unclear. These remarks are identified
by the suffix "Ed." However, a diligent attempt was made to maintain
the essence of Acad. Ivakhnenko's writing. The following comments
are intended as an introduction to the paper.

Acad. Ivakhnenko models the input-output relationship of a complex
system using a multilayered perceptron-type network structure.
Each element in the network implements a nonlinear function of its
inputs. The function implemented, termed an "algorithm" by him,
is usually a second-order polynomial of the inputs. Since each element
generally accepts two inputs, the function (algorithm) implemented by
an element in one of the layers is

where the subscript in A2 denotes a second-order transformation of
the inputs. The following figure illustrates the structure of the overall
input-output transformation.

It can be seen that a number of "self-selection thresholds" are used.
Their purpose is to filter out, at each layer, those elements which are
least useful, "harmful" in Ivakhnenko's words, for predicting the

correct output <j>. Only those elements whose performance indices
exceed the threshold at that layer are allowed to pass to the next layer.
Therefore, the network representation is a feed-forward transformation,
whereby each succeeding layer in the network increases by two the
degree of the multinomial fit to the input properties xt. Ivakhnenko
has described the "selection hypothesis" used to select elements to be
used in succeeding layers as the following.*

. . . Our first conclusion is that composite control systems must
be based on the use of signals which control the totality of elements
of the system.

The second conclusion . . . involves the extension to cybernetics
of the principle of selection of plants and animals. The long history
of the art of selection must be carefully studied by cyberneticists.

. . . Let us examine the principle selection scheme. To obtain, say,
plants (in the agricultural sense—Ed.) with certain properties, a
large number of plants are sown which may have this property
(the first heuristic being the selection of "elementary algorithms");
then the first crossing occurs (a generation of combinations of first
complexity), and then the first harvest.

From the harvest of the first generation (the first threshold self-
selection), plants are chosen which better our requirements as com-
pared to others; the seeds of these plants are again sown, and the
plants are crossed (a generation of combinations of second com-
plexity). From the second harvest one again selects certain seeds
(the second threshold self-selection) which are sown, etc.

The rules of the mass selection process are as follows.
1) For each generation there exists a certain optimal number of

seeds being sown. Any change from this amount leads to slowing
down and deterioration of selection.

2) The selection process cannot be completed in a single genera-
tion; several generations (at least three or four) are needed.

If the selection process is too long (too many generations), the
plants degenerate. The more complicated the selection problem, the
more generations are needed.

Now let us examine the perceptron algorithm. It fully duplicates
all the main principles of selection. For example, a perceptron can be
used for identification of extremal plants (in the control theory
sense—Ed.). The complex surface of the extremal hump is approx-
imated by polynomials. The signals applied to the perceptron input
contain information about the surface of interest to us. The surface
is usually described by a number of experimental points and simple
functions of their coordinates ("elementary algorithms"). In
accordance with the selection hypothesis, we first take simple
polynomials of second degree that are easiest to inscribe in this
surface. These simple combinations of data are subjected to the first
threshold selection, and only some of the polynomials (namely, those
which fit best into the sought surface) pass into the second layer,
where they form more complex combinations (polynomials of
fourth degree).

From the second "generation," one again is singled out (by thres-
hold selection) the most suitable, which can best be fitted into the
sought surface. Here there is again an optimum number of com-
binations selected. Only these combinations pass into the third layer,
where even more complex third "generation" combinations are
formed (polynomials of sixth degree), etc. This constitutes the
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group method of data handling (GMDH—Ed.) for the problem
under consideration.

In deterministic problems with "smooth" solution functions and a
small number of measurements, the best solution is obtained at once
after the first selection, in the first "generation" of combinations.
The greater the data spread and the more complex and higher
dimensional the functions, the more "generations" are needed for
obtaining optimum results.

In complex problems, just as in selection of plants, at least three
or four "generations" are needed for obtaining satisfactory results
("the perceptron must have at least four layers"). If the perceptron
has too many layers, the combinations degenerate. This is indicated
by an accuracy check (a correlation criterion or mean-square-error
criterion) (on the independent testing data set—Ed.). To preclude
degeneration, the best solution must be chosen based not on the
results of the last layer, but on data from all layers of the perceptron.
Hence all aspects of the selection process mentioned above occur in
the perceptron.

The six coefficients of each element in the network are determined
in the following way. Consider one element in the first layer. It imple-
ments the function A2(X) shown in the preceding. Assume that there
are TV input vectors in the training set, each composed of p property

values, , n — 1, • • • ,N. Denote the nth desired
output as (t>n. A set of six coefficients for this element (which has
inputs xni and xnj) must be found such that the mean-square error
between the outputs of this element yn, and the true outputs <!>„ is
minimized.

