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Preface

One can see the development of automatic control theory from single-cycled to the mul-
ticycled systems and to the development of feedback control systems that have brainlike
network structures (Stafford Beer). The pattern recognition theory has a history of about fifty
years—beginning with single-layered classificators, it developed into multi-layered neural
networks and from there to connectionist networks. Analogical developments can be seen
in the cognitive system theory starting with the simple classifications of the single-layered
perceptrons and further extended to the system of perceptrons with the feedback links. The
next step is the stage of "neuronets."

One of the great open frontiers in the study of systems science, cybernetics, and engineer-
ing is the understanding of the complex nonlinear phenomena which arise naturally in the
world we live in. Historically, most achievements were based on the deductive approach.
But with the advent of significant theoretical breakthroughs, layered inductive networks,
and associated modern high-speed digital computing facilities, we have witnessed progress
in understanding more realistic and complicated underlying nonlinear systems. Recollect,
for example, the story of Rosenblatt's perceptron theory. Until recently, the absence of
good mathematical description with the demonstration by Minsky and Papert (1969) that
only linear descrimination could be represented by two-layered perceptron, led to a waning
of interest in multilayered networks. Still Rosenblatt's terminology has not been recovered;
for example, we say "hidden units" instead of Rosenblatt's "association units" and so on.

Moving in the direction of unification we consider the inductive learning technique
called Group Method of Data Handling (GMDH), the theory originated from the theory
of perceptron and is based on the principle of self-organization. It was developed to solve
the problems of pattern recognition, modeling, and predictions of the random processes. The
new algorithms that are based on the inductive approach are very similar to the processes
in our brain. Scientists who took part in the development have accepted "this science" as
a unification of pattern recognition theory, cybernetics, informatics, systems science, and
various other fields. Inspite of this, "this science" is quickly developing, and everybody
feels comfortable in using "this science" for complex problem-solving. This means that this
new scientific venture unifies the theories of pattern recognition and automatic control into
one metascience. Applications include the studies on environmental systems, economical
systems, agricultural systems, and time-series evaluations. The combined Control Systems
(CCS) group of the Institute of Cybernetics, Kiev (Ukraine) has been a pioneering leader in
many of these developments. Contributions to the field have come from many research areas
of different disciplines. This indicates a healthy breadth and depth of interest in the field
and a vigor in associated research. Developments could be more effective if we become
more attentive to one another.
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Since 1968 layered perceptron-like networks have been used in inductive learning al-
gorithms, particularly in the training mode. The algebraic and the finite-difference type of
polynomial equations which are linear in coefficients and nonlinear in parameters are used
for the process predictions. In the network, many arbitrary links of connection-weights are
obtained, several partial equations are generated, and the links are selected by our choice.
The approach was originally suggested by Frank Rosenblatt to choose the coefficients of
the first layer of links in a random way.

The polynomials of a discrete type of Volterra series (finite-difference and algebraic
forms) are used in the inductive approach for several purposes:

First—for the estimation of coefficients by the least-squares method using explicit or
implicit patterns of data. When the eigenvalues of characteristic equation are too small,
this method leads to very biased estimates and the quality of predictions is decreased. This
problem is avoided with the developments of objective systems analysis and cluster analysis.

Second—the polynomial equations are used for the investigation of selection character-
istic by using the consistency (Shannon's displacement) criterion of minimum according to
Shannon's second-limit theorem (analogical law is known in communication theory). The
structure of optimal model is simplified when the noise dispersion in the data is increased.
When Shannon's displacement is present, selection of two-dimensional model structures is
used. When the displacement is absent, the selection of two one-dimensional model struc-
tures are used—first, the optimal set of variables, then the optimal structure of the model
are found. The use of objective criteria in canonical form simplifies this procedure further.

Third—the use of polynomial equations are organized "by groups" in the selection proce-
dure to get a smooth characteristic with single minimum. Selection "by groups" allows one
to apply the simple stopping rule "by minimum" or "by the left corner rule." In multilevel
algorithms, for example, each group includes a model candidate of similar structure of an
equal number of members; and

Fourth—the equations are used to prove the convergence of iteration processes in multi-
layered algorithms. The convergence exists for some criteria in a mean-square sense called
internal convergence; for others it is called external convergence. In the latter case, there
is a necessity for certain "regularization" means.

This book covers almost last twenty years of research—from basic concepts to the recent
developments in inductive learning algorithms conducted by the CCS group.

Chapter 1 is concerned with the basic approach of induction and the principle of self-
organization. We also describe the selection criteria and general features of the algorithms.

Chapter 2 considers various inductive learning algorithms: multilayer, single-layered
combinatorial, multi-layered aspects of combinatorial, multi-layered with propagating resid-
uals, harmonical algorithms, and some new algorithms like correlational and orthogonalized
partial descriptions. We also describe the scope of long-range quantitative predictions and
levels of dialogue language generalization with subjective versus multilevel objective anal-
ysis.

Chapter 3 covers noise immunity of algorithms in analogy with the information theory.
We also describe various selection criteria, their classification and analysis, the aspects of
the asymptotic properties of external criteria, and the convergence of algorithms.

Chapter 4 concentrates on the description of physical fields and their representation in
the finite-difference schemes, as these are important in complex systems modeling. We also
explain the model formulations of cyclic processes.

Chapter 5 coverage is on how unsupervised learning or clustering might be carried ou^
with the inductive type of learning technique. The development of new algorithms like
objective computerized clustering (OCC) is presented in detail.



Chapter 6 takes up some of the applications related to complex systems modeling such
as weather modeling, ecological, economical, agricultural system studies, and modeling of
solar activity. The main emphasis of the chapter is on how to use specific inductive learning
algorithms in a practical situation.

Chapter 7 addresses application of inductive learning networks in comparison with the
artificial neural networks that work on the basis of averaged output error. The least mean-
square (LMS) algorithm (adaline), backpropagation, and self-organization boolean-logic
techniques are considered. Various simulation results are presented. One notes that the
backpropagation technique which is encouraged by many scientists, is only one of several
possible ways to solve the systems of equations to estimate the connection coefficients of a
feed-forward network.

Chapter 8 presents the computational aspects of basic inductive learning algorithms.
Although an interactive software package for inductive learning algorithms which includes
multilayer and combinatorial algorithms was recently released as a commercial package (see
Soviet Journal of Automation and Information Sciences N6, 1991), the basic source of these
algorithms along with the harmonical algorithm are given in chapter 8.

The book should be useful to scientists and engineers who have experience in the scientific
aspects of information processing and who wish to be introduced to the field of inductive
learning algorithms for complex systems modeling and predictions, clustering, and neural-
net computing, especially these applications.

This book should be of interest to researchers in environmental sciences, macro-economi-
cal studies, system sciences, and cybernetics in behavioural and biological sciences because
it shows how existing knowledge in several interrelated computer science areas intermesh
to provide a base for practice and further progress in matters germane to their research.

This book can serve as a text for senior undergraduate or for students in their first year
of a graduate course on complex systems modeling. It approaches the matter of information
processing with a broad perspective, so the student should learn to understand and follow
important developments in several research areas that affect the advanced dynamical systems
modeling. Finally, this book can also be used by applied statisticians and computer scientists
who are seeking new approaches.

The scope of these algorithms is quite wide. There is a wide perspective in which to
use these algorithms; for example, multilayered theory of statistical decisions (particularly
in case of short-data samples) and algorithm of rebinarization (continued values recovery
of input data). The "neuronet," that is realized as a set of more developed component-
perceptrons in the near future, will be similar to the House of Commons, in which decisions
are accepted by the voting procedure. Such voting networks solve problems related to
pattern recognition, clustering, and automatic control. There are other ideas of binary
features applied in the application of "neuronets," especially when every neuron unit is
realized by two-layered Rosenblatt's perceptron.

The authors hope that these new ideas will be accepted as tools of investigation and
practical use - the start of which took place twenty years ago for original multilayered al-
gorithms. We invite readers to join us in beginning "this science" which has fascinating
perspectives.

H. R. Madala and A. G. Ivakhnenko
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Chapter 1
Introduction

1 SYSTEMS AND CYBERNETICS

Civilization is rapidly becoming very dependent on large-scale systems of men, machines,
and environment. Because such systems are often unpredictable, we must rapidly develop a
more sophisticated understanding of them to prevent serious consequences. Very often the
ability of the system to carry out its function (or alternatively, its catastrophically failing to
function) is a property of the system as a whole and not of any particular component. The
single most important rule in the management of large scale systems is that one must account
for the entire system - the sum of all the parts. This most likely involves the discipline of
"differential games." It is reasonable to predict that cybernetic methods will be relevant to
the solution of the greatest problems that face man today.

Cybernetics is the science of communication and control in machines and living creatures
[133]. Nature employs the best cybernetic systems that can be conceived. In the neurolog-
ical domain of living beings, the ecological balance involving environmental feedback, the
control of planetary movements, or the regulation of the temparature of the human body,
the cybernetic systems of nature are fascinating in their accuracy and efficiency. They are
cohesive, self-regulating and stable systems; yet they do have the remarkable adaptability to
change and the inherent capacity to use experience of feedback to aid the learning process.

Sustained performance of any system requires regulation and control. In complicated ma-
chinery the principles of servomechanism and feedback control have long been in effective
use. The control principles in cybernetics are the error-actuated feedback and homeostasis.
Take the case of a person driving a car. He keeps to the desired position on the road by
constantly checking the deviation through visual comparison. He then corrects the error by
making compensating movements of the steering wheel. Error sensing and feedback are
both achieved by the driver's brain which coordinates his sight and muscular action. Home-
ostasis is the self-adjusting property that all living organisms possess and that makes use of
feedback from the environment to adjust metabolism to changing environmental conditions.
Keeping the temperature of the human body constant is a good example of homeostasia.

The application of cybernetics to an environmental situation is much more involved than
the servomechanism actuating "feedback correction." The number of variables activating in
the system are plentiful. The variables behave in stochastic manner and interactive relation-
ships among them are very complex. Examples of such systems in nature are meteorological
and environmental systems, agricultural crops, river flows, demographic systems, pollution,
and so on. According to complexity of interactions with various influences in nature, these
are called cybernetical systems. Changes take place in a slow and steady manner, and any



suddenness of change cannot be easily perceived. If these systems are not studied contin-
uously by using sophisticated techniques and if predictions of changes are not allowed to
accumulate, sooner or later the situation is bound to get out of hand.

The tasks of engineering cybernetics (self-organization modeling, identification, optimal
control, pattern recognition, etc.) require development of special theories which, although
look different, have many things in common. The commonality among theories that form
the basis of complex problem-solving has increased, indicating the maturity of cybernetics
as a branch of science [37]. This leads to a common theory of self-organization model-
ing that is a combination of the deductive and inductive methods and allows one to solve
complex problems. The mathematical foundations of such a common theory might be
the approach that utilizes the black box concept as a study of input and output, the neu-
ral approach that utilizes the concept of threshold logic and connectionism, the inductive
approach that utilizes the concept of inductive mechanism for maintaining the composite
control of the system, the probabilistic approach that utilizes multiplicative functions of
the hierarchical theory of statistical decisions, and Godel's mathematical logic approach
(incompleteness theorem) that utilizes the principle of "external complement" as a selection
criterion.

The following are definitions of terms that are commonly used in cybernetic literature
and the concept of black box.

1.1 Definitions

1. A system is a collection of interacting, diverse elements that function (communicate)
within a specified environment to process information to achieve one or more desired
objectives. Feedback is essential, some of its inputs may be stochastic and a part of
its environment may be competitive.

2. The environment is the set of variables that affects the system but is not controlled
by it.

3. A complex system has five or more internal and nonlinear feedback loops.
4. In a dynamic system the variables or their interactions are functions of time.

5. An adaptive system continues to achieve its objectives in the face of a changing
environment or deterioration in the performance of its elements.

6. The rules of behavior of a self-organizing system are determined internally but mod-
ified by environmental inputs.

7. Dynamic stability means that all time derivatives are controlled.
8. A cybernetic system is complex, dynamic, and adaptive. Compromise (optimal) con-

trol achieves dynamic stability.

