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Abstract

 

—The GMDH algorithms for solving interpolation problems of artificial intelligence differ from each
other in the form of the reference function and the iteration rules of the multilayer model structure. In some
multilayer algorithms, the number of terms in the iteration rule is constant, which leads to the skipping of some
models. In the algorithm called combinatorial, the iteration rule increases by one term when passing to each
next row, which ensures an exhaustive search through all of the equations. For exact and complete data, the min-
imum of the external criterion is nonsharp, and to determine an optimal method, extrapolation of the locus of
points of the minimum of the external criterion should be performed. A comparison of linear, polynomial, and
ratio-polynomial (with respect to the coefficients) functions may give a method for improving the accuracy of
problem solutions. To reduce computational time, a threshold GMDH algorithm is developed which prelimi-
narily estimates the effectiveness of the input variables at the information level and searches for model-candi-
dates based on the most effective input variables (arguments or features).
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1. PREPROCESSING
OF THE INITIAL DATA SAMPLE

It is expedient to accept the following procedure for
preprocessing large samples of initial data.

(1) The “wild points” (the values of variables are
obviously impossible) are removed and replaced by the
tripled mean deviation.

(2) The mean value of the variables is calculated
after the wild points are removed.

(3) The missing values in the sample are replaced by
the mean value.

(4) The quantitative variables are normalized to fit
into the range between 0 and 1.

(5) Each qualitative variable is assigned the value 0
or 1, depending on its class.

If it is required to recognize several patterns, the
sample is divided into several subsamples, and the pat-
terns or classes are recognized pairwise.

2. ACHIEVEMENT OF THE MODEL 
UNIQUENESS AND ESTIMATION 
OF ITS REPRESENTATIVENESS

In recursive search modeling methods, the initial
data are represented in the sample of experimental data
as a table with 

 

N

 

 rows, which are called observations,
or realizations, or images (in pattern recognition). The
model sought for is an equation that expresses the value

of the output variable through the current and past (i.e.,
retarded) values of the input variables. In the GMDH
algorithms, the model is sought in the form of a linear
polynomial. The complexity of the model structure is
determined by the number of terms in the polynomial.

The optimal model (most accurate under the preset
noise level) corresponds to a minimum of the external
accuracy criterion.

We use the term 

 

specific complexity

 

 for the ratio of
the number of terms in the polynomial 

 

S

 

 describing the
model to the number 

 

M

 

 + 1 of the input variables (pri-
mary and secondary features) increased by one (to take
into account the presence of the free term).

The graphically represented dependence of the
external criterion on the specific complexity of the
model answers all questions about the number of min-
ima in the model and the sufficiency or representative-
ness of the sample. The number of models that can be
obtained based on a given sample equals the number of
sufficiently sharp minima of the dependence. A sample
is considered sufficient or representative if it gives only
one sharp minimum. The uniqueness of the minimum
can be achieved by dividing the sample into parts
according to the clusters of the optimal physical clus-
tering. The resulting sample must contain only the rows
included in the first cluster (in decreasing order of the
number of points).

For the second model, the points of the second clus-
ter are used, etc. The model is considered most repre-
sentative if it gives the absolute minimum of the exter-
nal criterion.
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Figure 1 shows the typical forms of a characteristic
that expresses the dependence of the external accuracy
criterion on the specific complexity of the model. The
form of the characteristic allows us to judge the initial
data sample. In the case shown in Fig. 1a, we can con-
clude that the sample contains no sufficiently effective
variables. Figure 1b corresponds to a large noise vari-
ance or incomplete data. Figure 1c shows the formation
of an uncertainty zone in the region of exact data, which
impedes the choice of a unique nonphysical optimal
model.

Finally, Fig. 1d shows a sample containing data cor-
responding to two models. In this case, we can obtain
more accurate models by dividing the sample into two
parts with the use of clustering.

