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When solving the parametric identification problem, one must find the estimates of polyno-
mial model coefficients by processing a sample of experimental data.

The readers are, of course, sure that the number of points in the data sample cannot be
smaller than the number of members of the polynomial to be estimated. But this is incorrect
for iterative (or multi-row) identification algorithms where, instead of the complete polynomi-
al

one subjects to estimation only partial polynomials of the form

where x. 3 x. is any pair of regressors taken from the regressor set x^3 x~3 •..., '•£*, indicated

in the data sample. The algebraic minimum of data points for estimating the coefficients e.

and G. in the partial polynomials is two. Following this, we can obtain, by solving simultane-

ously the system of partial equations the estimates of all the coefficients in the initial com-
plete polynomial that has M + 1 members. It is easy to show that this "miracle" is valid under
ideal conditions, i. e., when the data are complete and precise. Under actual practical condi-
tions it can also occur, but only with some degree of precision.

Using an iterative GMDH algorithm, one can evaluate a polynomial that is linear in its co-
efficients and has about 1000 members from a sample that contains on the order of 100 points
only. The computation time on a BESM-6 computer (10" operations/s) in this case does not ex-
ceed 3 hours ("freedom of choice" F = 3),

The iterative multi-row algorithm is explained by Fig. 1.

EXTERNAL CRITERIA OF TWO TYPES AND TWO BASIC APPROACHES

The application of external criteria at each iteration step with the aim of selecting only
F most effective partial polynomials is a specific feature of GMDH algorithms. In accordance
with the well-known D. Gabor paper on sequential decision making, the number F is called "free-
dom of choice" [1, 2],

External means that it is based on fresh information that has not been used for estimating
the coefficients. The data sample is partitioned into two parts, A and B, in order to calcu-
late the so-called external regularity criterion

--

*From the Editorial Board. The Editorial Board disagrees with many of the statements and
evaluations of the author of this paper, and publishes it to stimulate discussion, assuming
that the discussed issues are of interest to a broad circle of readers.



Fig. 1. Iterative (multi-row) GMDH algorithm; 1)
first selection; 2) second selection; 3) third se-

lection, etc.; 4) data sample.

or the differential external consistency criterion

where N is the total number of points in the data sample; B is the testing subset of points,
N = A + B; IJQ is the output variable represented in data sample B; y , y are the outputs of
the models with the structure that is subject to evaluation.

Many multi-loop systems with a large number of variables have special invariants: the sum
of specific variables is a constant number [3], For example, in the simplest case, the sum of
season averages equals the annual average: Vi+Vi+</3+qr.t = Q. Such invariants allow one to arrange
a balance of variable criterion

The balance of variables criterion BL and the consistency criterion CN can serve as examples of
differential-type criteria that do not include information taken directly from the data sample.
Differential-type criteria are incorrect (in the sense of A. N, Tikhonov papers), They can
equal zero only for the unique optimal model but also accidentally for some "false" ones. The
false "zeros" must be detected and eliminated using a special regularization (or redefinition)
procedure in order to find the unique optimal model.

All the criteria (about 50 proposals are known in addition to the informational-type cri-
teria) can be separated into two basic groups.

Accuracy type criteria require the choice of a model that is most accurate on the given
data sample. The regularity criterion can serve as an example of an accuracy type criterion.
These criteria implement a precision approach in modeling by sorting.

Difference type criteria require the choice of a model that is the same for the two differ-
ent parts of the sample. The consistency and balance of variables criteria can serve as examples



Fig. 2. Regressor ranking for selecting the opti-
mal ensemble: a) subjective method for setting the
threshold; b) objective method (by the minimum of

an external criterion).

of difference type criteria that implement a new robust approach in modeling by sorting. Robust
means here insensitive to the choice of the sample part that is used for modeling.

THE OBJECTIVE NATURE OF THE CHOICE OF THE OPTIMAL MODEL STRUCTURE
ACCORDING TO EXTERNAL CRITERIA

External accuracy and differential type criteria have a very important feature. When the
complexity of the model structure (determined, for example, by the number of members of the poly-
nomial) is increased gradually during the sorting procedure, the external criteria pass through
their minimum. The location of the criterion minimum indicates the optimal complexity of the
model structure (the self-organization principle for optimal models). The minimum of the ex-
ternal criterion offers us the capability of objective choice of the model.