9. A real culture is a complex, dynamic, adaptive, self-organizing system with human
elements and compromise control. Man is in the feedback loop.

10. A cybernetic culture is a cybernetic system with internal rules, human elements, man
in the feedback loop, and varying, competing values.

11. Utopia is a system with human elements and man in the feedback loop.

The characteristics of various systems are summarized in Table 1.1, where 1 represents
"always present" and a blank space represents "generally absent." The differences among
the characteristics of Utopia and cybernetic culture are given in Table 1.2.



Table 1.1. Characteristics of various systems

Characteristics

Collection of interacting,
diverse elements, process
information, specified
environment, goals
feedback

At least five internal and
nonlinear feedback loops

Variables and interactive
functions of time

Changing environment
deteriorating elements

Internal rules

Compromise (Optimal)
control

Human elements

Dynamic stability

Man in feedback loop

Values varying in time
and competing

System

1

Complex
system

1

1

Dynamic
system

1

1

Adaptive
system

1

1

Self-organi-
zing system

1

1

Cybernetic
system

1

1

1

1

1
1

1

1

1

Real
culture

1

1

1

1

1

1
1

1

1

Cybernetic
culture

1

1

1

1

1

1
1

1

1

1

1

Utopia

1

1

1



Table 1.2. Differences among Utopia and cybernetic culture

Characteristic

Size
Complex
Environment
Elements deteriorate
Rules of behavior
Control
Stability
Values
Experimentation

Utopia

Small
No
Static, imaginery
No
External
Suboptimized
Static
Fixed
None

Cybernetic culture

Large
Yes
Changing, real
Yes
Internal
Compromised
Dynamic
Varying, Competing
Evolutionary operation

1.2 Model and simulation

Let us clarify the meaning of the words model and simulation. At some stage a model
may have been some sort of small physical system that paralleled the action of a large
system; at some later stage, it may have been a verbal description of that system, and at
a still later - and hopefully more advanced - stage, it may have consisted of mathematical
equations that somehow described the behavior of the system.

A model enables us to study the various functions and the behavioral characteristics of
a system and its subsystems as well as how the system responds to given changes in inputs
or reacts to changes in parameters or component characteristics. It enables us to study the
extent to which outputs are directly related to changes in inputs - whether the system tends
to return to the initial conditions of a steady state after it has been disturbed in some way,
or whether it continues to oscillate between the control limits. A cybernetic model can help
us to understand which behavior is relevant to or to what extent the system is responsible
for changes in environmental factors.

Simulation is a numerical technique for conducting experiments with mathematical and
logical models that describe the behavior of a system on a computer over extended periods of
time with the aim of long-term prediction, planning, or decision-making in systems studies.
The most convenient form of description is based on the use of the finite-difference form
of equations.

Experts in the field of simulation bear a great responsibility, since many complex prob-
lems of modern society can be properly solved only with the aid of simulation. Some of
these problems are economic in nature. Let us mention here models of inflation and of the
growing disparity between rich and poor countries, demographic models, models for in-
creased food production, and many others. Among the ecological problems, primary place
is occupied by problems of environmental pollution, agricultural crops, water reservoirs,
fishing, etc. It is well known that mathematical models, with the connected quantities that
are amenable to measurement and formalization, play very important roles in describing
any process or system. The questions solved and the difficulties encountered during the
simulation complex systems modeling are clearly dealt with in this book.

It is possible to distinguish three principal stages of the development of simulation:

We are still at the first stage; man-machine dialogue systems are hardly used at this time.
Predictions are realized in the form of two or three volumes of data tables compiled on the



basis of the reasoning of "working teams of experts" who basically follow certain rules of
thumb. Such an approach can be taken as "something is better than nothing." However,
we cannot stay at this stage any longer.

The second stage, involving the use of both experts and computers, is at present the most
advanced. The participation of an expert is limited to the supplying of proper algorithms in
building up the models and the criteria for choosing the best models with optimal complexity.
The decisions for contradictory problems are solved according to the multi-objective criteria.

The third stage, "computers without experts," is also called "artificial intelligence sys-
tems." The man-machine dialogue system based on the methods of inductive learning
algorithms is the most advanced method of prediction and control. It is important that the
artificial intelligence systems operate better than the brain by using these computer-aided
algorithms. In contrast to the dialogue systems, the decisions in artificial intelligence sys-
tems are made on the basis of general requests (criteria) of the human user expressed in a
highly abstract metalanguage. The dialogue is transferred to a level at which contradictions
between humans are impossible, and, therefore, the decisions are objective and convincing.
For example, man can make the requirement that "the environment be clean as possible,"
"the prediction very accurate," "the dynamic equation most unbiased," and so on. Nobody
would object to such general criteria, and man can almost be eliminated from the dialogue
of scientific disputes.

In the dialogue systems, the decisions are made at the level of selection of a point in
the "Pareto region" where the contradiction occurs. This is solved by using multi-criterion
analysis. In artificial intelligence systems, the discrete points of Pareto region are only inputs
for dynamic models constructed on the basis of inductive learning algorithms. Ultimately,
the computer will become the arbiter who resolves the controversies between users and will
play a very important role in simulations.

1.3 Concept of black box

The black box concept is a useful principle of cybernetics. A black box is a system that is
too complex to be easily understood. It would not be worthwhile to probe into the nature of
interrelations inside the black box to initiate feedback controls. The cybernetic principle of
black box, therefore, ignores the internal mechanics of the system but concentrates on the
study of the relationship between input and ouput. In other words, the relationship between
input and output is used to learn what input changes are needed to achieve a given change
in output, thereby finding a method to control the system.

For example, the human being is virtually a black box. His internal mechanism is be-
yond comprehension. Yet neurologists have achieved considerable success in the treatment
of brain disorders on the basis of observations of a patient's responses to stimuli. Typical
cybernetic black box control action is clearly discernible in this example. Several complex
situations are tackled using the cybernetic principles. Take the case for instance, of predic-
tions of agricultural crop productions. It would involve considerable time and effort to study
the various variables and their effect on each other and to apply quantitative techniques of
evaluation. Inputs like meteorological conditions, inflow of fertilizers and so on influence
crop production. It would be possible to control the scheduling and quantities of various
controllable inputs to optimise output. It is helpful to think of the determinants of any "real
culture" as it would be the solution of a set of independent simultaneous equations with
many unknowns.

Mathematics can be an extremely good tool in exhausting all the possibilities in that
it can get a complete solution of the set of equations (or whatever the case may be).
Many mathematicians have predicted that entirely new branches of mathematics would



someday have to be invented to help solve problems of society - just as a new mathematics
was necessary before significant progress could be made in physics. Scientists have been
thinking more and more about interactive algorithms to provide the man-machine dialogue,
the intuition, the value judgement, and the decision on how to proceed. Computer-aided
self-organization algorithms have given us the scope to the present developments and appear
to provide the only means for creating even greater cooperative efforts.

2 SELF-ORGANIZATION MODELING

2.1 Neural approach

Rosenblatt [105], [106] gives us the theoretical concept of "perceptron" based on neural
functioning. It is known that single-layered networks are simple and are not capable of
solving some problems of pattern recognition (for example, XOR problem) [95]. At least
two stages are required: X —> H transformation, and H —» Y transformation. Although
Rosenblatt insists that X —> H transformation be realized by random links, H —> Y transfor-
mation is more deterministically only realized by learned links where X, H, and Y are input,
hidden, and output vectors. This corresponds to an a priori and conditional probabilistic
links in Bayes' formulae:

(1.1)

where po is an a priori link corresponding to the X —> H transformation, p(yj/xi) are
conditional links corresponding to the H —> Y transformation, N is the sample size, m and n
are the number of vector components in X and Y, respectively. Consequently, the perceptron
structures have two types of versions: probabilistic or nonparametric and parametric. Here
our concern is parametric network structures. Connection weights among the H —> Y links
are established using some adaptive techniques. Our main emphasis is on an optimum
adjustment of the weights in the links to achieve desired output. Eventually neural nets
have become multilayered feedforward network structures of information processing as an
approach to various problem-solving.

We understand that information is passed on to the layered network through the input
layer, and the result of the network's computation is read out at the output layer. The
task of the network is to make a set of associations of the input patterns x with the output
patterns y. When a new input pattern is put in the configuration, its output pattern must be
identifiable by its association.

An important characteristic of any neural network like "adaline" or "backpropagation" is
that output of each unit passes through a threshold logic unit (TLU). A standard TLU is a
threshold linear function that is used for binary categorization of feature patterns. Nonlinear
transfer functions such as sigmoid functions are used as a special case for continuous out-
put. When the output of a unit is activated through the TLU, it mimics a biological neuron
turning "on" or "off." A state or summation function is used to compute the capacity of the
unit. Each unit is analyzed independently of the others. The next level of interaction comes
from mutual connections between the units; the collective phenomenon is considered from
loops of the network. Due to such connections, each unit depends on the state of many other
units. Such an unbounded network structure can be switched over to a self-organizing mode
by using a certain statistical learning law that connects specific forms of acquired change
through the synaptic weights, one that connects present to past behavior in an adaptive
fashion so positive or negative outcomes of events serve as signals for something else. This
law could be a mathematical function - either as an energy function which dissipates energy



into the network or an error function which measures the output residual error. A learning
method follows a procedure that evaluates this function to make pseudo-random changes in
the weight values, retaining those changes that result in improvements to obtain optimum
output response. The statistical mechanism helps in evaluating the units until the network
performs a desired computation to obtain certain accuracy in response to the input signals.
It enables the network to adapt itself to the examples of what it should be doing and to
organize information within itself and thereby learn.

Connectionist models

Connectionist models describe input-output processes in terms of activation patterns defined
over nodes in a highly interconnected network [24], [107]. The nodes themselves are
elementary units that do not directly map onto meaningful concepts. Information is passed
through the units and an individual unit typically will play a role in the representation
of multiple pieces of knowledge. The representation of knowledge is thus parallel and
distributed over multiple units. In a Connectionist model the role of a unit in the processing
is defined by the strength of its connections - both excitatory and inhibitory - to other units.
In this sense "the knowledge is in the connections," as Connectionist theorists like to put it,
rather than in static and monolithic representations of concepts. Learning, viewed within this
framework, consists of the revision of connection strengths between units. Back propagation
is the technique used in the Connectionist networks - revision of strength parameters on the
basis of feedback derived from performance and emergence of higher order structures from
more elementary components.

2.2 Inductive approach

Inductive approach is similar to neural approach, but it is bounded in nature. Research on
induction has been done extensively in philosophy and psychology. There has been much
work published on heuristic problem-solving using this approach. Artificial intelligence
is the youngest of the fields concerned with this topic. Though there are controversial
discussions on the topic, here the scope of induction is limited to the approach of problem-
solving which is almost consistent with the systems theory established by various scientists.

Pioneering work was done by Newell and Simon [96] on the computer simulation of
human thinking. They devised a computer program called the General Problem Solver
(GPS) to simulate human problem-solving behavior. This applies operators to objects to
attain targetted goals; its processes are geared toward the types of goals. A number of
similarities and differences among the objective steps taken by computer and subjective
ways of a human-operator in solving the problem are shown. Newell and Simon [97] and
Simon [113] went on to develop the concepts on rule-based objective systems analysis.
They discussed computer programs that not only play games but which also prove theorems
in geometry, and proposed the detailed and powerful variable iteration technique for solving
test problems by computer.

In recent years, Holland, Holyoak, Nisbett and Thagard [25] considered, on similar
grounds, the global view of problem-solving as a process of search through a state space;
a problem is defined by an initial state, one or more goal states to be reached, a set of
operators that can transform one state into another, and constraints that an acceptable solution
must meet. Problem-solving techniques are used for selecting an appropriate sequence of
operators that will succeed in transforming the initial state into a goal state through a series
of steps. A selection approach is taken on classifying the systems. This is based on an
attempt to impose rules of "survival of the fittest" on an ensemble of simple productions.