3. PROBLEMS RELATED
TO THE UNCERTAINTY ZONE IN THE DOMAIN

OF EXACT AND COMPLETE DATA

Interpolation problems of artificial intelligence,
such as the problem of predicting random processes,
dependence detection, pattern recognition, etc., can be
solved by either constructing mathematical models or
searching for analogs in prehistory. The deductive log-
ical modeling methods only apply to comparatively
simple cases, where the mechanism of operation of the

object is clear and the set of arguments is known. These
methods give a complete physical model of the object,
which is only optimal if the set of the input exactly
measured variables is complete. For an unknown set of
input variables measured with errors, more accurate
results are given by the simplified nonphysical model
obtained with the use of the recursive search Group
Method of Data Handling (GMDH) [1–3].

The GMDH is based on sorting models of gradually
increasing complexity and estimating them according to
an external criterion on an independent data subsample.
As the input variables, any parameters that may affect the
process can be used. A computer automatically deter-
mines the structure of the model and the degree of influ-
ence of the parameters on the output value. The model
corresponding to the minimum value of the external
criterion is considered the best.

The GMDH has been developed for complex system
modeling, prediction, identification and approximation
of multifactor systems, diagnostics, pattern recogni-
tion, and data sample clustering. It is proved analyti-
cally that only this recursive method of self-organiza-
tion gives an optimal nonphysical model whose accu-
racy is higher and whose structure is simpler than the
structure of the usual complete physical model for inac-
curate, noisy, or short data samples.

The recent GMDH developments led to the creation
of decision support systems based on normative predic-
tion (according to an “if–then” scenario) and control
optimization with the use of simplified linear program-
ing algorithms and neural networks with active neu-
rons. These neural networks implement the doubly
multilayer structure: neurons with multilayer structures
are gathered into a multilayer network. This makes it
possible to optimize the set of input parameters at each
level while the accuracy increases. The accuracy of pre-
diction, approximation, or pattern recognition can be
enhanced beyond the values reached by the usual neural
networks with simple neurons or by the usual statistical
methods. Very accurate predictions of the New York stock
exchange and other complex objects were obtained with
the use of a doubly multilayer neural network in which
every neuron was operated by the GMDH algorithm.

In the combinatorial GMDH algorithm, the number
of terms in the polynomial model gradually increases,
while an external accuracy criterion decreases; the exter-
nal criterion is calculated based on an independent mate-
rial, i.e., on a separate test data subsample. The depen-
dences of only external criteria on the model complexity
have minima. The internal criteria, which are calculated
from the same data from which the coefficients of models
are estimated, result in increasing the accuracy of the
model with its complexity; this leads to the choice of an
overcomplicated nonoptimal model. As an external
accuracy criterion, either the regularity criterion or the
cross-validation criterion [4] is recommended.
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Fig. 1.

 

 Various forms of dependence of an external criterion

 

AR 

 

on the model complexity: (a) the dependence has no
minimum; (b) the data are incomplete or inaccurate; (c) the
dependence has an uncertainty zone; (d) the sample contains
a mixture of data corresponding to two models.
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An application of the combinatorial GMDH algo-
rithm may involve two difficulties. First, the criterion
minimum becomes nonunique for exact experimental
data, i.e., under low noise. In Fig. 2, an entire uncer-
tainty zone (the 

 

LOR

 

 interval) appears instead of a
point of minimum. The optimal physical model then
corresponds to the midpoint of the uncertainty zone.
However, for very accurate and complete data, when
the coordinate of the point 

 

R

 

 is one, an optimal simpli-
fied nonphysical model can only be found by searching
for a model according to some external or internal
accuracy criterion in the uncertainty zone. It is suffi-
cient to apply the search according to the external crite-
rion only once to find a criterion minimum, which
determines an optimal nonphysical model. The physi-
cal complete model (more precisely, its polynomial
approximation) can be found by extrapolation of the line
that is the locus of the points of minimum (LPM) of char-
acteristics constructed for various noise variances. Under
certain conditions, the LPM line passes through the
point 

 

P

 

 with coordinates 1/(

 

M

 

 + 1), 1 and through the
point of minimum obtained based on the available data.
Extrapolation of the LPM up to its intersection point
with the abscissa axis specifies the structure of the
sought physical model, which should be applied under
exact input data. For noisy and incomplete data, the
nonphysical model corresponding to the minimum of
the external accuracy criterion remains optimal.