Internal criteria used in mathematics, for example, the root-mean-square error calculated
on all the sample points; RSS (residual sum of error squares), only decrease with increasing
model complexity. Here the rule holds: the more complex the model, the more accurate it is.
The only way out under such conditions is to set some threshold ("confidence interval") in order
to stop the sorting procedure on some complexity level (Fig, 2). One has to be experienced and
to have deep knowledge of the modeled object in order to select the threshold value correctly.
But there is no other way out if one does not want to use methods of model self-organization
according to external criteria.

EXTRAPOLATION OF THE LOCUS OF THE MINIMA IN ORDER TO FIND THE
PHYSICAL MODEL

MEASURE OF THE NOISE IMMUNITY OF THE CRITERION

A computer chooses (in the presence of interference) under-complicated models as the opti-
mal ones. However, the problem of finding the full physical model in modeling by sorting re-
mains. It can be solved by extrapolating the locus of the minima (LM) of the external criteri-
on, as shown in Fig. 3. The point 0 corresponds to the physical model. It can be determined
at the intersection of the LM approximation and the abscissa axis. It is sufficient to add some
small portions of noise to the data sample in order to find some points of the LM in order to
approximate and extrapolate it. The magnitude of is a measure of the noise immunity of the
criterion.

Vector, matrix and tensor forms of the model. Algorithms for system analysis (OSA). The
same object can be described by a vector, a matrix or a tensor model. The form that provides
the deepest minimum of the criterion is the best. The computer chooses the model form.

In this way one can solve the humanly very difficult problems of selecting the limits of
the modeling domain. The computer indicates which elements must be included in the model arid



Fig. 5. Ranking of explicit, (a), and implicit, (b),
templates S, a method for teaching templates by a data

sample.

which must be excluded. A special sorting algorithm which solves this problem is called the
Objective System Analysis (OSA) algorithm [4], Implicit templates (Figs. 4 and 5), i.e., sys-
tems of difference equations, are subject to sorting in this algorithm.

WHY IT IS IMPOSSIBLE TO APPLY EXISTING GENERAL IDENTIFICATION THEORY
TO THE SOLUTION OF PROBLEMS IN MODELING BY SORTING

The practice of modeling by sorting poses many special questions of theoretical nature.
For example, does the iterative procedure of sorting models converge in general? Is the conver-
gence guaranteed only for internal criteria (internal convergence) or also for external cri-
teria (external convergence)? Which method of partitioning the data sample into two sub-samples



A and B is optimal? Under what conditions is unimodality of the external criteria guaranteed
and what order of ranking models-candidates is necessary for attaining the unique minimum? How
great is the noise immunity of the sorting procedure?

There is a large number of papers on the general identification theory, expecially for the
purposes of automatic control [5], But there are no answers there to the questions stated in
the preceding. A special theory of modeling by sorting has to be developed. The situation can
be explained as follows: identification theory has been developed in a purely deductive way.
All the efforts of this development were aimed at the search for unbiased models, and, in par-
ticular, for the simplest unbiased minimal-complexity physical model. The practice of model
sorting shows that a computer, controlled by external criteria, chooses under-complicated models
that are optimal for approximation as well as the prediction. In presence of interference, the
optimal model must have a simpler structure than its physical counterpart.

We can find a similar assertion in communications theory: there, as the signal noise in-
creases, the communications system becomes simpler (Shannon's second theorem for noisy communi-
cations channels).

A human cannot invent and propose under-complicated models for prediction, this is excluded
psychologically. He or she can consider only the application of physical or over-complicated
models, but not of under-complicated ones. Can a human agree to describe pendulum oscillations
by only two or one addend of the full three-member equation of oscillations? Of course not! But
sorting shows that under noisy conditions, it is useful to exclude some members of the complete
equation of the physical model.

TWO METHODS FOR DEVELOPING SORTING METHODS FOR MODELING

The special theory of sorting methods is developed in two ways: mainly, by using computa-
tional experiments (that are repeated many times to increase their credibility), or, for some
problems, by using ordinary analytic methods.

We will consider the basic results of the analytic investigations.
Convergence of iterative GMDH algorithms. The proof of the convergence of the iterative

procedure in GMDH algorithms [6, 7] to a point determined by the minimum of the sorting criterion
is an obvious result of analytic research in its general form.

The unimodal nature of the external criterion characteristic. It has been shown analyti-
cally that if the data sample is very large, then the "criterion - model complexity" character-
istic is unimodal. In stochastic problems, unimodality is guaranteed for the mathematical ex-
pectation of the criterion.

Computational experiments show that unimodality is achieved also when the models-candidates
are sorted in groups (clusters). At the first step one can use the entire information that is
contained in any single column of the sample, at the second step one can use all the information
that is contained in any two columns of the data sample, etc. The best models of each step form
the unimodal characteristic.