The coefficients are obtained from the "Gauss normal equations" as
follows. First write the system of equations

in matrix form

<D = XA

where matrices O, X, and A are of order N x 1, TV x 6, and 6 x 1 ,
respectively. (The first element in each row of the X matrix is unity.)
The normal equations are formed by premultiplying both sides by the
transpose of X:

Matrix is a 6 x 6 matrix, and the solution is found by inverting
this matrix:

Matrix A contains the set of six coefficients which enables this element
to approximate the true outputs with minimum mean-square error.
This procedure is repeated for each element in the first layer, with the
components in matrix ^changing each time depending on the identity
of the two inputs to the particular element. The same technique is
used to find the six coefficients of each element in succeeding layers.
After the coefficient values are computed based on the training data,
the performance index of a given element (and, hence, of its two input
properties) is determined by either correlating or computing the
mean-square error between the output of the element and the true
output for each vector in the independent testing set. Only those
elements whose performance index exceeds the "self-selection threshold"
for that layer are allowed to be used in the next layer. This use of the
independent testing set to filter out poor properties is what Ivakhnenko
calls "decision regularization."

The editor of this paper is joined by Mr. Barren and J. N. Warfield,
Co-Editor of this TRANSACTIONS, in expressing gratitude to Acad.
Ivakhnenko for the enjoyable correspondence which has taken place
throughout the revision procedure.

ANTHONY N. MUCCIARDI
Adaptronics, Inc.

McLean, Va. 22101

Abstract (written by paper editor)—A complex multidimensional deci-
sion hypersurface can be approximated by a set of polynomials in the input
signals (properties) which contain information about the hypersurface
of interest. The hypersurface is usually described by a number of ex-
perimental (vector) points and simple functions of their coordinates. The
approach taken in this paper to approximating the decision hypersurface,
and hence the input-output relationship of a complex system, is to fit a
high-degree multinomial to the input properties using a multilayered
perceptronlike network structure. Thresholds are employed at each layer
in the network to identify those polynomials which best fit into the
desired hypersurface. Only the best combinations of the input properties
are allowed to pass to succeeding layers, where more complex combina-
tions are formed.

Each element in each layer in the network implements a nonlinear
function of two inputs. The coefficients of each element are determined
by a regression technique which enables each element to approximate the
true outputs with minimum mean-square error. The experimental data
base is divided into a training and testing set. The training set is used to
obtain the element coefficients, and the testing set is used to determine
the utility of a given element in the network and to control overfitting
of the experimental data. This latter feature is termed "decision
regularization."

In contrast to the statistical decision theoretic approach which is
"single layered," it is argued that the type of multilayered structure
presented should be used to solve complex problems for four primary
reasons: 1) a smaller training set of data is required; 2) the computational
burden is reduced; 3) the procedure automatically filters out input proper-
ties which provide little information about the location and shape of the
decision hypersurface; and 4) a multilayered structure is a computa-
tionally feasible way to implement multinomials of very high degree.

A network-implemented model of the British economy and results
forecasted by the model are presented to demonstrate the utility of the
polynomial theory.

I. INTRODUCTION

MODERN control theory, based on differential equa-
tions, is not an adequate tool for solving the problems

of complex control systems. It is necessary to construct
differential equations to trace the input-output paths, that
is, to apply a deductive deterministic approach. But it is
impossible to use this approach for complex systems because
of the difficulty in finding these paths. The method of
heuristic self-organization [1], [2] is more appropriate for
the problem.

The starting point of the heuristic self-organization
approach can be formulated in the following way. I know
that I know nothing; let us generate and compare all pos-
sible input-output combinations. Self-organization uses
mathematical combinatorial methods and a series of "thresh-
old self-selections" on the different heuristic criteria [2].

"Examinations" of the threshold type are widely used in
the selection of botanical plants. To obtain plants with
certain desired characteristics, a number of generations
("seeds") of those plants are selected in which the properties
(of interest—Ed.) are more pronounced. Our hypothesis of
selection states that algorithms of selection are optimal for
solving the interpolation problems of prediction, pattern
recognition, identification, or optimal control of complex
physical plants by any form of (commonly—Ed.) used basic
functions. The only demand is as follows: the complexity
of mathematical description relative to the inputs must
increase with every new "generation" of formulas.
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Using polynomials as the basic (plant describing—Ed.)
functions, we obtain the polynomial theory; using Bayes'
formulas, we obtain the probabilistic theory, etc. Each type
of basic function gives us a different theory of complex
systems.

II. POLYNOMIAL DESCRIPTIONS: THE BASIC MEANS
OF THE NEW THEORY

The formulas of a predictive model have been previously
used only for calculating the future values of the predicted
variables. The polynomial theory proposes to use predictive
polynomials as the basic means for the general investigation
of complex dynamic systems [1].

The predictive polynomial is a regression equation which
connects a future value of the output variable with past or
running (current—Ed.) values of all input and output
variables. Regression analysis allows us to evaluate the
coefficients of the polynomial by the criterion of minimum
mean-square error.

A more general mathematical theory to synthesize an
optimizing decision algorithm using the information given
in a few points of interpolation is not yet available [3]. So,
the polynomial theory realizes the "hypothesis of selection":
the polynomials are treated in the same manner as are seeds
in agricultural selection. This enables us to obtain the
polynomial description of a component or of the whole
complex plant by observing their inputs and outputs during
a comparatively short time.

The main problem solved by the polynomial theory is to
find the polynomial description of optimum complexity,
i.e., that which is adequate to describe the complexity of
the plant. Only such descriptions can give high prediction
accuracies.

There is an analogy between the polynomial description
in the new theory and the operator transfer function in
control theory; neither conception requires information
about initial conditions. (Although information about the
initial conditions is required to obtain a series solution to a
finite difference or differential equation, it is possible to
construct a polynomial description from a data base of
input and output values without explicit initial condi-
tions—Ed.)