Solving pattern recognition problems does not
require extrapolation of the LPM, because the optimal
model or the discriminant function is usually supposed
to be used in an environment with the same noise level
under which the data sample is obtained. For this rea-
son, in pattern recognition, nonphysical models corre-
sponding to the minima of external accuracy criteria are
applied. The higher the noise, the simpler the nonphys-
ical recognizing model; under exact input data, the
physical and nonphysical models coincide.

Predicting random processes also requires con-
structing a nonphysical model. The physical model is
largely needed to logically interpret the nonphysical
model and reveal the mechanism of operation of the
object used to obtain the data sample.

4. ACHIEVEMENT OF THE POLYNOMIAL 
COMPLEXITY OF THE ALGORITHM

Another difficulty involved in applying the combi-
natorial algorithm is that the algorithm has exponential
computing-time complexity. Adding one new variable
doubles the computing time 

 

T

 

:

where 

 

t

 

0

 

 and 

 

t

 

1

 

 are time constants, and 

 

M

 

 is the number
of features.

T t0 t12M,+=

 

For polynomial algorithms, the computing time 

 

T

 

 is
proportional to the number of features to be taken into
account [6]:

To achieve polynomial complexity in the new
threshold GMDH algorithm, we introduce a second
auxiliary criterion for the effectiveness of the input
variables, which are called predictors or features. For
binary features, the criterion of the number of resolved
disagreements [6] is recommended.

The effectiveness of continuous features is esti-
mated based on the absolute value of the correlation
coefficient of the output variable and the feature to be
estimated [7]. If the variables have different dimen-
sions, then they are normalized to fit into the range
between zero and one.

The primary features are those included in the data
sample. As is shown in Fig. 3, in different interpolation
problems, different primary features are used. The least
number of features is required to detect dependences
and recognize patterns. The values of the primary fea-
tures are used to generate values of additional second-
ary features. The secondary features to start with are the
coordinates of the two first analogs. The analog of a
row in a sample is the nearest row in the same sample.

T t0 t1M.+=
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Fig. 2.

 

 The dependence of the external accuracy criterion on
the complexity of the model structure for the physical model
in the absence of noise (PM) and a simplified nonphysical
model for the same noise variance as in the initial data sam-
ple (SNM); LPM is the locus of the points of minimum of
the external accuracy criterion.
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Analogs can be considered retarded arguments of some
virtual process of row formation in the data sample [8].
As secondary features, the covariances (pairwise prod-
ucts of normalized values) of primary features can also
be used [7]. All primary and secondary features
together are ranked according to effectiveness. The
ordered set of features is subjected to a threshold anal-
ysis according to the following rules:

(1) 

 

The rule of merging two features.

 

 Two neighbor-
ing features are replaces by one average feature if they
have close effectivenesses that differ by no more than a
certain threshold value 

 

E1

 

. This rule follows from the
metrology law about averaging close values of two
measurements.

(2) 

 

The rule of changing the order of features.

 

 If the
difference of the effectivenesses of two neighboring
features is larger than 

 

E1

 

 but smaller than another
threshold 

 

E2

 

, then, in addition to the ordered set under
analysis, another sequence of features is formed, in
which the close features are exchanged. Testing the two
orderings of the features implements Gabor’s principle
of freedom of choice. In practice, this rule reduces to
estimating one more additional model [3].

As it is known, in a single GMDH algorithm without
the use of a network, the number of variables over
which the external criterion search is performed is
either constant (if the search is exhaustive) or reduces
when passing from one row to another at the expense of
eliminating noneffective input variables. The distin-
guishing feature of the threshold GMDH algorithm is
that the number of search variables increases by one
when passing to each next row.