Figure 1.1. Multilayered induction for gradual increase of complexity in functions

This ensemble is further enhanced by criterion rules which implement processes of genetic
cross-over and mutation on the productions in the population. Thus, productions that survive
a process of selection are not only applied but also used as "parents" in the synthesis of
new productions. Here an "external agent" is required to play a role in laying out the
basic architecture of those productions upon which both selective and genetic operations
are performed. These classification systems do not require any a priori knowledge of the
categories to be identified; the knowledge is very much implicit in the structure of the
productions; i.e., it is assumed as the a priori categorical knowledge is embedded in the
classifying systems. The concepts of "natural selection" and "genetic evolutions" are viewed
as a possible approach to normal levels of implementation of rules and representations in
information processing models.

In systems environment there are dependent (y1,y2,...,yn) and independent variables
(x1,x2,... ,xm). Our task is to know which of the independent variables activate on a
particular dependent variable. A sufficient number of general methods are available in
mathematical literature. Popular among them is the field of applied regression analysis.
However, general methods such as regression analysis are insufficient to account for complex
problem-solving skills, but those are backbone for the present day advanced methods. Based
on the assumption that composite (control) systems must be based on the use of signals that
control the totality of elements of the systems, one can use the principle of induction; this
is in the sense that the independent variables are sifted in a random fashion and activated
them so that we could ultimately select the best match to the dependent variable.

Figure 1.1 shows a random sifting of formulations that might be related to a specific
dependent variable, where f( ) is a mathematical formulation which represents a relationship
among them. This sort of induction leads to a gradual increase of complexity and determines
the structure of the model of optimal complexity. Figure 1.2 shows another type of induction
that gives formulations with all combinations of input variables; in this approach, model of
optimal complexity is never missed. Here the problem must be fully defined. The initial
state, goal state, and allowable operators (associated with the differences among current
state and goal state) must be fully specified. The search takes place step by step at all the
units through alternative categorizations of the entities involved in the set up. This type
of processing depends on the parallel activity of multiple pieces of emperical knowledge
that compete with and complement each other based on an external knowledge in revising



Figure 1.2. Induction of functions for all combinations of input variables

the problem. Such interactive parallelism is a hallmark of the theoretical framework for
induction given here.

Simplification of self-organization is regarded as its fundamental problem from the very
beginning of its development. The modeling methods created for the last two decades based
on the concepts of neural and inductive computing ensure the solution of comprehensive
problems of complex systems modeling as applied to cybernetical systems. They constitute
an arsenal of means by which—either on the basis of notions concerning system structures
and the processes occurring in them, or on the basis of observations of the parameters of
these systems—one can construct system models that are accessible for direct analysis and
are intended for practical use.

Inductive learning methods are also called Group Method of Data Handling (GMDH), Self-
organization, sorting out, and heuristic methods. The framework of these methods differs



slightly in some important respects. As seen in Chapter 2, the inductive learning algorithms
(ILA) have two fundamental processes at their disposal: bounded network connections for
generating partial functions and threshold objective functions for establishing competitive
learning. The principal result of investigations on inductive learning algorithms (not so much
of the examples of computer-designed models presented here), is of a change in view about
cybernetics as a science of model construction, in general, and of the role of modern applied
mathematics. The deductive approach is based on the analysis of cause-effect relationships.
The common opinion is that in the man-machine dialogue, the predominant role is played by
the human operator; whereas, the computer has the role of "large calculator." In contrast, in
a self-organization algorithm, the role of human operator is passive - he is no longer required
to have a profound knowledge of the system under study. He merely gives orders and needs
to possess only a minimal amount of a priori information such as (i) how to convey to the
computer a criterion of model selection that is very general, (ii) how to specify the list of
feasible "reference functions" like polynomials or rational functions and harmonic series,
and (iii) how to specify the simulation environment; that is, a list of possible variables. The
objective character of the models obtained by self-organization is very important for the
resolution of many scientific controversies [22]. The man-machine dialogue is raised to the
level of a highly abstract language. Man communicates with the machine, not in the difficult
language of details, but in a generalized language of integrated signals (selection criteria
or objective function). Self-organization restores the belief that a "cybernetic paradise" on
earth, governed by a symbiosis between man (the giver of instructions) and machine (an
intelligent executer of the instructions) is just around the corner. The self-organization of
models can be regarded as a specific algorithm of computer artificial intelligence. Issues
like "what features are lacking in traditional techniques" and "how is it compensated in the
present theory" are discussed before delving into the basic technique and important features
of these methods.

3.1 Principal shortcoming in model development

First of all, let us recollect the important invention of Heisenberg's uncertainty principle
from the field of quantum theory which has a direct or indirect influence on later scientific
developments. Heisenberg's works became popular between 1925 and 1935 [23], [102].
According to his principle, a simultaneous direct measurement between the coordinate and
momentum of a particle with an exactitude surpassing the limits is impossible; furthermore,
a similar relationship exists between time and energy. Since his results were published,
various scientists have independently worked on Heisenberg's uncertainty principle.

In 1931, Godel published his works on mathematical logic showing that the axiomatic
method itself had inherent limitations and that the principal shortcoming was the so-called
inappropriate choice of "external complement." According to his well-known incomplete-
ness theorem [126], it is in principle impossible to find a unique model of an object on
the basis of empirical data without using an "external complement" [10]. The regulariza-
tion method used in solving ill-conditioned problems is also based on this theorem. Hence
"external complement" and "regularization" are synonyms expressing the same concept.

In regression analysis, the root mean square (RMS) or least square error determined on
the basis of all experimental points monotonically decreases when the model complexity
gradually increases. This drops to zero when the number of coefficients n of the model
becomes equal to the number of empirical points N. Every equation that possesses n
coefficients can be regarded as an absolutely accurate model. It is not possible, in principle,
to find a unique model in such a situation. Usually experienced modellers use trial and error
techniques to find a unique model without stating that they consciously or unconsciously



Figure 1.3. Variation in least square error e(A + B) and error measure of an "external complement"
A(5) for a regression equation of increasing complexity S; Oi is the model of optimal complexity

use an "external complement," necessary in principle for obtaining a unique model. Hence,
none of the investigators appropriately selects the "external complement"—the risk involved
in using the trial and error methods.

3.2 Principle of self-organization

In complex systems modeling we cannot use statistical probability distributions, like normal
distribution, if we possess only a few empirical points. The important way is to use
the inductive approach for sifting various sets of models whose complexity is gradually
increased and to test them for their accuracy.

The principle of self-organization can be formulated as follows: When the model com-
plexity gradually increases, certain criteria, which are called selection criteria or objective
functions and which have the property of "external complement," pass through a mini-
mum. Achievement of a global minimum indicates the existence of a model of optimum
complexity (Figure 1.3).

The notion that there exists a unique model of optimum complexity, determinable by
the self-organization principle, forms the basis of the inductive approach. The optimum
complexity of the mathematical model of a complex object is found by the minimum of a
chosen objective function which possesses properties of external supplementation (by the
terminology of Godel's incompleteness theorem from mathematical logic). The theory of
self-organization modeling is based on the methods of complete, incomplete and mathemat-
ical induction [4]. This has widened the capabilities of system identification, forecasting,
pattern recognition and multicriterial control problems.

3.3 Basic technique

The following are the fundamental steps used in self-organization modeling of inductive
algorithms:

1. Data sample of N observations corresponding to the system under study is required;
Split them into training set A and testing set B (N = NA + NB).



2. Build up a "reference function" as a general relationship between dependent (output)
and independent (input) variables.

3. Identify problem objectives like regularization or prediction. Choose the objective rule
from the standard selection criteria list which is developed as "external complements. "

4. Sort out various partial functions based on the "reference function. "
5. Estimate the weights of all partial functions by a parameter estimation technique using

the training data set A.
6. Compute quality measures of these functions according to the objective rule chosen

using the testing data set B.
7. Choose the best measured function as an optimal model. If you are not satisfied,

choose F number of partial functions which are better than all (this is called "freedom-
of-choice") and do further analysis.

Various algorithms differ in how they sift partial functions. They are grouped into two
types: single-layer and multi-layer algorithms. Combinatorial is the main single-layer algo-
rithm. Multi-layer algorithm is the layered feedforward algorithm. Harmonic algorithm uses
harmonics with nonmultiple frequencies and at each level the output errors are fed forward
to the next level. Other algorithms like multilevel algorithm are comprised of objective
system analysis and two-level, multiplicative-additive, and multilayer algorithms with er-
ror propagations. We go through them in detail in the second chapter. Modified variants
of multilayer algorithms were published by Japanese researchers (usually with suggestions
regarding their modifications) [78], [122], [108]. Shankar [110] compared the inductive
approach with the regression analysis with respect to accuracy of modeling for a small
sample of input data. There were other researchers [6], [7], [12], [84], [94], [109] who
solved various identification problems using this approach. Farlow [16] compiled various
works of US and Japanese researchers in a compendium form. There are a number of
investigators who have contributed to the development of the theory and to applications of
this self-organization modeling. The mathematical theory of this approach has shown that
regression analysis is a particular case of this method; however, comparison of inductive
learning algorithms and regression analysis is meaningless.

3.4 Selection criteria or objective functions

Self-organization modeling embraces both the problems of parameter estimation and the
selection of model structure. One type of algorithm generates models of different complex-
ities, estimates their coefficients and selects a model of optimal complexity. The global
minimum of the selection criterion, reached by inducting all the feasible models, is a mea-
sure of model accuracy. If the global minimum is not satisfied, then the model has not been
found. This happens in the following cases: (a) the data are too noisy, (b) there are no
essential variables among them, (c) the selection criterion is not suitable for the given task
of investigation, and (d) time delays are not sufficiently taken into account. In these cases,
it is necessary to extend the domain of sifting until we obtain a minimum. Each algorithm
uses at least two criteria: an internal criterion for estimating the parameters and an external
one for selecting the optimal structure. The external criterion is the quantitative measure of
the degree of correspondence of a specific model to some requirement imposed on it. Since
the requirements can be different, in modeling one often uses not one but several external
criteria; that is, a multicriterion selection. Successive application of the criteria is used
primarily in algorithms of objective systems analysis and multilevel long-range forecasting.
Furthermore, several criteria are necessary for increasing the noise immunity of the model-



ing. Selection criteria are also called objective functions or objective rules as they verify
and lead to the obtaining of optimal functions according to specified requirements. We can
also say that these functions are used to evaluate the threshold capacity of each unit by the
quantitative comparison of models of varying complexity necessary for selecting a subset
of the best models from the entire set of model candidates generated in the self-organization
process. If one imposes the requirement of uniqueness of choice with respect to one or
several criteria, then the application of such a criterion or group of criteria yields a unique
model of optimal complexity. We give here the typical criteria, historically the first external
criteria and their different forms.

Suppose that the entire set (sample) of the original data points N is partitioned into three
disjoint subsets A, B and C (parts of the sample) and denotes the union A U B = W. All
the criteria used in the algorithms can be expressed in terms of the estimates of the model
coefficients obtained on A, B and W and in terms of the estimates of the output variables of
the models on A, B, C and W.

We assume that the initial data (N points) are given in the form of matrices below:





estimates in the optimal model, calculated on sets A and B, differ only minimally so that
they appear to agree. The well-known absolute noise immune criterion is defined as



where Nc is the set of points in the extrapolation interval and y is the desired output. In
the problems, where balance-of-variables is not known, it can be discovered with the help
of minimum-of-bias criterion.

Regularity criterion is useful in obtaining an exact approximation of a system as well as
of a short-term prediction (for one or two steps ahead) of the processes taking place in it.
In the interpolation interval all of the models yield almost the same results (we have the
principle of multiplicity of models). In the extrapolation interval the predictions diverge,
forming a so called "fan" of predictions.

The minimum-of-bias criterion yields a narrower fan, and hence a longer prediction time
than the regularity criterion. This means that prediction is possible for several steps ahead
(medium term prediction). However, the theory of self-organization will not solve the
problems to which it is applied unless it yielded examples of exact long-term predictions.