The polynomial descriptions have some advantages for
engineers. For example, there is no need to find solutions
for the equations in finite difference form because the
answers to all the interesting questions can be found from
the polynomial description itself. So, the information about
initial conditions and the solution of the equations are
often not necessary.

No distinction is made between the statics and the
dynamics of the plant in the polynomial theory. This
division of the plant regimes is connected with the appli-
cation of differential equations, and consequently, it is quite
artificial.

There are at least three methods by which we can obtain
the polynomial description of a component or of the whole

control system:

1) by replacing the derivatives in the differential equations
by finite differences;

2) by methods of indirect measurement of the distur-
bances by the so-called "differential fork;" these
methods were taken from theory of invariance [5];1

3) by methods of active or passive experimentation.

The aforementioned regression analysis is a typical example
of such methods. But many other methods of identification
are known.

There is no reason to use identification methods for
estimating the coefficients of the differential equations. It is
much simpler to use them directly for the synthesis of
polynomial descriptions. Less information is necessary for
this operation. In particular, there is no need to know the
type of differential equations.

The first two methods are used for deterministic prob-
lems. The experimental method is used also for stochastic
problems where the differential equations are not known
absolutely or are not applicable. Here, the polynomial
theory has no rivals because only this theory allows us to
obtain the optimum complexity mathematical model of the
plant. Examples show that the most accurate description of
extremely complex plants corresponds to polynomial de-
scriptions of a rather high degree (e.g., to polynomials of
up to the sixty-fourth degree). It is impossible to find
nonlinear differential equations corresponding to such
complex polynomials.

III. APPLICATION OF THE POLYNOMIAL THEORY
TO DETERMINISTIC SYSTEMS

The advantages of the polynomial theory for deter-
ministic systems are not obvious but nevertheless are essen-
tial. The theory enables us to find the optimization equation,
thereby making structure transformations for nonlinear
systems much simpler.

It is easy to deduce the polynomial descriptions for any
differential equation by replacing the derivatives with finite
differences. Using "lag differences" we obtain the predicting
equation, and using "lead differences" we obtain the control
equation. The control equation includes future values of the
input variable among its arguments, but the predicting
equation does not. The predicting equation is used to
predict future values of the output variable for the condi-
tions when the future values of any input are not known.
The control equation can include these values because we
consider them the manipulated variables used to control
the plant.

The predicting equation for input x and output y is

1 The theory of invariance is a part of general control theory,
considering conditions of complete compensation of disturbances by
proper change of manipulated variables. An indirect measurement of
variables by the "differential fork" is often used in this theory.



IVAKHNENKOI POLYNOMIAL THEORY OF COMPLEX SYSTEMS 367

The control equation is

The time instances are denoted as

F future moment of time
F — 1 instant moment
F — 2 moment one step before
F — 3 moment two steps before

and so on.
The optimization equation in its simplest form is

(3)

where the yF are the future values of the index of extremum
(or performance index), and XF is the future value of the
manipulated variable. In this case the control equation is
the equation of the complete extremum system.

In complex systems the variable yF is connected with the
variable XF by nonlinear polynomials which enable us to
apply the technique of mathematical programming and
gradient methods to solve the problem of optimal control.
When the regression analysis or group method of data
handling (GMDH) is used to obtain the equations, we
have the "algorithm of optimal control with storage of
information."

IV. RULES OF STRUCTURE TRANSFORMATION

The system control equation can be obtained from its
component equations using the following rules [1].

1) Synthesize the polynomial description for the serial
coupling of the components by the joint solution of the
polynomial descriptions of all given components excluding
the intermediate variables.

2) Synthesize the polynomial description for the parallel
coupling of the components by the summation of the co-
efficients of the polynomial description members of each
component having the same indices of time.

3) Synthesize the polynomial description for the com-
ponent with feedback by subtracting the coefficients of the
xF-j members from the coefficients of the yF-j members
having the same indices of time.

Therefore, the structure transformation can be made as
simple in the polynomial theory as in the common control
theory.

Example

Suppose there are two components of first order:

The polynomial descriptions (for six instants of time) are

V. THE STABILITY CRITERION

For the analysis of stability the polynomial description
of the system has to be transformed (by the so-called
equivalent transformations [1]) to the form containing no
intermediate variables. The left-hand side of this type of
polynomial equation after linearization and substitution

(4)

gives us the characteristic equation

(5)

For stability the roots of this equation have to lie in a circle
of unit radius.

So, the well-known criteria for impulse systems stability
is valid in the polynomial theory also. This is quite under-
standable because the analysis of stability, as stated by
Lyapunov, applies to the level of linear equations where
the polynomial theory seems to have no considerable ad-
vantages. Its advantages are connected with complex
optimal nonlinear descriptions.