In the first row, only the output variable is used, and
its mean value is found. In the second search row, one
most effective variable is used. In the second row, the
search involves two variables, etc. If the effectiveness
of the added search variable is close to the effectiveness
of the preceding variable, then one more equation of a
model-candidate is formed. The search continues until
the minimum of the external criterion is attained.

5. VERIFICATION OF THE NECESSITY
OF AN ORTHOGONAL DATA SAMPLE

If the sequence of features ranked according to
effectiveness contains regions of accumulation, i.e., the
features are distributed nonuniformly, then it is recom-
mended to preliminarily orthogonalize the sample by
the Karhunen–Loéve algorithm [9].

 

Example.

 

 Suppose that a sample of experimental
data contains values of seven input variables, 

 

V

 

1

 

, 

 

V

 

2

 

, 

 

V

 

3

 

,

 

V

 

4

 

, 

 

V

 

5

 

, 

 

V

 

6

 

, and 

 

V

 

7

 

 (the number of features is

 

 M 

 

= 7).
Suppose also that computation of the correlation coeffi-
cient between the features and the output variable yields
the following sequence of features ranked according to
effectiveness:

Let us set the following threshold values: the thresh-
old value for the merging of features is 

 

E

 

 = 0.01, and
the threshold value for the change of order is 

 

e

 

 = 0.1.
The results of an analysis of the series of features
ranked by effectiveness are as follows.

(1) No two features must be merged.

(2) We must try to change the order of only one pair of
features, 

 

V

 

4

 

 and 

 

V

 

5

 

.

(3) The features are uniformly distributed over the
effectiveness interval, and there is no need to apply pre-
liminary orthogonalization.

As a reference basis function, we choose a linear poly-
nomial. Gradually decreasing the effectiveness threshold,
we obtain the following set of models-candidates:

E V1( ) 0.9 E V2( ) 0.75 E V3( ) 0.6= = =

E V4( ) 0.45 E V5( ) 0.4= =

E V6( ) 0.23 E V7( ) 0.1= =
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Fig. 3. Discrete templates of GMDH filters for (a) the implicit
predicting filter, (b) the explicit predicting filter, (c) the
smoothing filter, and (d) the filter of dependence detection
and pattern recognition; T is the time axis and V is the axis
corresponding to the virtual process of image formation.
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For the complexity S = 5, we obtain two models-
candidates; the external criterion determines which
should be included in the extremal characteristic
shown in Fig. 2. We can stop increasing the complexity
of model equations as soon as the coordinates of the
point O of the minimum of the external criterion are
found.

Calculation of the external criterion makes it possi-
ble to construct its dependence on the complexity of the
model structure (see Fig. 2). If the problem is to recog-
nize two patterns, then the optimal model obtained is
the best discriminant function [7].

If the number of input variables is not too large,
then, instead of the rule of order verification, the sim-
pler and less rigid rule of noneffective variable elimina-
tion is used. For example, all input variables with a cor-
relation coefficient less than 0.2 in absolute value are
disregarded. This drastically reduces the amount of
computations involved in the usual combinatorial GDMH
algorithm, especially if the search through model-candi-
dates terminates as soon as the minimum of the external
accuracy criterion is attained.

A calculation of a sequence of initial variables
ranked according to the effectiveness criterion, thresh-
old analysis of this sequence, and organization of a
search for the structure of a model-candidate optimiz-
ing the external accuracy criterion solve the problem of
constructing a recursive GMDH algorithm with poly-
nomial complexity.

The algorithm for estimating feature effectiveness
has polynomial complexity, because its computational
time is proportional to the number of features. The
threshold analysis of the sequence of features ranked by
effectiveness does not require much time. The con-
struction of models-candidates and the estimation of
their coefficients also have polynomial complexity due
to the application of the bordering procedure [1, 2]. The
coefficients of each model are calculated based on the
estimates of the coefficients of models of lower com-
plexity.