The balance-of-variables criterion is proposed for long-range predictions. This requires
simultaneous prediction of several interrelated variables. In many examples these variables
are constructed artificially. For example, for three variables it is possible to discover the
laws:

where NC is number ef points in the prediction or examin data set.
This criterion yields reference points in the future; it requires that a law, effective up to

the present, continue into the future in the extrapolation interval; the sum of unbalances in
the extrapolation interval should be minimal. In cases where exact relations are not known
in the interpolation interval, these can be obtained by using minimum bias criterion in one
of the inductive learning algorithms.

The correctness of the prediction is checked according to the values of the criterion. By
gradually increasing the prediction time, we arrive at a prediction time for which it is no
longer possible to find an appropriate trend in the fan of a given "reference function." The
value of the minimum function begins to increase; thus appropriate action must be taken.
For example, it may be necessary to change the "reference function." For a richer choice
of models, it is also recommended that one go from algebraic to finite-difference equations,
take other system variables, estimate the coefficients and others.

3.5 Heuristics used in problem-solving

The term heuristic is derived from the Greek word eureka (to discover). It is defined as "ex-
periential, judgemental knowledge; the knowledge underlying 'expertise'; rules of thumb,
rules of good guessing, that usually achieve desired results but do not guarantee them"
[17]. Heuristics does not guarantee results as absolute as conventional algorithms do, but it



offers efficient results that are specific and useful most of the time. Heuristic programming
provides a variety of ways of capturing human knowledge and achieving the results as
per the objectives. There is a slight controversy in using heuristics in building up expert
and complex systems studies. Knowledge-base and knowledge-inference mechanisms are
developed in expert systems. The performance of an expert system depends on the retrieval
of the appropriate information from the knowledge base and its inference mechanism in
evaluating its importance for a given problem. In other words, it depends on how effective
logic programming and the building up of heuristics is in the mechanisms representing ex-
periential knowledge. The main task of heuristics in self-organization modeling is to build
up better man-machine information systems in complex systems analysis thereby reducing
man's participation in the decision-making process (with higher degree of generalization.)

Basic modeling problems

Modeling is used for solving the problems: (i) systems analysis of the interactions of
variables in a complex object, (ii) structural and parametric identification of an object, (iii)
long-range qualitative (fuzzy) or quantitative (detailed) prediction of processes, and (iv)
decision-making and planning.

Systems analysis of the interactions of variables precedes identification of an object. It
enables us not only to find the set of characteristic variables but also to break it into two
subsets: the dependent (output) variables and the independent (input or state) variables
(arguments or factors).

In identification, the output variables are given and one will need to find the structure
and parameters of all elements. Identification leads to a physical model of the object, and
hence can be called the determination of laws governing the object. In the case of noisy
data, a physical model can only be used for determining the way the object acts and for
making short-range predictions. Quantitative prediction of the distant future using such
physical model is impossible. Nevertheless, one is often able to organize a fuzzy qualitative
long-range prediction of the overall picture of the future with the aid of so-called loss of
scenarios according to the "if-then" scheme. There is a basic difference between the two
approaches to modeling. The only way to construct a better mathematical model is to use
one's experience ("heuristics or rules of thumb"). Experience, however, can be in the form
of the author's combined representations of the model of the object or of the empirical
data - the results of an active or passive experiment. The first kind of experiment leads to
simulation modeling and the second to the experimental method of inductive learning or
self-organization modeling. The classical example of simulation modeling is the familiar
model of world dynamics [20]. A weak point with simulation method is the fact that the
modeller is compelled to exhibit the laws governing all the elements, including those he is
uncertain about or which he thinks are simply less susceptible to simulation. In contrast to
simulation modeling, the inductive approach chooses the structure of the model of optimal
complexity by testing many candidate models according to an objective function.

In mathematical modeling, certain statistical rules are followed to obtain solutions. These
rules, based on certain hypothesis, help us in achieving the solutions. If we take the problem
of pattern classification, a discriminant function in the form of a mathematical equation is
estimated using some empirical data belonging to two or more classes. The mathematical
equation is trained up using a training data set and is selected by one of the statistical
criterion, like minimum distance rule. The second part of data of discriminant function is
tested for its validation. Here our objective is to obtain optimal weights of the function
suited for the best classification; this is mainly based on the criterion used in the procedure,
the data used for training and testing the function, and the parameter estimation technique



used for this purpose. Obtaining a better function depends on all these factors and how
these are handled by an experienced modeller. This depends on the experience and on the
building up of these features as heuristics into the algorithm. This shows the role of the
human element in the feedback loop of systems analysis.

Developing a mathematical description according to the input-output characteristics of a
system, and generating partial functions by linear combinations of the input arguments from
the description, splitting of data into number of sets and design of "external complement"
as a threshold objective function are noted as common features established in learning
mechanism of the inductive algorithms. The output response of the network modeling
depends highly on how these features are formed in solving a specific problem. Depending
on the researcher's experience and knowledge about the system, these features are treated
as heuristics in these algorithms.

Mathematical description of the system

A general relationship between output and input variables is built up in the form of a
mathematical description which is an overall form of relationship refering to the complex
system under study. This is also called "reference function." Usually the description is
considered a discrete form of the Volterra functional series which is also called Kolmogorov-
Gabor polynomial:





for i = 1,2, 3,4. These types of polynomials are also used in studies of inflation stability.
(vi) One must take necessary care when the mathematical description is described. The

following are four features to improve, in a decisive manner, the existing models of complex
objects and to give them an objective character.

1. Descriptions that are limited to a certain class of equations and to a certain form of
support functions lead to poor informative models with respect to their performance
on predictions. For example, a difference equation with a single delayed argument
with constant coefficients is considered a "reference function":

(137)

The continuous analogous of such equation is first-order differential equation; the
solution of such equation is an exponential function. If many variants are included in
the description, the algorithm sorts out the class of equations and support functions
according to the choice criteria.

2. If the descriptions are designed with arbitrary output or dependent variables, then
output variables are unknown. Those types of descriptions lead to biased equations.
Inductive learning algorithms with special features are used to choose the leading
variables.

3. There is a wrong notion that physical models are better for long-range predictions.
The third feature of the algorithms is that nonphysical models are better for long-range
predictions of complex systems. Physical models (that is, models isomorphic to an
object which carry over the mechanism of its action), in the case of inexact data are
unsuitable for quantitative long-range prediction.

4. The variables which hinder the object of the problem must be recognized. The fourth
feature of the algorithms is that predictions of all variables of interest are found as
functions of "leading" variables.

Splitting data into training and testing sets

Most of the selection criteria require the division of the data into two or more sets. In
inductive learning algorithms, it is important to efficiently partition the data into parts
(the efficiency of the selection criteria depends to a large extent on this). This is called
"purposeful regularization." Various ways of "purposeful regularization" are as below:

1. The data points are grouped into a training and a checking sequence. The last point
of the data belongs to the checking sequence.

2. The data point are grouped into training and checking sequences. The last point
belongs to the training sequence.

3. The data points are arranged according to the variance and are grouped into training
and testing parts. This is the usual method of splitting data. Half of the data with the
higher values is used as the training set and another half is used as the testing set.

4. The data points represent the last year. Points correspond to the past data for all years
that differ from the last by a multiple of prediction interval Tpre. For example, the
last year in the data table corresponds to the year 1990; prediction interval is made
for the year 1994 (ie., Tpre = 4 years). The checking sequence comprises the data
for the years 1990, 1986, 1982, 1978, etc. and the other data belong to the training
sequence.



5. The checking sequence consists of only one data point. For example, if we have data
of N years and the prediction interval is Tpre, then the points from 1 to N — Tpre — 1
belong to the training sequence and Nth point belongs to the checking sequence. This
is used in the algorithm for the first prediction.

The second prediction is obtained based on the same algorithm, with another
checking point which consists of N — 1 point; the training sequence contains from 1
to N — Tpre — 2 points.

The third prediction is based on the (N- 2)nd point for checking sequence and 1
to N — Tpre — 3 points for training sequence.

The predictions are repeated ten to twenty times and one obtains prediction polyno-
mials. All the polynomials are summed up and taken average of it. Each prediction is
made for an interval length of Tpre, and the series of prediction equations is averaged.

6. The data points are grouped into two sequences: the last points in time form the
training sequence; and the checking sequence is moved backward l years, where l/
depends on the prediction time and on the number of years for which the prediction
is calculated; i. e., it indicates the length of the checking sequence.

Although each method has its unique characteristics of obtaining the model in optimal
complexity, only under special conditions are they used. The most usual method is the third
method which has to do with the variance and helps minimize the selection layers in case
of multi-layer inductive approach.

The following are some examples to show the effect of partitioning of data.

1. It is the method of optimization of allocation of data sample to training and testing
sets. There were 14 points in the data sample. Experiments were conducted with
different proportions of training and testing sets to obtain the optimal model using
the regularity criterion. Figure 1. 4 illustrates that a choice of proportionality 9: 5 is
optimal from the point of view of the number of selection layers in the multilayer
iterative algorithm. The simplest and most adequate model was obtained with such
an allocation of points. It was noted that the regularity criterion could be taken as the
reciprocal of the mean square error in the testing set.

2. Here is another example of the effect of partitions on the global minimum achieved
by using the combined criterion c3 that is defined as

A random data of 100 points is arranged as per its variance and is divided into
proportions A : B : C, as shown in the Table 1.3. The combined criterion measure at
each layer is given for different values of Global minimum for each experiment
is indicated with "*". When , only minimum bias criterion is participated. As
the value of a decreases, the participation of increases in selecting the optimal
model. From the global values of the criteria, one can note that the optimum splitting
of data is 45:45:10.

3. One of the experiments was done by finding the required partition of empirical data
points using the extremal values of the minimum bias selection criterion on the set of



Figure 1.4. Optimum allocation of data to training and testing sets, where S is the number of selection
layers, is the error measure using regularity criterion. 1. plot of number of selection layers
and 2. chosen optimum allocation

all possible versions of data partition in a prescribed relationship [128]. It was shown
that the different possible partitions effect the global minimum.

Objective functions

Thinking of objectives in mathematical form is one of the difficult tasks in these algorithms.
Extensive has been work done in this direction and enormous contributions have been made
to the field in recent years. Most of the objective functions are related to the standard
mathematical modeling objectives such as regularization, prediction, unbiasedness and so
on. There are standard statistical criteria used by various researchers according to statistical
importance, One can also design his own set of criteria with regard to specific objectives.
The following is a brief sketch of the development of these functions.

(i) In the beginning stages of self-organization modeling (1968 to 1971), it was applied
to pattern recognition, identification, and short-range prediction problems. These problems
were solved by regularity criterion only.



Table 1.3. c3 values for different values of a with different partitions

A:B:C

a= 1 :
45:45:10
40:40:20
35:35:30

a = 0.75 :
45:45:10
40:40:20
35:35:30

a = 0.5:
45:45:10
40:40:20
35:35:30

a = 0.25 :
45:45:10
40:40:20
35:35:30

Layer:
1

0.152
0.176
0.181

0.323
0.293
0.307

0.416
0.376
0.389

0.489
0.443
0.455

2

0.053
0.052*
0.151

0.262*
0.249
0.300

0.423
0.351

0.347*

0.420
0.423
0.427

3

0.073
0.146
0.109

0.360
0.233*
0.313

0.390
0.346*
0.362

0.384
0.380*
0.420

4

0.007*
0.099

0.059*

0.362
0.306

0.281*

0.332*
0.389
0.405

0.385
0.469

0.417*

5

0.120
0.126
0.193

0.440
0.242
0.452

0.409
0.407
0.370

0.335*
0.468
0.471

6

0.048
0.158
0.097

0.440
0.263
0.374

0.400
0.408
0.370

0.369
0.467
0.427

7

0.034
0.149
0.159

0.439
0.265
0.368

0.373
0.462
0.359

0.436
0.428
0.453

where y is the desired output variable, y is the estimated output based on the model obtained
on training set A (about 70% of data), and NB, is the number of points in the testing set
(about 30% of data) used for computing regularity error.

Sometimes this criterion was used in the form of a correlation coefficient between y and
y variables or in the form of a correlation index (for nonlinear models).