When modeling in the form of difference equations, this rule means that implicit templates
of the equations become more complex gradually (Fig. 5).

Computational experiments have demonstrated the advantage of the reverse sorting of tem-
plates. First, the most complex template is evaluated, then a simpler one, etc. It has been
noted that unimodality is lost very often for the simplest templates ("first-row effect").
Reverse sorting excludes this effect because the sorting procedure stops as soon as the crite-
rion minimum starts to increase. Experiments have shown that unimodality is achieved also for
short samples. Theoreticians cannot tell us yet when it appears.

THE PARAMETRIC IDENTIFICATION PROBLEM. NON-PARAMETRIC MODELS

The least squares method (LSM) is applied to the estimation of the coefficients of polyno-
mial models. But it is known that it yields optimal unbiased estimates only for a full number
of regressors and when interference acts only on the output variable. In iterative GMDH algo-
rithms the set of variables changes in each step. Under such conditions it is better to use
orthogonal polynomials that are optimal when the interference affects all the regressors iden-
tically. A few sorting algorithms with orthogonal partial descriptions have been proposed [8].

It has been shown theoretically that when the interference variance can be measured, it is
best to apply minimax estimates of the coefficients [9],

However, the possibility of excluding the entire problem exists in modeling by sorting me-
thods. Many algorithms are known in which not polynomials but, for example, Bayes formulas [10],
correlation functions [11], or Markov chains [12, 13] are subject to sorting. Very good practi-
cal results are shown in papers devoted to non-parametric methods of model sorting. For example,
the pollution field in Guinea Bay has been forecast more than a year in advance and proved to be
very accurate [14].



Polynomial GMDH algorithms are effective, but non-parametric ones promise to be even more
effective. Thus, polynomial models provide accurate forecasting of eleven variables in the
model of the development of the economy of the GDR. The remaining 15 variables are forecast
using non-parametric programs based on the search for an analog in prehistory [10],

THE PROBLEM OF PARTITIONING THE DATA SAMPLE INTO SUBSAMPLES A AND B.
ASSOCIATION WITH THE THEORY OF INSTRUMENTAL VARIABLES

Partitioning the data sample into two subsamples, A and B9 is one of the methods for cal-

culating external criteria. One sets for the regularity criterion, and A = B for

the consistency criterion. The difference between subsamples A and B can be measured using
analysis of variance. It is easy to show that in modeling subsamples A and B must differ from
each other as much as possible. This guarantees a fast increase of the "criterion - model com-
plexity" characteristic and, consequently, the deepest minimum.

Changing the content ("pouring over") of points in subsamples A and B is one of the methods
of obtaining a unique minimum (the regularization method), Adding slight noise to the initial
data sample is another method.

It has been shown theoretically that when the data sample is full and precise (no interfer-
ence) , all the differential-type criteria (i.e., the consistency criterion, the balance of vari-
ables criterion, etc.) do not work [14]. This means that the number of minima or "false" zeros
is too large. Differential-type criteria can work (i.e., provide the unique true minimum) only
when (1) there is interference in the data sample or the number of regressors if incomplete;
and (2) subsamples A and B differ in their variances.

The theory of instrumental variables yields a new Idea for modeling by sorting. Instead
of partitioning the sample, it is better to apply two different methods for obtaining the in-
strumental variables and compare the results. The difference between the two instrumental vari-
ables is zero for the optimal model. But instrumental variables obtained in this way must be
based on different informational bases. Quantization of a data sample into two different numbers
of levels (ranks) and comparison of results [10] can serve as an example.

DESCRIPTION OF A MODIFIED OSA ALGORITHM THAT DOES NOT REQUIRE
THE DATA SAMPLE TO BE PARTITIONED INTO TWO PARTS

The objective is a choice of a system of difference equations that describes an object the
data about which are represented by an N x M-element sample of measurements (N is the number of
observation points, M is the number of variables or attributes. The output variables are not
indicated a priop-i in the sample; they are found by the algorithm as a consequence of choosing
the system of equations. The set of system-candidates is sorted according to two criteria. The
optimal system of difference equations must correspond to the minimum of the consistency crite-
rion and satisfy the threshold value of the short-term prediction (or variation) criterion

Block 1. Construction of the auxiliary samples A and B of two instrumental variables. To
avoid the partitioning of the sample into two parts, one forms two samples A and B by quantiz-
ing the data of the basic sample (except for the points of a small testing sample C). Sample A
is obtained by quantizing the data of the initial sample to N levels. Sample B is obtained by
quantizing it to N/2 levels (having multiplied the data by the factor of 2).