VI. THE CONDITIONS OF INVARIANCE

To obtain compensation in the polynomial description
of the stabilization system, all the coefficients must be equal
to zero. We can satisfy this condition only in the case where
all the coefficients are the differences of two values, com-
pensating one another. This case occurs in systems with
feedforward links and in multifeedback systems with the
"differential forks" [5] for intermediate measurement of
the disturbances.
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Example

The polynomial descriptions are obtained from the given
differential equations and their transformations. The given
differential equation is

(6)

Obtain the predicting equation using the lag finite difference:

(7)

Obtain the control equation using the lead finite difference:

(8)

The recurrent transform leads to increasing the interval
of time taken into account: T = Nh, where TV is the number
of prehistory steps.

For the predicting equation we obtain, when a = 1 — b,

etc.
The equivalent transform is the transformation of the

argument set without any change in the time interval of the
prehistory T, by the following formulas:

(11)

and so forth.

VII. APPLICATION OF THE POLYNOMIAL THEORY
TO STOCHASTIC SYSTEMS

The interval of prehistory T — Nh, which we are to take
into account, can be estimated from the correlation func-
tions. In a deterministic system this interval is no shorter
than the continuation of the dynamic transient processes
in the given system. In a stochastic system the interval T
is to be no shorter than the displacement time by which the
correlation function is essentially different from zero (Fig. 1).

The error associated with the limited number of steps A
used is exactly equal to the error associated with the in-
determination of the termination of the transient process.
Therefore, the accuracy of the polynomial theory is no less
than the accuracy obtained based on the solution of the
differential equations.

Example
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and so on. The general formula

makes it possible to calculate the discrete correlation
function for any shift = 1,2,3, • • • , « .

The GMDH is the best method for obtaining the poly-
nomial description of a stochastic system from a small
amount of experimental data. This algorithm follows.

VIII. THE MAIN RULE FOR CONSTRUCTING THE
GMDH ALGORITHMS

The "complete" description of the plant

(12)

is to be constructed of several layers of "partial" descrip-
tions :

(13)

and so forth, where cn
2 and cm

2 are the number of pairwise
combinations of n and m for the first and second layers,
respectively.

The function /A is usually the same in all the equations.
Eliminating the intermediate variables, we obtain the
"analog" of the complete description. Comparing the
analog and the actual complete description in its general
form, we find the equations for the construction of the
coefficients of the complete description.

In the polynomial theory the functions fl are the
Kolmogorov-Gabor polynomials:

IX. RULES FOR VARIABLE SELECTION

All experimental data are divided approximately in half
into training and checking (testing—Ed.) sets. Coefficients
of the first layer of partial descriptions are calculated by
solving small systems of Gaussian normal simultaneous
equations according to the minimum mean-square-error
criterion. The left-hand sides of the equations are set equal
to values of the output function at every point. After finding
the values of the coefficients, we calculate the values of the
intermediate variables. Then, using the data of the checking
set, the mean-square error is determined for each variable.
Only the most accurate variables, i.e., those giving the least
error, are selected for subsequent use. These variables are
retained in the training and checking sets, and the other
variables are discarded. In the second layer of selection

coefficients of partial descriptions of the layer are calculated,
and the accuracy is checked again to select the most accurate
intermediate variables of the layer: etc.

The GMDH algorithm has a perceptron-like multilayer
structure. Only the variables whose prediction accuracies in
a given layer are larger than certain thresholds are opti-
mized with respect to the next layer. The threshold values
are optimized with respect to the criterion of minimum
square output error also, which represents the third appli-
cation of this criterion.

The accuracy of the GMDH is often extremely good due
to the following considerations. The ordinary regression
method of minimum mean-square error yields the optimum
value only in the small domain where the number of the
regression polynomial members is less than the number of
points of interpolation. Optimization by the GMDH in-
cludes not only this domain but all other relationships
between these two sets of numbers. It is possible to obtain
the optimal complete descriptions of any complexity with
respect to the mean-square error based on decisions on the
separate testing data set. This much broader domain of
optimization ensures us much higher accuracy.

X. THE RULE FOR ACCURACY CONTROL

Every intermediate variable is examined for its effect on
the prediction accuracy. The main rule is to use the separate
testing set for accuracy control. If the training data (which
were used to estimate the coefficients) are used, incorrect
solutions are obtained, since small changes in the training
data will lead to large changes in the coefficient values (e.g.,
overfitting—Ed.). This is the reason for dividing the data
into separate training (learning) and testing (checking) sets.
The training set is used to calculate the coefficients of the
partial descriptions, but the testing set is used to evaluate
the quality of the partial descriptions. This is the basic
method used for the so-called regularization of the decisions.

XL THREE BASIC ADVANTAGES OF THE GMDH

The basic advantages of the GMDH are as follows.
1) There are insufficient data to estimate the coefficients

of the Gaussian normal equations (by the method of least
squares—Ed.) if the complete polynomial is used directly
without the partial polynomials.

2) The matrices of the complete polynomial equations are
always ill conditioned. But we can always select well-con-
ditioned matrices among the diversity of the small partial
equation matrices.

3) When the training set is small some arguments and
intermediate variables are "harmful." That is, the accuracy
will increase if we eliminate them. This important task is
fulfilled by the thresholds on the prediction accuracy test
after every layer of selection.

XII. EXAMPLE OF GMDH ALGORITHMS
(DECISION RULES)

The GMDH can be realized by many algorithms which
differ with respect to the basic functions /\ used for the
construction of the partial and complete descriptions. About
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20 algorithms have been proposed up to the present. Some
of them (the algorithm using probabilistic graphs, the
algorithm using Bayes' formulas, and algorithms using
second-order polynomials) are considered in [6].