(ii) Later, during 1972 to 1975, the ideas of multicriteria choice of models were developed
in pattern recognition theory, minimum bias, balance of variables, and combined criteria.
Minimum bias criterion is recommended to obtain a physical model; balance-of-variables
criterion is preferred to identify a model for long-range predictions. Various criteria like
prediction criterion and criteria for probabilistic stability were also proposed during this
period. We were convinced that the wide use of the minimum bias and balance of variables
criteria, together with the solution of the noise resistance problem, were the major ways of
improving the quality of the models.

(iii) During the eighties, there was fruitful research in the direction of developing noise
immune criteria which lead to the successful development of various algorithms such as
objective system analysis and multilevel algorithms. The noise stability of self-organization
modeling algorithms and noise immune external criteria will be discussed in Chapter 3.

There is confusion with the notations used for the selection criteria as developments
progressed through the years. Here we try to give various forms of criteria with standard
notations.

All the individual criteria, which are of quadratic form, are divided into two basic groups:
(i) accuracy criteria, which express the error in the model being tested on various parts

of the sample (example, regularity),
(ii) matching (consistent) criteria, which are a measure of the closeness of the estimates

obtained on different parts of the sample (example, minimum bias).
By adding other two groups, such as balance and dynamics (step-by-step integral) cri-

teria, all external criteria are classified into four groups, as given in the Table 1.4, where
3 is the parameter used in averaging the term and Vw'(vn,«iv) is the step-by-step integrated



output value which is initialized with the first value yo using the estimated coefficients
aw. "Symmetric" and "nonsymmetric" forms of certain criteria are shown. "Symmetric"
criterion means one in which the data information in parts A and B of the sample are used
equally; when it is not, the criterion is "nonsymmetric." These are further discussed in later
chapters. Here we have given old and new notations of these criteria; the old notation is
followed throughout the book. The new notation will be helpful in following the literature



As it is clear that the internal criteria are the criteria that participate in the interpola-
tion region in estimating or evaluating the parameters of the models; on the other hand,
the external criteria are the criteria that use the information from the extrapolation region
(partially or fully) in evaluating the models. Table 1.5 demonstrates some of these criteria,

o
where y is the ideal output value (without noise).

The inductive approach proposes a more satisfactory way to find optimum decisions in
self-organization models for identification and for short- and long-range predictions. This
is particularly useful with noisy data. Communication theory and inductive theory differ
from one another by the number of dimensions used in self-organization modeling, but they
have common analogy according to the principle of self-organization. The internal criteria
currently used in the traditional theories does not allow one to distinguish the model of
optimal complexity from the more complex overfitted ones.





















































time, and in place of the correlation function its time estimate is used

(2.76)

where T is the length of realization.
There is one-to-one correspondence between the correlation function and the power spec-

trum of the process; specifically, the power spectrum is the Fourier transform of the corre-
lation function.

(2.77)

In turn, the correlation function is defined in terms of the inverse Fourier transform,

(2.78)

i.e., the form of the correlation function depends essentially on the frequency spectrum of
the original signal. The higher the frequency of the harmonics contained in that signal,
the faster the correlation function decreases; a narrow spectrum corresponds to a broad
correlation function and vice versa. In the limiting case, the correlation function of white
noise is a delta-function with its singular point at the coordinate origin. Thus, the correlation
function is a measure of the smoothness of the process being analyzed, and it can serve as
a measure of the accuracy of prediction of its future values.

A relay autocorrelation function is called the sign-changing function A'V(T);

(2.79)

Analogously, a relay cross-correlation function is given below.

(2.80)

Relay autocorrelation functions reflect only the sign and not the magnitude of x(t). They
have properties analogous to those of ordinary correlation functions, and in particular they
coincide with them in sign. The advantage of relay functions (auto- and cross-correlations)
is in the simplicity of the apparatus used for obtaining them. When the phase of the
function >'(/) changes by 180°, the sign of the correlation function reverses. This means
that in extremal regulation systems the correlation functions (ordinary or relay) can be used
for determining which side of an extremum the system is on.

In practical computations associated with the random processes, one frequently estimates
the so-called correlation interval, which is the time TV, over which the statistical connection
between sections of the process is kept—in that the correlation moment between these
sections exceeds some given level; for example, | A(r) \ > 0.05 (Figure 2.8a).

Sometimes the meaning of the correlation interval is taken as the rectangular height /4(0)
with area equal to the area under the correlation function (Figure 2.8b).

(2.81)

This is a convenient definition in case of a nonnegative correlation function.



The correlation time or interval is also defined as half the base of a rectangle of unit
height whose area is equal to the area under the absolute value of the correlation function
(Figure 2.8c).

(2.82)

Among these three definitions we shall use the first one because of its simplicity.

3.2 Correlation interval as a measure of predictability

Various types of mathematical details (language) of modeling can be used. The influence of
the degree of detailedness (sharpness) of the modeling language on the modeling accuracy—
or in case of prediction, the limits of predictability of the process—is of great interest. One
of the simplest devices for changing the diffuseness of description of a time series is to
change the intervals of averaging (smoothing) of the data (for example, mean monthly, mean
seasonal, mean annual, mean 11 years, etc.). The spectrum of the process in question then
narrows down to the original and its correlation function broadens; that is, the correlation
interval increases. This in turn extends the scope of predicting the process.

The problem encountered now is how to estimate, at least approximately, the achievable
prediction time. The maximum achievable prediction time Tpmax of a one-step forecast is
determined by the correlation interval time called coherence time rc of the autocorrelation
function Av. This time is equal to the shift that reduces the autocorrelation function (or its
envelope) to a value determined by the allowed prediction error 8% following this level
which it no longer exceeds.

The maximum allowed prediction time of a multiple (step-by-step) forecast is equal to
the coherence time multiplied by the number of steps; i.e., Tpmax = nrc. The prediction
error increases with each integration step, which imposes a definite limit on the step-by-step
forecast. We give here a brief view on the maximum capabilities of multiple step-by-step
prediction, assuming that they are determined by the coherence time in the same way as
those for one-step prediction.

Because of one-to-one dependence between the correlation and spectral characteristics
of a random process, one can use some limiting correlation frequency as a measure of pro-
cess predictability instead of correlation interval. The spectrum amplitude for the limiting
correlation frequency is less than some threshold S(w) < 0. Obviously these measures of
diffuseness of the modeling language are not universal and are suitable only for evaluat-
ing certain mathematical modeling languages—primarily languages differing as regards the
interval of averaging of the variables.

Example 1. Let us look at the influence of the interval of averaging on the form of its
correlation function, its interval, and hence on the limit of its predictability; the example
given here is an analysis on outflow q(f) of a river over a period of one hundred years [44].
The autocorrelation functions for different averaging times are constructed.

(2.83)

where q is the mean monthly outflow, N is the number of data points, and r is the step
in computation of the correlation function. It shows that averaging of variables in time
increases the coherence time, in the same way as averaging time interval of variables over
the surface of the earth, as shown in Figure 2.10.



(a)

(b)

(c)

Figure 2.8. Three versions of defining the correlation interval



(a)

(b)

Figure 2.9. Autocorrelation functions; (a) monotonically decreasing and (b) oscillating



Figure 2.10. Qualitative variation of maximum prediction validity time Tpmax as a function of object
properties and averaging interval of variables; (a) axis of maximum prediction time with constant
averaging, (b) location of axis (a) in the plane of time and space averages

It is appropriate to remember that the achievable prediction time of a forecast depends
not only on the averaging interval of variables, but also on physical properties of the process
being predicted, as well as on the quality and characteristics of the mathematical prediction
apparatus. If an exact deterministic description of the process is known, then prediction is
reduced to detailed calculations.

For example, the motions of planets can be predicted exactly for long time intervals in
advance. Outputs of a generator of random numbers or the results of a "lotto" game cannot
be predicted as a matter of principle. These two examples are extreme cases corresponding
to "purely" deterministic objects and "purely" random objects with equiprobable outcomes.
In actual physical problems we are always located somewhere between these two extremes
(Figure 2.10a).

The autocorrelation function of a process with its coherence time contains some infor-
mation on its predictability (the degree of determinancy or randomness). The analysis of
autocorrelation functions indicates that by increasing the averaging interval of variables in
time or space we can, so to speak, shift the process from the region of unpredictability
into the region of exact and long-term calculability. Figures 2.1 la and b demonstrate the
autocorrelation functions for one with calendar averaging and another with moving averages
on the empirical data of river outflow.

One can see that with the increase in the interval of averaging of the data, the correlation
function for a single time scale becomes ever more sloping, and the correlation interval
increases. In the moving average case, a smaller step of sampling the initial data enables



Figure 2.11. Autocorrelation functions of a river outflow; (a) with calendar averages and (b) moving
averages on (1) monthly data, (2) seasonal data, and (3) annual data



us to keep unchanged the number of sample data (all monthly values), which leads to a
broadening of the spectrum of the original signal and to a corresponding narrowing of its
correlation function. The correlation function obtained in the case of moving averages
occupies an intermediate position between the correlation functions of unsmoothed data and
the data of calendar smoothing. Thus, the correlation time can serve not only as a measure
of the limit of predictability of the process, but also as a measure of detailedness of a
number of modeling languages.

Example 2. In the harmonic algorithm the trend is represented as a sum of a finite number
of harmonic components (usually the optimal number of components does not exceed m =
20).



Figure 2.12. Autocorrelation functions for languages of (1) integral, (2) algebraic and (3) differential
equations

One can see that the language of differential equations is the most diffuse of the three
modeling languages; it is more suitable for long-range predictions. This explains the
widespread use of differential equations in the equivalent analogue of finite-difference equa-
tions in modeling as compared with algebraic and integral models.

Let us take the problem of weather forecasting. Weather forecasters use data gathered by
satellite in order to predict the weather quite successfully over an extended period of time,
but this prediction is only possible in terms of a very general language. They convey the
future weather picture qualitatively ("it will be warmer," "precipitation," "cold," etc.). More
quantitative predictions require the use of mathematical models. As per various studies it is
indicated that the daily prediction interval cannot exceed 15 days and practical predictions
have even shown for a much shorter interval of time (not more than 3 to 4 days). The
mean monthly values of variables are less correlated than the average daily variables; the
maximum length of the prediction interval of mean monthly values does not exceed 3 to
4 months. Average yearly values of variables have an intermediate degree of correlation,
and the maximum achievable prediction interval of average yearly values is 8 to 10 years.
It is important to point out that the limit imposed on the interval of prediction, measured
in the same units of time, increases together with the interval over which the variables are
averaged. In other words, the interval span for average daily values is 15 days, the span
for average monthly values is 4 x 30 = 120 days, and the interval for average yearly values
is 10 x 365 = 3650 days, etc.

Reliable long term predictions of weather are frequently related to the idea of analogues.
This idea is simple and interesting: one must find an interval in the prehistoric measured
data whose meteorological characteristics are identical to the currently observed data. The
future of this interval (observed in the past) will be the best forecast at present. Neverthe-
less, attempts to apply the idea of analogues always produced results that were not very
convincing. The fact is that for such a large number of observed variables (and also many
unobserved ones) it is impossible to find exact analogues in the past. Resorting to group
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analogues, introduction of weighing coefficients for each measurement, and other measures
first bring us to regression analysis and then, after further improvements, to the inductive ap-
proach algorithms. Therefore, inductive learning can be interpreted as an improved method
of group analogues in which the analogues of the present state of the atmosphere are selected
by using special criteria and summed up with specific weighing coefficients to produce the
most probable forecast. Weather forecasting is an object whose structure switches when a
new type of circulation is established randomly at the time of equilibrium. Nevertheless, it
is possible to investigate an optimum method for overcoming the predictability limit appli-
cable to some weather variables (temperature and pressure at surface layer, etc.). This will
be discussed in later chapters. Further research is needed on this subject.