The computer programs implementing the border-
ing procedure are designed for both the inclusion and

the removal of a term of the polynomial model [1, 2].
The bordering procedure substantially reduces computa-
tional time in searching GMDH algorithms. But estimat-
ing the feature effectiveness according to the absolute
value of the correlation coefficient reduces the computa-
tional time even further. The ordering of features deter-
mined by this absolute value is subsequently verified by
the method of threshold analysis of the ranked sequence
of features based on the external accuracy criterion.
Thus, the threshold algorithm of model self-organiza-
tion as a whole has polynomial complexity, which is
confirmed by experimental computations.

6. THE THRESHOLD GMDH ALGORITHM
WITH SELECTION OF THE SET

OF EFFECTIVE VARIABLES

The optimal threshold value separating effective and
noneffective variables can be obtained by repeatedly
applying the combinatorial GMDH algorithm while the
number of the effective variables subject to search suc-
cessively increases. In the example considered above,
the combinatorial algorithm should be applied to data
samples containing the following input variables:

Increasing the number of the effective variables that
form the input of the algorithm terminates as soon as
the minimum of the external accuracy criterion is
attained.

The described algorithm is often applied instead of
the verification of the order of variables, especially
when the choice of the threshold value for the order
verification is impeded.

S 1 y a01= =

S 2 y a02 a12V1+= =

S 3 y a03 a13V1 a23V2+ += =

S 4 y a04 a14V1 a24V2 a34V3+ + += =

S 5 y a05 a15V1 a25V2 a35V3 a45V4+ + + += =

S 5 y b05 b15V1 b25V2 b35V3 b45V4+ + + += =

S 6 y a06 a16V1 a26V2 a36V3 a46V4 a65V5+ + ++ += =

S 7 y a07 a17V1 a27V2 a37V3 + a47V4 a57V5 a67V6+ ++ + += =

S 8 y a08 a18V1 a28V2 a38V3 + a48V4 a58V5 a68V6 a78V7+ + ++ + += =

S 1 Y ;=

S 2 YV1;=

S 3 YV1V2;=

…………………

S 8 YV1V2…V7.=
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7. THE APPLICATION 
OF THE RATIO-POLYNOMIAL REFERENCE 

FUNCTION TO SOLVE INTERPOLATION 
PROBLEMS OF ARTIFICIAL INTELLIGENCE

Problems of process prediction, dependence detec-
tion, and pattern recognition are usually solved with the
use of a polynomial reference (or support) function, lin-
ear with respect to the coefficients. Both primary and
secondary features are used as arguments; the second-
ary features are expressed by simple nonlinear depen-
dencies via the primary features.

For essentially nonlinear objects, the solution accu-
racy can be improved by extending the search by form-
ing ratio-polynomial functions. The table shows an
example of such an extension performed under the fol-
lowing two constraints: (i) each argument is included in
the ratio-polynomial function only once and (ii) all
coefficients are positive.

These constraints are not vital and can be removed,
but this would increase the amount of the model-candi-
dates to be searched through to optimize the external
accuracy criterion, which is already fairly large. For
this reason, we only consider the constrained extension
of search domains, as in the table.

8. A METHOD FOR SUBSTANTIALLY 
REDUCING THE SEARCH

In the table, only ratio-polynomial functions with
positive coefficients are to be searched through. For
such functions, the output variable is related to the

variables in the numerator directly and to the variables
in the denominator reciprocally. Using this observation,
we can apply the following method to determine an
optimal ratio-polynomial model. First, an optimal poly-
nomial model for the data sample under consideration
is determined. The variables whose coefficients in this
model are positive are included in the numerator of the
ratio-polynomial model, and the variables with nega-
tive coefficients are included in its denominator.