Consider, as an example, a very simple algorithm of the
GMDH for the case of four arguments. The four arguments
are binary taking on the values — 1 and + 1. The complete
polynomial has 24 = 16 terms and is

(14)

The partial polynomials for the pairwise combination of
Xi,x2 and x2,x4 are

(15)

The coefficients of the partial polynomials may be found by
solving the Gaussian normal equations. Let us recall the
basic rules of the minimum mean-square-error method. We
obtain the system of conditional Gauss equations by writing
every partial description a number of times equal to the
number of points in the training set. For five points we
shall obtain the system containing five equations. To obtain
the A'th normal equation, every conditional equation is
multiplied by the coefficient of bk, and all the equations are
added. This results in a system containing four normal
equations, each with four unknown variables bk, where
k = 0,1,2,3.

When calculating the coefficients we assume y{ = y2 = z
and then determine the variables _y t and y2 for every inter-
polation point, which are then used in the third polynomial.
The other combinations are xT,x4 and x2,x3 or x1,x3 and
x2,x4. We can choose any combination which gives the best
accuracy.

The prediction accuracy is to be checked on the separate
testing set of data. The most accurate two variables from
y1(xl,x2), y2(x3,x4), y3(Xi,X4), y4(x2,x4\ y5(xltx2), and
y(>(x2,x4) are to be used as the arguments for z.

Using the first two combination of equations shown in
(15), the coefficients of the complete polynomial can ob-
viously be constructed by the following formulas:

(16)

It is easy to find similar formulas from the other two
combinations of arguments if they prove to be more
accurate than those shown in the preceding. Note that
every term of the complete polynomial appears in (16).
However, this does not mean that there are no additional
limitations on the choice of coefficients. Using the complete
polynomial does give more degrees of freedom when we
attempt to minimize the mean-square error, but this is only
one of several optimizations. Another algorithm of the
GMDH (with second-order polynomials) follows.

XIII. THE POLYNOMIAL DESCRIPTION OF THE BRITISH
ECONOMY

Let us obtain a polynomial description of the British
economy. The set of characteristic variables (e.g., features,
properties—Ed.) (or the characteristic vector) is to be
established by experts.2 They often can construct the credit
and debit balances of energy, matter, or money for the
given time unit. These balances are a great aid in selecting
the characteristic vector. The polynomial descriptions con-
structed in this manner are called "after-balance models."
This principle of model construction unites the deterministic
balance with the self-organization approach. Let us con-
sider an example of such an after-balance model.

The British scientists Parks and Pyatt [4] have established
the characteristic vector for the British economy. There are
21 variables in this economic system from which 16 are
interconnected by differential or algebraic equations. So,
we can choose any 5 variables to be manipulated. We have
chosen the following manipulated variables [1]:

As the performance indices, we choose the two following
variables:

2 The second way to find the characteristic vector is via a random
search on the criterion of accuracy.
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Fig. 2. Input data: variables and their trends.

where w is the income from employment, II is the gross
trading surplus, and (for example, =0.71),
and

where IFg is the net investment abroad from government
and IFc is the net investment abroad from companies (e.g.,

= —265). The economic situation is good if
-» 1 and -*• 0, and it is bad if 0 and

The input data are shown in Fig. 2 and Table I. Here we
can see how all seven variables changed for the last 15 years
(1954-1968). The problem is to find the polynomial descrip-
tion of the British economy for the future year 1969 and,
therefore, to find the optimal values of the manipulated
variables for this year. For every year thereafter the
description changes according to the new data.

Solution of the Problem

1) Calculation of the Nonlinear Trends: The trends are
calculated by ordinary regression analysis as third-degree
polynomials. The results are shown in Fig. 2 by dotted lines.
Instead of absolute value, we use the normalized deviations
of all variables measured from their trends:

We shall consider these deviations as mutual dependent
stationary processes of time.

Example: We have 15 points shown in Fig. 2 and Table
I. Choose the cubic polynomial

Writing it 15 times and inserting the data from Fig. 2 we
obtain the system of conditional equations. Using the
averaging rule we obtain the system of four normal Gaussian
equations with four unknown variables:



TABLE I
INPUT DATA FOR 15 YEARS



TABLE I continued
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TABLE II
TRANSFORMATION OF INPUT DATA (Fie. 1) TO OBTAIN THE SET OF INTERPOLATION POINTS

16
(1969)
15

(1968)
14

(1967)
13

(1966)
12

(1965)
11

(1964)
10

(1963)
9

(1962)
8

(1961)
7

(1960)
6

(1959)
5

(1958)
4

(1957)
3

(1956)