Many other proposals for forming two instrumental variables for solving the criterion (see,
for example, [15], p. 16) are known. The use of various Walsh functions is a promising approach.
The consistency criterion (in a combinatorial GMDH algorithm) is determined by the difference
in the outputs of two models constructed on the instrumental variables:

To calculate the criterion, one has to determine the models on samples A and B that are obtained
by the indicated method.

Block 2. Determination of the structure of the polynomial difference equations according
to the GMDH combinatorial algorithm and filtering out those which carry disinformation (instead
of prediction). The following complete polynomials that take into account two delayed arguments
(i,j,p,r,s are the indices of the variables) are subject to the sorting.



One uses these complete polynomials to find, according to the combinatorial GMDH algorithm
(with the consistency criterion CN -+ min indicated in the preceding), the optimal models of
the first, second, etc., rows for each of the variables. These models are checked to the con-
dition 1.0, where

All the non-optimal models as well as the models that do not satisfy the threshold in the pre-
cision of their short-term prediction are excluded from further consideration. Systems of
equations are formed further only from polynomials that are optimal for each variable and that
have passed the threshold test. This reduces drastically the volume of sorting.

Block 3. Generation of systems of equations and evaluating them according to the system
consistency criterion. Systems sorting is reversive, i.e., it starts at the most complex sys-
tem. The number of systems that are subject to evaluation according to the system criterion

for the first, second and third rows, respectively.

Systems of the fifth row of the selection have the following complete descriptions (only
optimal polynomials, chosen according to the combinatorial algorithm, that contain 16 addends
participate):

All the systems, the number of which is , are evaluated according to the consistency system

criterion of the form



Fig. 6. Results of sorting by the OSA algorithm
with subsequent elimination of less "blurred" vari-
ables. Processing a sample that contains: 1) 25
variables; 2) 20 variables; 3) 16 variables; 4) 13
variables; 5) 11 variables. The degree to which the
object is blurred increases, while the number of

equations in the optimal model decreases.



Fig. 7. Four positions of the "sliding window" and
the corresponding four clusterizations which demon-
strate that the variety (number of clusters) de-

creases from four to three.

SELECTING THE DEGREE OF BLURRING (FUZZINESS) OF THE DESCRIPTION.
INDICATIVE SYSTEMS

The more complex the object, the less detailed must the mathematical language of planning,
modeling and control be. Blurred models turned out to be successful for medical diagnostics,
for ecology and for economics [10],

Indicative, the term adopted in economics, describes systems in which the degree of blurring
of the information signals is optimized, i.e., selected at the optimal level. A combined system
of the future will include all the three possible methods for the control of economics: direct
planning, indicative planning, and free market. The planning and control signals in indicative
systems are blurred. For example, the production of a factory is planned using a "fork" between
the minimal and maximal levels. Each local factory will be given some freedom of choice. In-
dicative planning reduces the volume of information that is processed in the central planning
organizations.

In analogy with economics, indicative systems of modeling, clusterization, and control can
be defined as non-Godel systems, i.e., systems without set-point elements (without standards)
in which the degree of blurring in the information processes language is optimized. Instead of
an external specification, one has to specify only the ratio of variables, which is a more blurred
information than the specification of concrete values for each of them. In many cases the ratio
is known a px"iox>i; there is no need to consult the experts. This means that the computer be-
comes an independent arbiter in scientific debates on problems of modeling, clusterization, di-
agnostics, and pattern recognition [10],

SORTING METHODS OF MODELING AND CLUSTERIZATION OF DATA OBTAINED
IN A "SLIDING WINDOW." PROBLEMS OF LONG-TERM PREDICTION

Prof. V. V. Nalimov insists in [14] that predictions for biological, ecological, economic
and social systems are possible only in a blurred language. The more blurred the mathematical
language of prediction is the longer is its maximum achievable anticipation time.

He proposed a very blurred "pattern-analysis" language (or two-component orthogonal pro-
jection of data sample points) as an algorithm for long-term prediction [16].

Clusterizations that are used instead of polynomial equations are also a method of making
the mathematical description less detailed or more blurred. Sorting algorithms offer another
possibility: to track clusterizations obtained in a "sliding window" that moves along the data
sample on the time axis.