Numerical example. The problem of recognizing a
pairwise dependence of neurons is thoroughly
described in [10]. Here, we give the data of the numer-
ical example from [10]. For a polynomial reference
function, the recognition accuracy is characterized by

where R2 is the squared multiple determination coeffi-
cient [10].

For a ratio-polynomial reference function, the rec-
ognition accuracy is much higher:

RR2 = 0.9.

With the use of the method described above, the
computational time almost does not change:

T = 10 min.

9. A GENERAL DESCRIPTION
OF A NONLINEAR GMDH ALGORITHM

WITH A RATIO-POLYNOMIAL REFERENCE 
FUNCTION

The recursive search approach to modeling, which
is also called the self-organization of models, performs
all tasks except those related to the choice and compu-
tation of a criterion by searching, i.e., testing a large
number of possible solutions by an external criterion,
which is calculated on a separate part of the data sam-
ple. The less the value of the external accuracy crite-
rion, the better the corresponding model or algorithm.

An important role is also played by Gabor’s choice
principle [3]. The GMDH algorithms search through a
large number of candidates to solve the following two
problems.

(1) The effectiveness of the primary and secondary fea-
tures and the sets of two, three, and more features are esti-
mated. The freedom-of-choice principle requires that the
sets to be estimated be formed not only by the most
effective features selected in the preceding row, but also
by the next most effective features and sets.

(2) The models optimizing the external criterion in
every row are compared to each other, and an optimal
model is selected.

R2 I RR2– 0.8,= =

Complication of the ratio-polynomial reference function

Com-
plexity

Number
of vari-
ables

Reference function
Number 
of modi-
fications

S = 1 M = 0 y = a0 1

S = 2 M = 1 y = (a0 + a1x1)/1 2

y = a0/(1 + b1x1)

S = 3 M = 2 y = (a0 + a1x1 + a2x2)/1

y = (a0 + a1x1)/(1 + b2x2) 4

y = (a0 + a1x2)/(1 + b2x1)

y = a0/(1 + b1x1 + b2x2)

S = 4 M = 3 y = (a0 + a1x1 + a2x2 + a3x3)/1

y = (a0 + a1x1 + a2x2)/(1 + b1x3)

y = (a0 + a1x1 + a2x3)/(1 + b1x2)

y = (a0 + a1x2 + a2x3)/(1 + b1x1)

y = (a0 + a1x1)/(1 + b2x1 + b2x3)

y = (a0 + a1x2)/(1 + b2x + b2x2)

y = (a0 + a1x3)/(1 + b1x1 + b2x2)

y = a0/(1 + b1x1 + b2x2 + b3x3)
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10. A METHOD FOR ESTIMATING 
THE COEFFICIENTS

OF RATIO-POLYNOMIAL MODELS

To estimate the coefficients of the models, we trans-
form all ratio-polynomial functions into auxiliary poly-
nomials and include additional columns of digits into
the data sample for all of the terms of these polynomi-
als. Then, we apply algorithms for estimating coeffi-
cients of polynomial models.

Example. It is required to estimate the coefficients
of the ratio-polynomial model

Let us form the auxiliary polynomial

The variables y, V1, and yV2 are treated as arguments
whose values are easy to calculate with the use of the
data sample. The coefficients are estimated by the usual
least-square method [11].

11. PREPROCESSING
OF LARGE DATA SAMPLES

The first descent is performed by applying the cor-
relation analysis to the elements in the data sample,
reducing the sample to the one-moment form, and
dividing it into uniform subsamples used to obtain
models by GMDH algorithms.

Reduction to the one-moment form involves an
increase in the number of arguments. To each sample row,
which contains the current variable values indexed by k,
we add several future values indexed by k + 1, k + 2, etc.,
and retarded arguments indexed by k – 1, k – 2, etc. This
allows us to arbitrarily change the order of rows, simi-
lar to the problem of pattern recognition.