It seems that insurmountable barriers have been established for quantitative predictions.
However, the self-organization method enables one to overcome these limitations and to
solve the problem of long-term predictions, because the limit of predictability depends
on the time interval of averaging. Self-organization uses two or three averaging intervals
for correcting the variable under study; for example, the daily prediction is corrected ac-
cording to a 10-day prediction, the 10-day prediction is corrected according to the mean
monthly prediction, and the mean monthly prediction is corrected in accordance with the
average yearly prediction. In this way we can achieve a breakthrough in methods of long-
term and very long-term prediction which has heretofore not been achievable by any other
method.

3.3 Principal characteristics for predictions

The principle characteristic of achieving an objective goal is for detailed (sharp) predictions
in a low-level language which contain the greatest amount of detail while maintaining the
prediction lead time that is typically obtained by using the most general high-level language.
The more general the language, the longer the achievable prediction lead time (Figure 2.10).

Let us give here some examples indicating the levels of languages:
(i) Prediction of processes in economic and ecological systems.
A language which preserves probabilistic moments of the process is used at the upper

level to select quantitative predictions by using the mean annual values of variables and
the mean seasonal or monthly values. The middle-level language consists of modeling
mean annual values and the lower level (detailed) consists of modeling average seasonal or
monthly values.

(ii) Prediction of river flows,
The upper level uses the language which preserves the nature of probability of distribu-

tions, the middle level consists of predictions of average annual run-off, and the lower level
involves predictions of average seasonal or monthly values. The conversion from statistical
to quantitative predictions should be performed by taking into account the principle—that
is, by using rationalized (multilevel) scanning of quantitative predictions.

(iii) Long-term weather forecasting.
The upper level can be a language which preserves the weather forecast for a large region

(or a long averaging time). The middle level will then consist of predictions for small parts
of the region (or medium averaging time), and finally the lower level will give predictions
for a specific point and specific time.

The examples given above contain three levels of detailedness of the modeling language,
which is obviously not required for all problem-solving tasks.

As we know, the principle of self-organization is realized in single-layer (combinatorial)
and multilayer inductive learning algorithms. Using the basic structures of these algorithms,
multilevel prediction algorithms are operated in several different languages simultaneously,
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within which the predictions expressed in a more general language are used for selection of
an optimum quantitative prediction in the more detailed language. Several levels are needed
to overcome the "limit of predictability" of detailed predictions, and also to eliminate the
multivalued choice of a prediction on the basis of general criteria. Let us go through
different cases of self-organization modeling for clarity in multicriterion analysis.

Case of exact data

In case of exact data, exact computation takes place for prediction (for example, motion of
heavenly bodies, prediction of eclipses, etc.) from the solution of a system equations as
mathematical models of the cosmic system of bodies.

Under the conditions of exact empirical data, self-organization modeling can only have
as its purpose the discovery of laws hidden in the data. It is sufficient to use any one internal
or external criterion like regularity or minimum bias criterion in sorting out the models. It
is important to note that we do not require multicriterion choice of a model. More complex
problems arise within the field of noisy data.

Case of noisy data

It is sufficient to impose on one of the variables (usually the output) a very small additive
or multiplicative noise so that the position of the variable is changed cardinally. If we try to
obtain an optimal model using only internal criteria, we always end up with a more complex
model, that will be more accurate in the least squares sense; only external criteria provide a
model with optimal complexity. Let us consider various systems of equations describing an
object; they are not equally valuable since they are connected with measurement of different
variables. The optimal system with the fewest excessively noisy variables can be sorted out
among variants of the system of equations using the system criterion of minimum bias:

As we know from the information theory point of view, increasing the noise stability
decreases the transmission capacity; this means that with an increase in the noise level,
a model simpler than a physical model becomes optimal. (Here physical model means a
model corresponding to the governing law hidden in the noisy data.) It is expedient to
distinguish two kinds of models: (i) a physical or identification model which is suitable for
analysis of interrelations and for short-range predictions, (ii) a nonphysical or descriptive
model for long-range predictions. One can discover a physical model with various concepts
of modeling, but detailed long-range predictions are impossible without the help of inductive
learning.

If the data are noisy, even to obtain a physical model requires one to organize rational
sorting of physical models by self-organization using several criteria which have definite
physical meanings. Usually one needs a model which is not only physical but also easy to
interpret instantaneous unaveraged values of the variables; that means the model is chosen
based on the simultaneous selection of minimum bias criterion and short-range prediction
criterion.

(2.88)
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where y is the output variable, yA and yB are the estimates of the models obtained based on
the sets A and B, respectively, y is the estimated prediction, and y is the average value of y.

In the plane of two criteria, each model corresponds to its own characteristic point; the
point corresponding to the model of optimal complexity lies closer to the coordinate origin
than do the points of other models participating in the sorting. Here we can say that one
can find a physical model using both deductive reasoning of man and self-organization of
machine with respect to choice of many criteria.

In obtaining nonphysical models for long-range detailed predictions, the role of man, as
he remains the author of the model, consists of supplying the most efficient set of criteria
for sorting the models. The dialogue between man and machine is in the language of
criteria and not in the language of exact instructions. In addition, to use the minimum bias
criterion on two sets of data A and B, the step-by-step prediction criterion is to be included
for calculating the prediction error on entire interval (W = A + B) of data. The above
short-range prediction criterion is used as long-range prediction criterion i(W) as
per notation by replacing Nc with Nw for the entire range of data points. This criterion is
desirable to use not only for choosing the structure of the model but also for removing the
bias of the estimates of the coefficients in the model. In addition to these criteria, in multi-
criteria choice of an optimal nonphysical model for long-range predictions, stability criteria
of moments (upper and lower) and probabilistic characteristics of correlation functions are
used; these will be explained later in the chapter. This means that multicriterion choice is
one of the basic methods of increasing noise stability of inductive learning algorithms.

The physical and nonphysical models differ not only in their purpose but also in their
informational basis because of reasoning of the objective criteria. The arguments of phys-
ical model can be all input variables and their lagged values (for dynamic models). The
arguments of nonphysical predicting models can only include different intervals of averag-
ing and the time variables which are known on the entire interval of long-range prediction.
Physical models that are obtained are usually linear and nonphysical models are nonlinear
with respect to time.

Case of time series data

If an algorithm is used for obtaining a single "optimum" prediction (according to any criteria)
using pre-history data, then such algorithm is meant for only short-range or average-term
prediction (for one to two or three to five time intervals in advance respectively). If the
algorithm envisions the use of empirical data in order to obtain a single prediction over a
large averaging interval (for example, one year), and several predictions (in accordance to
multicriteria) over a small averaging interval of variables (for example, seasonal) in order
to use the balance criterion over the interval of predictions (ten to 20 years in advance),
then the choice of seasonal models on the basis of yearly model is done on the basis of
balance-of-predictions criterion [58], [65].
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In the same fashion one can build an algorithm which envisions over a very long av-
eraging interval (for example, 11 years) and at the same time several predictions over
shorter averaging intervals (for example, one year or one season); if the algorithm uses
a two-level balance-of-predictions criterion, then that would be successful for very long-
range predictions (40 or more years in advance) [58]. The choice of the yearly models
and the model which uses the averaging interval of 11 years is based on the following
balance-of-predictions criterion:

The rules for building up such algorithms realize the principle of "freedom of choice
of decisions" formulated by Gabor [22]. The basic long-term prediction is harmonic or
polynomial prediction of variables when the averaging interval is of maximum length.
The criterion of prediction balance "pulls up" the accuracy and the averaging time of
predictions for small averaging intervals to the accuracy and prediction time obtained when
the averaging interval is long.

Another issue where the self-organization stands firm is when a decision is to be made
in case of two or more contradictory requirements, which is called "Pareto problem." The
"Pareto region" is the region where the solutions contradict each other and which requires
the use of experts. This is achieved by the self-organization method yielding a new problem
formulation of multicriterion control selection done heuristically on the basis of physical
properties of the system to be predicted. The lead time of prediction interval usually reaches
the time of interval used for validity of the criterion. In order to eliminate multivalued
selection, scanning of forecasts for different intervals is replaced by multilevel algorithm
development as scanning of algorithms and models, generating a variety of predictions on
the basis of their external criteria.

4 DIALOGUE LANGUAGE GENERALIZATION

Complex systems analysis is based on modeling of a system with interactive elements in
order to identify the system structure and parameters, to perform various tasks like short-
and long-term predictions of processes, and to optimize the control task. Usually during
algorithm development, the computer has a passive role; that is, it is unable to participate in
creative modeling. Interpolation problems are multi-solution problems; additional data set
or a priori testing set is necessary to obtain a unique solution. Commonly used simulation
methods are based on a large volume of a priori information that is difficult to obtain.

Self-organization modeling is directed to reduce a priori information as much as possible.
The purpose of self-organization is not to eliminate human participation (it is impossible
unless a complete intelligence model is developed), but to make this participation less
laborious, reduce some specific problems, and avoid expert participation. This can be
achieved in ergatic information systems by using more generalized "man-machine" meta-
language, which uses general criteria given by man—the learning is done by the computer.
In addition to the generalized criteria, man provides the empirical data. In some cases man
may be involved in final model corrections. Here it is shown that many things still can
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4.2 Multilevel (objective) analysis

The idea of sorting many variants using some set of external criteria in the form of an
objective function in order to find a mathematical model of a given complex subject seems
unreal. Self-organization method tries to rationalize such sorting so that an optimal model
is achieved. Multilevel algorithgms of inductive learning serve just this purpose. They
allow changes of large number of variables to be considered. The model structure, which is
characterized by the number of polynomial elements and its order, is found by sorting a large
number of variants and by estimating the variants according to specific first level selection
criteria (regularity, minimum bias, balance of variables and others). If the objectivity of the
model is not achieved, then the high level criteria are used.

Here we give the concept of multilevel objective analysis under various conditions of
multicriteria. The single-level analysis using one of the basic network structures like com-
binatorial, multilayer or harmonic is sometimes not sufficient for detailed analysis and we
go for multistage analysis which is described as a multilevel algorithm. These prediction
algorithms operate in separate different languages simultaneously as the predictions at a
general language are used for obtaining a more detailed model at the next detailed lan-
guage. Several levels are very essential, as one is to overcome the limit of predictability
of detailed predictions and another is to avoid the multivalued choice of a model using the
general criteria. Thus, in the stages of these algorithms, three basic directions of dialogue
language are preserved; (i) the self-organization principle, which asserts that with gradual
increase in the complexity of model, the external criteria pass through their minima, en-
abling us to choose a model of optimum complexity, (ii) an algorithm for multilevel detailed
long-range predictions, and (iii) an algorithm for narrowing the "Pareto region" in case of
multi-criterion choice of decisions.

4.3 Multilevel algorithm

The multilevel system is subjected to all the general laws governing the behavior of mul-
tilevel decision-making systems which realize the principle of incomplete induction. As in
multilayer algorithm, here there is possibility of losing the best predictive model; an increase
of the "freedom of choice" decreases the possibility of such loss. Various principles related
to selection and optimization of "freedom of choice" in multilayer algorithm also apply to
the multilevel system of languages having different levels of details.

If we had a computer with large capacity, then the problem of selecting detailed models
could be solved by simply scanning all versions of partial models using combinatorial
algorithm with a large ensemble of criteria. Since the capacity is limited, it is necessary to
expose the basic properties of the models step by step.

In order to reduce the volume of scanning and to achieve uniqueness of choice, the
principle discussed above is realized in several levels whose schematic structure for one
version is shown in the Figure 2.14.

Let us explain the operations performed during these levels.

Objective systems analysis

The purpose of this level is to divide the system variables into output, input variables and
variables which have no substantial effect on the outputs. Here structure of and number of
equations is to be chosen in such a way that the overall model is consistent. The structure
as well as number of equations must not be changed significantly when a new data set
is added. The estimation of coefficients should not be changed. This type of sifting for





If one of the equations has high minimum bias value, then such an equation is considered
inconsistent and is excluded from the analysis. If none of the equations is good, then the
analysis fails. This can happen if the state variables are too noisy or if the given state
variables do not contain any characteristic variables. Noise immunity can be improved by
designing specific criteria; the noise immunity depends on the mathematical form of the
criterion and on the method of convolution of the criteria into general form. The second
level of such criteria are given below; the multicriteria analysis, symmetrical, and combined
criteria significantly improve the noise immunity of the algorithm.