12.100

15.080

396.288

1.220

17.456

0.108

2.826

0.548

0.535

7.0381

2.786

0.013

0.016

0.0052

-0.0118

-0.0149

0.0093

0.0153

-0.0072

-0.0088

0.0153

0.0235

0.0192

-0.0416

-0.0064

0.0088

x, = VIF

-0.0039

-0.0062

0.0212

0.0280

-0.0406

-0.0463

0.0308

0.0353

0.0006

-0.0306

0.0012

0.0203

-0.0022

X2 = VZF

0.0062

0.1139

-0.1281

-0.1503

-0.0607

0.1246

0.2422

-0.0212

-0.1851

0.0488

-0.0524

-0.0086

-0.0857

*3 = V3p

0.0164

0.0170

-0.1503

-0.0311

-0.0310

0.0961

-0.0135

-0.0222

0.0527

0.1007

-0.0440

-0.059

-0.0812

X4 = K4f

-0.0065

-0.0052

0.0184

0.0104

-0.0030

-0.0039

-0.0049

-0.0115

-0.0179

-0.0030

0.0186

0.0144

0.0089

X5 = V5F

-0.0080

0.0157

0.0009

-0.0025

-0.0167

-0.0040

0.0143

0.0112

-0.0036

-0.0054

-0.0161

0.0118

0.0161

X6 = Vl(F-i-)

-0.0039

-0.0062

0.0212

0.0280

-0.0406

-0.0463

0.0308

0.0353

0.0006

-0.0306

0.0012

0.0203

-0.0022

-0.0170

TABLE II continued

16
(1969)
15

(1968)
14

(1967)
13

(1966)
12

(1965)
11

(1964)
10

(1963)
9

(1962)
8

(1961)
7

(1960)
6

(1959)
5

(1958)
4

(1957)
3

(1956)

0.0164

0.0170

-0.0557

-0.0311

-0.0310

0.0961

-0.0135

-0.0222

0.0527

0.1007

-0.0440

-0.059

-0.0812

-0.0216

-0.0118

-0.0149

0.0093

0.0153

-0.0072

-0.0088

0.0153

0.0235

0.0192

-0.0416

-0.0064

0.0088

0.0158

0.0048

0.1139

-0.1281

-0.1503

-0.0607

0.1246

0.2422

-0,0212

-0.1851

0.0488

0.2524

-0.0086

-0.0857

0.0290

-0.0224

-0.0052

0.0184

0.0104

-0.0030

-0.0039

-0.0049

-0.0115

-0.179

-0.0030

0.0186

0.0144

0.0089

-0.0044

-0.010

0.0212

0.0280

-0.0406

-0.0463

0.0308

0.0353

0.0006

-0.0306

0.0012

0.0203

-0.0022

-0.0107

0.0029

-0.6112

3.4752

-3.8759

19.9048

-1.0845

-4.1646

0.2760

1.6507

0.7343

0.6876

-2.6491

1.6634

-0.1503

-0.0607

0.1246

0.2422

-0.0212

-0.1851

0.0488

0.0524

-0.0086

-0.0857

0.0290

0.0224

-0.0026

-0.0167

-0.0040

0.0143

0.0112

-0.0036

-0.0054

-0.0161

0.0118

0.0161

-0.0176

0.0042
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TABLE III
THE TRAINING SET

N

$2

<t>i
Xi

X2

*3
X4.