For example, the data sample for the ecosystem of Lake Baykal contains measurements over the
interval of 50 years (Fig. 7). Moving a 10-year wide sliding window, we can obtain 40 cluster-
ization forms used to track how the ecological system varies in order to predict its further
development. The longest anticipation time of a prediction is obtained without using precise
differential equations and their difference analogs. The objective clusterization of the sample
data into some number of classes is used to calculate the graph of the probability of transi-
tion from one class to the other, which makes it possible to find an analog of the current state
of the object in prehistory and, consequently, to indicate the long-term prediction. Thus, the
following long-term prediction scheme should be considered prospective: (1) clusterization of
the data sample for a number of positions of the "sliding window" (Fig. 7); (2) formation of the



graph of canonical coefficients of the pairwise correlation of separate clusterizations; and
(3) selection of an analog for the current clusterization and prediction according to the ana-
log or the group analogs method [10],

SOME DISCOVERIES OF MODELING BY SORTING

Sorting methods, being experimental, reveal for us many unexpected facts. It has already
been indicated in the preceding that only sorting computational experiments taught us to find
optimal models among under-complicated ones.

They also taught us how to build indicative (objective) systems without human-controlled
set-point devices.

If a data sample is sufficiently representative, then the design of an experiment becomes
a problem of selecting the optimal collection of variables and of eliminating some of the points
indicated in the sample. The first experiments in sorting ensembles of attributes have shown
that the same minimal value of the criterion corresponds to a number of various ensembles.
There is no unique optimal ensemble [10],

Not less important is the lesson learned from the "sliding window" experiments. It turned
out that some complex objects must be described by a few different systems of equations that
are used sequentially, depending on the initial conditions. This is new in mathematical phy-
sics, where each object has a single mathematical description.

For example, it is known that the weather at each point of the atmosphere can be described
by a system of four differential equations [17]. Having very long samples of precise measure-
ments, one can find the structure of the matrix model of the local weather. But surprising
things begin to occur only when we investigate various positions of the "sliding window" in
time [19], It turns out that the structure of the matrix model varies depending on the window
position, sometimes repeating its previous forms. One can organize the clusterization of the
weather matrix models and construct a probability graph for its prediction.

Conclusion. The theory of GMDH sorting methods can be presented as a continuous process
of theoretical explanation of experimental results of sorting models or clusterizations obtained
by a computer.

To speed up the process, both the computational experiments and the theoretical interpreta-
tion must be concentrated in the hands of a single researcher or a group of researchers. Lack
of unity of theory and practice slows down the development process of the GMDH and causes the
appearance of papers that deserve criticism (both from the experimental and the theoretical
points of view).

Testing example. Let a model be specified in the form of two differential equations



We look for models of the following full form:

3. Combinatorial algorithm. Fifteen models-candidates in which some of the coefficients
are zero and the others are determined by the LSM (coefficients with index A by using sub-sample
A3 with index B, by using sub-sample 5) are subjected to sorting. We calculate the consistency
criterion by the squares of coefficient differences:

The evaluations of the criteria are given in the table.
The system criterion is zero only for the eleventh model. We satisfy ourselves that the

problem of model reconstruction by using sorting of two instrumental variables has been solved
correctly. The actual model has been reconstructed independently by a computer from a sample
of observations without detailed instruction by a human expert. The human only specified the
criterion for sorting the models-candidates by the minimum of which the model has been found.
No threshold values (nor confidence intervals) were needed. The example demonstrates a direc-
tion for creating an independent "artificial intelligence" that does not require cues from a
human when making a decision and that often argues with the person.

Model
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

No. of
compo-
nents
m

4

3

3

3

3

2

2

2

2

2

2

1

1

1

1

Values of

a0

LSM
LSM
0
0

.LSM
LSM
LSM
LSM

LSM
LSM
0
0
0
0

LSM
LSM
0
0

LSM
LSM
LSM
LSM

LSM
LSM
0
0
0
0
0
0

«,

LSM
LSM
LSM
LSM
0
0

LSM
LSM
LSM
LSM
LSM
LSM
LSM
LSM
0
0
0
0
0
0
LSM
LSM

0
0
LSM
LSM
0
0
0
0

coefficients

Q,

LSM
LSM
LSM
LSM
LSM
LSM
0
0

LSM
LSM
0
0
LSM
LSM
LSM
LSM
LSM
0
0
0
0
0

0
0
0
0

LSM
LSM
0
0

0.1

LSM
LSM
LSM
LSM
LSM
LSM
LSM
LSM
0
0

LSM
LSM
0
0
0
0
LSM
LSM
LSM
LSM
0
0

0
0
0
0
0
0

LSM
LSM
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