Figure 2.17. Use of OSA for long-range predictions

Qw,qsP,qsif>qf are seasonal predicted values of same variable for winter, spring, summer,
and fall respectively.

Step-by-step integration of optimum system equations gives the desired long-term pre-
dictions simultaneously for all output variables. When there are several "leading" output
variables, the better set of models is selected on the basis of system criterion of balance of
predictions:

where s is the number of leading variables that have good and satisfactory annual predictions.
Some practical examples are presented in later chapters. The general scheme of the

multilevel algorithm is given in Figure 2.17: the first block indicates the supply of initial
data table, the second block denotes first-level analysis which is called an objective system
analysis (output variables are determined here), then onwards to two-level analysis; the third
and fourth blocks show the first stage of the two-level analysis, and fifth and sixth blocks
show the second stage of the analysis. In the first stage of two-level analysis, the third
block denotes the selection of F\ systems of equations for mean annual values of the output
variables. The fourth block denotes the choice of F2(< FI) systems of equations according
to an external criterion. In the second stage of two-level analysis the fifth block denotes
the selection of FT, systems of equations for mean quarterly or seasonal values of the output
variables. The sixth block denotes the sorting of the variants of the predictions in the space
of system structures according to the criterion of balance of predictions, and the seventh
block indicates the long-range predictions of a specific output variable.

The models used for two-level prediction with two-dimensional time count are considered
as nonphysical; for example, they include both yearly and seasonal values of the variables
simultaneously. The parameters of two-dimensional time coordinates (t and T) can also be
considered into the systems of equations for mean annual and mean seasonal data.

The reliability of choice of a better set of models will increase when the number of
scanned predictions is increased. Let p be the number of intervals of the detailed prediction
within a year (months, seasons, etc.), let s be the number of leading output variables,
and k be the number of models selected for each leading variable in accordance with the
combinatorial algorithm. Then the number of compared model sets will be C - (kp)s.



The freedom of choice can be increased by four to five times in the same length of
computer time by changing the averaging intervals to "season-year"; i.e., one can scan
through eight model versions for each season. The number of compared predictions (for
a single "leading" variable) will be Cseason-year = k& = 84 = 4096. Therefore seasonal
prediction models are preferred over monthly prediction models whenever they are adequate.

The improvement of ergatic or man-machine systems is based on the gradual reduction of
human participation in the modeling process. The human element involves errors, instability,
and undesired decisions. One approach to this problem is to specify the objectives, or—
using technical language—determine the set of criteria. Based on such objective criteria,
inductive learning algorithms are able to learn the complexities of the complex system.
In self-organization processing the experts must agree on the set of criteria of lower level
(regularity, minimum bias, balance of variables, and prediction criteria). If for some reason
they cannot come to an agreement, then the solution is to use second-level criteria based on
improvement of noise immunity. However, the important problems of sequential decision
making, (such as the set of criteria determining their sequence, level of "free choice" and
so on), are solved during this decade. Man still participates in the process but his task
is made easier. The second area is multicriteria decision making in the domain of more
"efficient solutions," where the criteria contradict each other. The solution is to use a
number of random process realizations for each probability characteristic like transition
graph, correlation function, probability distributions, etc. Additional a priori information is
needed in order to choose one realization. One may have to balance the realizations of two
processes that have two different averaging intervals for the variables (balance of seasonal
and yearly, etc).

We conclude this section by saying that the ergatic information systems do not have
any "bottle-neck" areas in which the participation of man, needed in principle, cannot be
reduced or practically eliminated by moving the decision-making process on the level with
a higher degree of generalization, where the solutions are obvious.







































































































Chapter 4
Physical Fields and Modeling

Cybernetical systems are natural systems with complex phenomena in a multi-dimensional
environment. The concept of a physical field is given here as a three-dimensional field of
(;t, y, z), where *, y are considered a surface coordinates and z, a space coordinate. Our main
task is to identify a system in a physical field using our knowledge of certain variables and
considering their interactions in the environment and with physical laws. Researchers are
experimenting to predict the behavior of various complex systems by analyzing emperical
data using advanced techniques. Resulting mathematical models must be able to extrapolate
the behavior of complex systems in (x, y) coordinates, as well as predict in time t another
dimension in the coordinate system. The possibility of better modeling is related through
the use of heuristic methods based on sorting of models, pretendents in the form of finite
difference equations, empirical data, and selection criteria developed for that purpose.

Examples of physical fields may be fields of air pollution, water pollution, meteorolog-
ical systems and so on. Observations of various variables—such as data about distributed
space, intensity, and period of variable movement—are used for identifying such fields.
It corresponds to the observations from control stations corresponding to input and output
arguments. The problem goal may be interpolation, extrapolation or prediction, where the
area of interpolation lies within the multi-bounded area, and the area of extrapolation or
prediction lies outside the area of interpolation process. Models must correspond to the
future course of processes in the area. Problems Can be further extended to short-range,
long-range or combined forecasting problems depending on principles and selection of ar-
guments. A model must correspond to the function (or solution of differential equation) that
has the best agreement with future process development. A physical model can be point-
wise or spatial (one-, two-, three-, or multi-dimensional). It can be algebraic, harmonic, or
a finite-difference equation. A model with one argument is called single-dimensional and
multi-dimensional when it has more than one argument. If the model is constructed from
the observed data in which the location of the sensors is not known, then it is point-wise. If
the data contain the information concerning the sensor locations, then the model is spatial or
distributive parametric. Spatial models require the presence of at least three spatial locations
on each axis.

In the theory of mathematical physics, physical field is represented with differential or
integro-differential equations; linear differential equations have nonlinear solutions. For
solving such equations numerically, discrete analogues in the form of finite difference equa-
tions are built up. This is done by considering two subsequent cubicles for analogue of
first derivative, three cubicals for analogue of second derivative, and so on. As the higher
analogues are taken into consideration, the number of arguments in the model structure are



correspondingly increased. In other words, the physical field is discretized in terms of the
discrete analogues or patterns. To widen the sorting, it is worthwhile to adopt different
patterns (consisting of arguments) starting from simple two-cubical patterns to patterns with
the possibility of all polynomials. Higher-ordered arguments and paired sorting of patterns
and nonlinear polynomials give the possibility of fully reexamining the majority of partial
polynomials for representing the physical field. By sorting, it is easier to "guess" the linear
character of a finite-difference equation rather than the nonlinearity of its solution. This
reduces the sorting of basis functions. The collection of data with regard to the pattern
structures, presentation to the algorithm, and evaluation of the patterns are considered as
important aspects of the inductive modeling.

1 FINITE-DIFFERENCE PATTERN SCHEMES

Discrete mathematics is based on replacing differentials by finite differences measured at
the mesh points of a rectangular spatial mesh or grid. For example, the axes of the three
dimensional coordinates x,y,z are discretized into equal sections (steps), usually taken as
the unit measurement of Ax = 1, Ay = 1, and Az = 1. The building up of finite difference
equations are based on the construction of patterns or elementary finite difference schemes.

A geometric pattern that indicates the points of the field used to form the equation
structure is called elementary pattern. A pattern is a finite difference scheme that connects
the value of a given function at the kih point with the value of several other arguments at the
neighboring points of the spatial mesh. The pattern for the solution of a specific problem
can be determined in two ways: (i) by knowing the physics of the plant (the deductive
approach), (ii) by sorting different possible patterns to select the best suited one by an
external criterion (the inductive approach). The former is out of the scope of this book and
emphasis is given to the latter through the use of inductive learning algorithms.

In a system where y is an output variable and x is an independent variable, a pattern with
mesh points within a step apart is shown in Figure 4.1. The general form of the equation
representing the complete pattern is

(4.1)

This will be more complicated if the delayed arguments are considered by introducing the
time axis / as a fourth dimension.

In actual physical problems, most of these arguments are absent because they do not in-
fluence the dependent variable. This is the difference between the actual pattern and the
complete pattern.

For example, in the linear problem of two-dimensional (x and turbulant diffusion we
have

(4.3)

where u is the flow velocity and K is the diffusion coefficient. The discrete analogue of
this equation can be written as

(</;+1 -tf) + 7i(<7/+i -^-i)-72(<?;+, -2?|+ <?!_!) = 0, (4.4)



Figure 4.1. "Complete" pattern in (x, y, z) coordinates

where 7i = f f , and 72 = ^r. In other words, we use a pattern with three arguments in the
functional form of

(4.5)

(4.9)

where the left side is the "operator" and f ( x , f) is the "remainder." The discrete analogue
of this equation takes the form of

q'+] =/(<7U!+i, <?!-,)+/(*,», (4.io)
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where x and t are the coordinate values of q'^ on the grid. f ( x , t) can be considered as a
linear trend in x and /; for example

For solving very complex problems using the inductive approach, complete polynomials
with a considerable number of terms should be used. Usually if the reference function or
"complete" polynomial has less than 20 arguments, the combinatorial algorithm is used to
select the best model. If it has more than or equal to 20 arguments, the multilayer algorithm
is used, depending on the capacity of the computer.

1.1 Ecosystem modeling

The following examples illustrate the identification of one-dimensional and multi-dimensional
physical fields related to the processes in the ecosystem.

Example 1. Usually model optimization refers to the choice of the number of time delays
considering a one-dimensional problem in time t. For the synthesis of the optimal model,
the number of time delays must be gradually increased until the selection criterion decreases.
The optimal model corresponds to the global minimum of the external criterion.

Let us consider identification of concentration of dissolved oxygen (DO) and biochemical
oxygen demand (BOD). The discrete form of the Streeter-Phelps law [9] is taken along with
the experimental data as

(4.11)

where q' is the DO concentration in mg/liter at time /; qmax is the maximum DO concentraion;
u' is the BOD in mg/liter at time t\ k\ is the rate of reaeration per day; and #2 is the rate of
BOD decrease per day.

Complete polynomials are considered as

<T =/tf,<rS<TV--V^X, « ' , « ' •
u'+l = /(4V-V-v--X^«V-V-V--X-T2), (4.12)

where r\ and T2 are time delays taken as three. The combinatorial algorithm is used
to generate all possible combinations of partial models. The data is collected in daily
intervals—65 data points are used in training and 15 points are kept for examining the
predictions. The combined criteria of "minimum bias (77^) plus prediction (/)" is used for
selecting the best model in optimal complexity. The optimal models obtained are

(4.13)

The prediction errors for the model of DO concentrations is 7% and for the model of
BOD, 14%. This shows how a physical law can be discovered using the inductive learning
approach.

The interpolation region is the space inside the three-dimensional grid with points located
at the measuring stations and which lay inside the time interval of the experimental data.
The extrapolation region in general lies outside the grid, and the prediction region lies in the
future time outside the interpolation region. Usually, the interpolation region is involved in
the training of the object. According to the Weiesstrass theorem, the characteristic feature
of the region is that any sufficiently complicated curve fits the experimental data with any
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desired accuracy. In the extrapolation and prediction regions, the curves quickly diverge,
forming so-called "fan" of predictions. The function with optimal complexity must have
the best agreement with the future process development.

The following example illustrates modeling of a two-dimensional (x, t) physical field of
an ecosystem for identification, prediction, and extrapolation. This shows that the optimal
pattern and optimal remainder can be found by sifting all possible patterns, with the possible
terms of "source function" using the multilayered inductive approach and the sequential
application of minimum bias and prediction criteria.

Example 2. The variables (i) dissolved oxygen q', (ii) biochemical oxygen demand «',
and (iii) temperature T* are measured at three stations of a water reservoir at a depth of
0.5 m. The measurements are taken eight times at 4-week intervals. As a first step, with
the measured data, a uniform two-dimensional grid (16 x 16) of data is prepared by using
quadratic interpolation and algebraic models [46].

Here two types of problems are considered: prediction and extrapolation problems. The
model formulations are considered as combination of source and operator functions with
the following arguments.

(i) Prediction problem:

(4.14)

(ii) Extrapolation problem:

(4.15)

The data tables are prepared in the order of the output and input variables in the function.
Each position of the pattern gives one data measurement of the initial table.