X5

X6

X7

xs
X9

X I Q
Xn

Xl2
Xl3

Xl4-

y23

Z62

f45

3

396.288
-0.0145

0.0212
-0.1281
-0.056

0.0184
0.0009
0.0280

-0.0311
0.0153

-0.0607
-0.0030
-0.0463
19,9048
0.2422
0.0143

-0.0143
-0.0152
-0.0184

5

17.456
0.0153

-0.0406
-0.0607
-0.0310
-0.0030
-0.0167
-0.0465

0.0461
-0.0088

0.2422
-0.0049

0.0353
-4.1646
-0.1851
-0.0036

0.0078
0.0116
0.0114

2

15.080
-0.0118
-0.0062

0.1139
0.0170

-0.0052
0.0157
0.0212

-0.0557
0.0093

-0.1503
0.0104

-0.0406
-3.876

0.1246
-0.0010
-0.0156
-0.0253
-0.0118

1

12.100
0.0052

-0.0039
0.0062
0.0164

-0.0065
-0.008
-0.0062

0.0170
-0.0147
-0.1281

0.0184
0.0280
3.4752

-0.0607
-0.0167
-0.0091

0.0063
0.0062

10

7.0381
-0.0192
-0.0306

0.0488
0.1007

-0.0030
-0.0051

0.0012
-0.0440
-0.0064
-0.0086

0.0144
-0.0022
-2.6497

0.0240
-0.0176
-0.0098
-0.0126
-0.0145

7

2.826
-0.008

0.0308
0.2422

-0.0135
-0.0049

0.0143
0.0353

-0.0222
0.0235

-0.1851
-0.0179
-0.0306

1.6507
0.0524

-0.0161
-0.0127
-0.0161
-0.0107

11

2.786
-0.0416

0.0012
0.0524

-0.0140
0.0186

-0.0161
0.0203

-0.059
0.0088

-0.0857
0.0089

-0.0167
1.6634
0.0224
0.0042

-0.0116
-0.0173
-0.0413

4

1.220
0.0093
0.0280

-0.7503
-0.0311
-0.0104
-0.0025
-0.0406
-0.0310
-0.0072

0.1246
-0.0039

0.0308
-1.0845
-0.0212

0.0112
0.0195
0.0149
0.0133

8

0.548
0.0153
0.0353

-0.0212
-0.0222
-0.0115

0.0112
0.0006
0.0527

-0.0192
0.0488

-0.0030
0.0012
0.7343

-0.0086
0.0118

-0.0045
0.0017
0.0148

9

0.535
0.0235
0.0006

-0.1851
0.0527

-0.0179
-0.0036
-0.0306

0.1007
-0.0416

0.0524
0.0186
0.0203
0.6876

-0.0857
0.0161
0.0225
0.0242
0.0232

TABLE IV
THE TESTING SET

TV

S>2

fa
Xi

X2
X3
X4

X5
Xf,
X7
X8
X9
XIQ

Xn

Xl2

Xl3

Xl4

y23
?62

V4.S

6

0.108
-0.0072
-0.0463
0.1246
0.0961

-0.0039
-0.0040
0.0308

-0.0135
0.0153

-0.0212
-0.0115
0.0006
0.2760
0.0488

-0.0054
-0.0152
-0.0092
-0.0076

13

0.016
0.0088

-0.0022
-0.0857
-0.0812
0.0089
0.0161

-0.0107
-0.0216
0.0048
0.0224

-0.0108
—

——
—
0.0054
0.01
0.0104

12

0.013
-0.0064
0.0203

-0.0086
-0.0590
0.0144
0.0118

-0.0022
-0.0812
0.0158
0.0290

-0.0044
0.0029
—
—
—

-0.0053
-0.002
-0.005

x 104

0.77016
0.248 09
0.046 05

The solution is

a0 = 0.6873, al = -0.0033

a2 = 0.0018, «3 = -0.0001.

The trend of the process is

The function for the trend is to be properly chosen. For
example, it is clear from Fig. 2 that a polynomial trend is
good for variable , but a better trend for predicting
variable would be a harmonic function.

2) Choice of the Length of the Prehistory Interval
Let us show (for the sake of brevity only) how the control
equation for the variable (the index of industry occupa-
tion) was deduced. The reader can find the other equations
(two for predicting and and two for controlling
and ) in [1]. For the first attempt we choose the interval
of prehistory equal to (the first self-sampling

threshold). The control equation for has the following
form:

3) Sampling of the More Useful Arguments: To shorten
the calculations let us choose only those 14 arguments
which have the strongest correlations with the output
variable (the second self-selection threshold on correla-
tion criterion q(92} = 14). Denote the selected variables by

In these denotations according to [1] we shall have the
control equation of the form

4) Construction of the Training and the Testing Sets:
Having input data for only 15 yr (Fig. 2) and choosing the
time interval of prehistory equal to 4 yr, we can construct
only 13 points of interpolation. Ten of them, with the larger
variation , we use for the training data set and three
points (having less variation ) for the testing set (Tables
II-IV).
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TABLE V
CHANGE OF MEAN-SQUARE ERROR BETWEEN LAYERS

TABLE VI
CONTROL EQUATION FOR OUTPUT VARIABLE ^,

5) First Layer of Selection via the Mean-Square-Error
Criterion: There are 91 ways to order the 14 arguments,
2 at a time. For every combination we can write the partial
regression equation of second order

where a = 1,2,- • -,91 and b and c are indices for all 91
combinations. So we obtain 91 systems of conditional
equations and therefore 91 systems of the normal Gaussian
equations with matrices of the order 6 x 6 . We find the
values of the coefficients by the solution of the normal
equation systems constructed from the training set data.
Then we calculate the accuracy of every variable ya using
the testing set data only. From all the variables we choose
the 14 most accurate (the third self-selection threshold

= 14).
6) Remaining Layers of Selection via the Mean-Square-

Error Criterion: Fourteen intermediate variables chosen
from the first layer give us the 91 combinations of 2, again
in the next (the third) layer

where a — 1,2,• • -,91 and b and c are indices for all 91
combinations. We repeat the calculation of the coefficients
and the estimation of accuracy for variables Then we
choose the 14 variables for the next (the fourth) layer
where

where a = 1,2,- • -,91 and b and c are indices of the 91
combinations. So we proceed from one layer to the next
layer, controlling the mean-square error on the testing set.

We denote the variables of the different layers by the
letters:
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The change in the prediction accuracy of the variables is
shown in Tables IV and V. The first minimum of error is
reached in the q layer (the sixth layer).

7) Results of the Calculations: The control equation for
the output variable can be represented by the poly-
nomials shown in Table VI. The accuracy can be evaluated
by the figures

= 2.71 percent.

Taking into account that this error is calculated for the
separate testing set, it is already extremely low.

Weakness of Control Theory: Tracing the change in
the error rate for each layer of the selection procedure, we
can explain why the theory based on differential equations
is not adequate for solving complex problems. What can
control theory propose for the description of the dynamics
of the British economy? It can yield linear differential
equations of first or fifth order [4]. Such descriptions are
equivalent to the linear polynomial descriptions, which are
less accurate than the first layer of the quadratic selection.
They provide very low correlation to experimental data (the
error is more than = 100 percent). In the sixth layer of
the selection process, where the degree of the complete
polynomial is equal to 26 = 64, we obtain the error =
2.71 percent. Control theory cannot yield such an accurate
description of the dynamics of the British economy.