The correlation analysis of sample elements is based
on the idea of the genetic approach to modeling. The
combinatorial GMDH algorithm, where the iteration
rule increases by one term when passing to each next
row, is very similar to the genetic optimization of the
choice of the number of genders of living organisms
during the evolution of species in Nature, which took
millions of years.

Another, multilayer GMDH algorithm [1, 2] with an
invariable rule of iteration resembles the actions of a
selectionist who obtains the required features in several
generations. Thus, all GMDH algorithms have genetic
analogs. However, only those of them should be called
genetic in which the number of models-candidates sub-
ject to search is reduced by taking into account the
generic (correlation) relations. Close arguments and
models merge, and noneffective ones are disregarded.
The threshold GMDH algorithm implements such a
selection.

y
a0 a1V1+
1 b1V2+
-----------------------.=

y a0 a1V1 b1yV2.–+=

The concept of optimal physical clustering, which is
implemented by the objective computer clustering
(OCC) algorithm, makes it possible to divide the data
sample into subsamples of uniform vectors contained
in one cluster. In solving problems of random process
prediction, it is recommended to form predictions for
all uniform samples and select the most accurate pre-
diction. In recognizing patterns and situations, it is also
recommended to obtain discriminant functions for all
uniform subsamples to select the most effective deci-
sion rule. Thus, the reduction of computational time is
due to the processing of small subsamples instead of
one large sample.

In processing large data samples, each element is
characterized by two values, namely, of the output vari-
able or argument and of the contribution of the element
to the absolute value of the correlation coefficient
between the variable under consideration and the out-
put variable. We refer to this contribution as the effec-
tiveness of the sample element. A rational reduction of
sample size consists in the elimination of the least
effective elements. The effectiveness of a sample ele-
ment equals the difference of two correlation coeffi-
cients, one calculated for the argument value specified
in the sample, and the other, for the element equal to the
mean value of the variable. A simplified calculation of
the effectiveness of an element can be performed by the
formula

,

where W is the value of the output variable,  is its
mean value, V is the value of the argument at the sample
element under consideration, and  is the mean value
of the variable to which this element belongs.

The denominator equals the maximum effectiveness
over all of the sample elements. Thus, the effectiveness
of each element is normalized by the largest value, and
we can set a certain threshold effectiveness value, say,
0.3. The rows and columns in the sample that contain
only elements with effectiveness less than the threshold
value are removed from the sample. The effectiveness
threshold is raised until the size of the sample becomes
acceptable for calculations on an available computer.
The limiting parameters of models that can be com-
puted on a PC can be expressed by the empirical equa-
tion m ≤ 27 – 0.046M – 1, where M is the number of
sample arguments-candidates and m is the number of
arguments in the model.

We see that, if the sample contains 350 rows, then a
model with ten terms can be obtained in a reasonable
time, which is sufficient for the majority of practical
problems.

The further processing of large samples reduces to
splitting them into subsamples of uniform vectors by
the OCC algorithm, and the subsample that gives a
most accurate prediction (in process prediction) or

e
W W–( )* V V–( )

max W W–( )* V V–( )( )
-----------------------------------------------------------=

W

V
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most effective decision rule (in pattern recognition) is
selected. If the problem is to recognize an image with a
known vector, then the corresponding uniform subsam-
ple can be found by pattern recognition methods.

The accuracy of the obtained models may be improved
by applying secondary arguments and neural networks
with active neurons. As secondary arguments, the coor-
dinates of the first two analogs or pairwise covariances
(products of normalized values of the primary sample
arguments) may be used. Samples of secondary argu-
ments are also subject to a correlation analysis, which
may enlarge the set of effective arguments and thereby
improve the accuracy of the model. The same goal can be
achieved by constructing a twice-multilayer neural net-
work with active neurons (i.e., by applying implicit tem-
plates), which is considered during further descents.
Effectiveness of elements in the samples of secondary
arguments can be estimated based on the initial material or
on the uniform subsamples. The use of uniform sub-
samples is preferable, because it requires a less compu-
tational time.
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