We can insert in the control equation, valid for the year
1969, the following figures from Table I :

So, we obtain the control equation of the form

where a is a digital parameter.
The optimization equations (for 1969) shall be

These equations enable us to find the optimal values of the
manipulated variables which maximize the index

8) Optimization of the Thresholds: We have chosen the
following values of the thresholds:

properties, and = 14 variables. We have divided the
set of the interpolation points in the training and the testing
sets in the proportion 10:3. Then we find the trends of all
variables as curves of third degree only (m = 3). All these
figures can be optimized by the calculation and comparison
of several variants to increase the accuracy (if it is necessary).
The other indexes of the economic situation can be predicted
and controlled very accurately in the manner shown in the
preceding.

9) Prediction for 1969: The values of the 1969 manip-
ulated variables are known: x^ = 0.011 96539, x2 =
-0.1243898, *3 - -0.04597296, x4 = -0.04441776,
x5 = — 0.040 879 0. We can insert these figures into the
control equation and calculate3

- 0.0177.

The value of the trend is = 0.6857. So we predict
- 0.6857(1 + 0.0177) = 0.6978. The

true value for 1969 is = 0.691.

XIV. THE CONSTRUCTION OF VERY ACCURATE TRENDS
BY THE ALGORITHM OF GMDH WITH LINEAR

POLYNOMIALS

Let us approximate the mean line of a given random
process (f)(t) by the curve

where m is rather high (for example, m = 128). The best
value of m is to be found by optimization using the mean-
square-error criterion on the testing set. Denoting ,
we have

This is the complete description. The partial descriptions
of the first layer are

The partial descriptions of the second layer are

and so on. The minimum number of interpolation points in
the training set is equal to the number of unknown co-
efficients of one partial polynomial plus one, whereas it is
sufficient to know at least five points of interpolation (four
in the training set and one in the testing set) to evaluate all
the coefficients in the partial and, therefore, in the complete
polynomial. The more points that are used, the more
confident we can be in the results.

3 This figure can be obtained only when the coefficients are calculated
with at least an accuracy of 15 digits after the decimal point. The
coefficients in the equations given in the preceding have 6 digits after
the decimal point only for brevity in this paper.



378 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, OCTOBER 1971

XV. LONG-TERM PREDICTIONS AND STABILITY OF CONTROL

The best way to predict the future values of the variable
for two or three years ahead is to repeat the prediction year
after year, two or three times. For a more long-term predic-
tion the best way is to use the last two or three real points
of interpolation and one, two, or three predicted points4

to construct very accurate trends with high degree m. This
very accurate trend can be used for long-term prediction
and therefore for the stability investigation of the control
processes in the system.

XVI. CONCLUDING REMARKS

The GMDH can be considered as the combination of
regression analysis and the methods of decision regulariza-
tion. Let us denote the number of interpolation points by
N. Regression analysis gives us the possibility of finding the
unique polynomial which has any number of terms from
n = 1 to n = N — \ according to the criterion of minimum
mean-square error. When the number of terms is n — N,
we obtain the unique polynomial, with zero error, which
fits all the points of interpolation exactly. When the number
of terms is more than n = N, we can find an unlimited
number of polynomials having zero errors, but none of
them is applicable—they are too sensitive to changes in the
input data.

The unique and stable (regular) decision (when the num-
ber of terms and the degree of polynomial are high) corre-
sponds to the minimum mean-square error which is
estimated on the separate testing set. As the complexity of
the plant increases, so does the degree of the number of
terms of the optimal polynomial. When the number of
terms is more than n = N, the decision can be reached by
the GMDH only.

Pessimistic conclusions have been drawn concerning the
quality of solution found by regression analysis. It was
stated in [6] that the coefficients of the regression equations
cannot be considered as the true weighting coefficients for
every particular argument. The second disadvantage is the
necessity of very large experimental data sets for a regression
equation of high degree. The GMDH shows that both of
these statements are incorrect. It gives us the unique and
regular regression equation in which every coefficient is
the true weight of the argument associated with it. Large

4 The number of points used is to be defined by the minimum error
criterion, again calculated on the separate testing set.

data sets are not necessary for the regression equations of
any complexity which is optimal. Consequently, the GMDH
is the basis for the new polynomial theory of complex
dynamic systems. The consequences of this new theory
should be considerable.

The polynomial theory of complex dynamic systems will
bring about a complete revolution of the art of prediction,
pattern recognition, identification, optimalizing control
with information storage, and to the other problems of
engineering cybernetics. For example, there will be no need
to wait for a half century to prove which economic system
is best. It will be sufficient to identify the polynomial
descriptions of two systems and to compare their potential
possibilities. V. I. Lenin has pointed out that the main
performance index of the economic system is the potential
productivity of labor (i.e., not the productivity measured
in the given instant of time, but the productivity which can
be reached in the system based on its long-term trends). It
will be possible to identify the polynomial descriptions for
the productivity of labor in capitalist and in socialist
economic systems to prove the potential advantages of the
socialist system without waiting for many years. Such
predicting, having been made very objectively, will have
strong ideological influence, first to the minds of scientists,
then to other people.

Many other problems of modern complex life can be
solved by the use of the polynomial theory. The spectrum
of these problems includes the models of the brain, con-
trollers for complex industrial processes, the problems of
clean environment (particularly the model for the formation
of clean water), and economic and social problems.
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