The complete polynomial in each case is considered second-degree polynomial. For
example, the complete polynomial for prediction of DO concentration is

(4.16)

This has 80 terms: 14 linear terms, 11 square terms, and 55 covariant terms. A multilayer
algorithm is used. In the first layer, partial models are formed and the best 80
of them are selected using the minimum bias criterion. It is repeated layer by layer until the
criterion decreases. At the last layer 20 best unbiased models are selected for considering
long-term predictions. Finally, the optimal models for each problem are chosen with regard
to the combined criterion "minimum bias (77^) plus prediction (c3)."

For prediction:

(4.17)
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For extrapolation:

(4.18)

The accuracy of these models is considerably higher for long-term predictions or extrapo-
lations of up to 10 to 20 steps ahead (the error is not over 20%).

In the literature, "Cassandra predictions" (prediction of predictions) are suggested under
specific variations in the data [1], [30]. As we all know, the fall of Troy came true as
predicted by Cassandra, the daughter of King Priam of Troy, while the city was winning
over the Hellenes. It is important that the chosen model must predict a drop/rise in the
very near future on the basis of monotonically increasing/ decreasing data, correspondingly.
If the model represents the actual governing law of the system, it will find the inflection
point and predict it exactly. Usually, the law connecting the variables is trained in the
interpolation region to represent the predicting variable. This does not remain constant in
the extrapolation region. "Cassandra predictions" explains that it is possible to identify a
governing law within the reasonable noise levels on the basis of past data using inductive
learning algorithms. For example, let us consider the model formulation as

(4.19)

where q is the output variable, u is the vector of input variables, and / is the current time.
The secret of obtaining the "Cassandra predictions" is to build up the function that has the
characteristics of variable coefficients.

To identify a gradual drop/rise in the data at a later time by predicting q, one has to
obtain the predicted values of HJ using the second function and use these predicted values in
predicting q. In other words, it works as prediction of predictions. However, the "Cassandra
predictions" demand more unbiased models (0 < r)bs < 0.05). For an unbiased equation
q = /(w,r) to have an extremum at an prediction point («'",?„), where /„ is the time the
prediction is made, it is expected that either a decrease or increase occurs in the value of
q. If the data is too noisy, it restricts the interval length of the prediction time.

Here another example is given to show that the choice of a pattern and a remainder
uniquely determines the "operator" and the "source function" of a multidimensional object.

Example 3. Identification of the mineralization field of an artesian aquifer in the steppe
regions of the Northern Crimea is considered [56], [57].

We give a brief description of the system; a schematic diagram of the object with
observation net of wells is shown in Figure 4.2. The coordinate origin is located at an
injection well. The problem of liquid filtration from a well operating with a constant flow
rate is briefed as below: an infinite horizontal seam of constant power is explored by a
vertical well of negligibly small radius. Initially the liquid in the seam is constant and the
liquid begins to flow upwards at a constant volumetric rate. From a hydrological point of
view, the object of investigation is a seam of water-soaked Neocene lime of 170 m capacity,



Figure 4.2. Location of observation wells

bounded from above and below by layers of clay that are assumed to be impermeable to
water—in the sense that it does not permitting significant passage of liquid. The average
depth of the seam is 60 m. The piezometric levels used for exploring the seam are fixed at
a depth ranging from 0 to 7 m below the earth's surface. Their absolute markings relative
to sea level vary between 0.8 and 4.0 m. In the experimental region, the water flow has a
minor deviation in the northernly direction—this agreeing with the regional declination of
the seam in the direction of the flow of subterranean waters of this area. According to the
prevailing hypothesis, the Black sea is regarded as a run-off region—this is confirmed by
the intrusion of salty waters into the aquifer, accompanied by a lowering of the water head
in the boundary region as a result of high water extraction for consumption. The aquifer has
an inhomogeneous structure, that consists of porous lime with cracks whose permeability
varies along the vertical from 8 to 200 m per 24-hour period. The mineralization of the
water varies along the vertical from 2 to 3 g/1 (as the surface of the seam) to 6 g/1 at a
depth of 100 m from the surface.

The physical law that is considered as a dynamic model representing the mineralization
is the conservation of mass. In hydrodynamics this principle is called continuity law or
"principle of close action." The equation is expressed as

(4.20)

where w, v, and w are the velocity components, Kx, Ky, and Kz are the diffusion coefficients,
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Qq is a source function for the /th element, and P is a function representing the interaction
of the terms ( it is called "remainder").

This can be expressed in the discrete analogue as follows:

(4.21)

where is taken in the general form as

(4.22)

in which Q is the water flow rate in cubic meters during time Ar, R is the distance of a
point with coordinates Jt ,y,z from the injection well, R = \f(x2 + y2 + z2}, z = z — Zo, t is
the running time from the beginning of the operation (in 24-hour periods), and 0.35 is the
optimal value determined for porosity of the medium.

There exists a unique correspondence between the adopted pattern and dynamic equation
of the physical field. The choice of pattern determines the structure of the dynamic equation,
but only of its left side operator and not of the right-side part of the equation. The optimal
pattern is determined by the inductive approach using an external criteria. The pattern
must yield the deepest minimum of the criteria. In other words, the optimization problem
is reduced to a selection of a pattern. The inductive approach is of interest because it
leads to discovery of new properties of the system. Simulation of complex systems by this
approach is very convenient for examining a large number of percolation hypotheses and
selecting the best one. The selection of the arguments in the algorithm is directly related
to the percolation hypothesis to be adopted and must have a sufficiently wide scope. In
this example, the optimal selection of arguments is based on sorting of a large number of
patterns.

The above finite difference equation is considered a reference function representing the
"complete" pattern. All the partial models corresponding to the partial patterns can be
obtained by zeroing in the terms of the reference function as is done in the "structure of
functions." This means that a specified pattern determines the operator of the left side
equation, and not the remainder. For example, for pattern no. 1 the partial function is given
as

(4.23)

Overall, there are 13 coefficients for the complete pattern. 213 — 1 partial models are
generated if the combinatorial algorithm is used. It is equivalent to the optimal selection of
arguments based on sorting a sufficiently large number of patterns. The difference data is
measured from the given region with interpolation of the q value at the intermediate points
of the mesh. The problem is reduced to the selection of an optimal pattern among a set of
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Table 4. 1. Values of the minimum bias criterion

No.

1
2
3
4
5
6
7

Value

0. 08239
0. 08239
0. 08239
0. 11075
0. 04669
0. 04669
0. 09652

No.

8
9
10
11
12
13
14

Value

0. 04669
0. 04669
0. 06546
0. 06545
0. 06545
0. 04669
0. 04669

No.

15
16
17
18
19
20
21

Value

0. 04669
0. 04669
0. 04669
0. 04669
0. 04669
0. 04669
0. 09674

patterns; i. e., a unique model that yields the deepest minimum of the combined criterion is
selected.

(4.24)

where 77^ is the normalized minimum bias criterion and A(W/A) is the normalized regularity
criterion.

The total number of feasible patterns is 26 — 1 =63. Some of the patterns are shown
in the Figure 4.3. Table 4.1 exhibits the values of the minimum bias criterion for these
patterns. The optimal pattern with regard to the combined criterion c\ is found to be pattern
9. The optimal equation is

The last two terms in the equation correspond to the remainder function.

(4.25)

Stability analysis

The stability analysis of equations of the form above was carried out. It was proved that
stability with regard to the initial data can be realized under the conditions

(4.26)

where the former is the well-known stability condition and the latter is the condition for
interconnection of the coefficients of the finite-difference equation.

2 COMPARATIVE STUDIES

As a continuation of our study on elementary pattern structures, some examples of cor-
respondence between linear differential equations and their finite-difference analogues are
given in Tables 4.2 and 4.3. Here time t is shown as one of the axes (see Figure 4.4).

For physical fields some deterministic models are usually known, they are given by
differential or integro-differential equations. Such equations from the deterministic theories
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Figure 4.3. Certain patterns among 63 feasible patterns
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Figure 4.4. Field in coordinates of x and t

may be used for choosing the arguments and functions for a "complete" reference function.
A complete pattern is made from the deterministic equation pattern by increasing its size
by one or two cells along all axes; i.e., the equation order is increased by one or two to let
the algorithm choose a more general law.

2.1 Double sorting

There are two ways of enlarging the sorting of arguments. One way is as shown in Tables
4.2 and 4.3 and starts from the simplest to the more complex pattern. Another way is by
considering higher-order arguments for each pattern and sorting them. The polynomials
with higher-order terms provide a more complete view of the set of possible polynomials.
The complexity of the polynomials increases as the delayed and other input variables are
added to them. For example, shown are the pointwise models of a variable q using simple
patterns. Without delayed arguments, it is

with one delayed argument it is

(4.27)

(4.28)

and with two delayed arguments,

</+l =/tf,<rv-2)

(4.29)
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Table 4.2. Sorting of elementary patterns and data Tables

Similarly, in case of two variables q and jc, the formulations

^ =/(9r,A

^+I ^/V^V-1,*'-1),
^f+1 =/(^,y,9'-1,y-1,^-2,y-2), (4.30)

and so on, gradually increase their complexity. In the same way, spatial models can be
developed by considering the delayed and higher-order terms. Sorting of all partial polyno-
mials means generation of all combinations of input arguments for "structure of functions"
using the combinatorial algorithm. One can see that the sorting is done in two aspects: one
is pattern-wise sorting and the other is orderwise sorting. This is called "double sorting."
These are used below for modeling of simulated air pollution fields in the example given.

One should distinguish between Tables of measuring stations and interpolated initial
data. Different patterns result in different settings of numerical field of the Table. The
measurement points are ordered as shown in the "data representation" (Tables 4.2 and 4.3).
Each position of a pattern on the field corresponds to one measurement point in the data
table. Each pattern results in its own data table; there are as many tables as there are patterns
compared. Tables resulting from the displacement of patterns with respect to the numerical
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Table 4.3. Sorting of "diagonal" type patterns and data tables
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field of data are divided for external criteria. The best pattern provides the deepest minimum
of the criteria.

2.2 Example—pollution studies

Example 4. Modeling of air pollution field. Three types of problems are formulated
[47] for modeling of the pollution field using: (i) the data of a single station, (ii) the data
about other pollution components, and (iii) combining both.

In the first problem, the finite-difference form of the model is found by using experimental
data through sorting the patterns and using the higher-ordered arguments. The number of
terms of the "complete" equation is usually much greater than the total number of data
points. In the second problem, the arguments in the finite difference equations are chosen
as they correspond to the "input-output matrix" [122] of pollution components; whereas
in the third problem, it corresponds to the "input-output matrix" of pollution components
and sources. Three problems can be distinguished based on the choice of arguments. The
first problem is based on the "principle of continuity or close action;" the second, which
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is opposite to the first, is based on the "principle of remote action." The third is based on
both principles "close and remote actions."

The number of stations that register pollution data increases each year, but sufficient
data are still not available. The inductive approach requires a relatively small number of
data points and facilitates significant noise stability according to the choice of an external
criterion. The mathematical formulations of a physical field described in connection with
the above problems compare the different approaches. Additional measurements are used
for refinement of each specific problem. In representing the pollution field, station data,
data about location, intensity and time of pollutions are used. The choice of output quantity
and input variables determines the formulations. This depends on the problem objective
(interpolation, extrapolation, or prediction) and on availability of the experimental data.

Before explaining the problem formulations, a brief description about the formation of
"input-output matrix" is given here.

Input-output matrix

The "input-output matrix" is estimated based on the linear relationships between the pol-
lution sources u and pollution concentrations q using the observation data at the stations.
The matrix is used as a rough model of the first approximation and the differences between
the actual outputs q and estimated outputs using the inductive algorithm. The pollution
model in vector form is given as q =/.«, where q is the pollution concentration at a station,
u is the intensity of the pollution source, and / is a coefficient that accounts for various
factors relating to the source and diffusion fields— is regarded as a function of the relative
coordinates between pollution source and the observation station. Other factors, such as
terrain and atmospheric count, are implicitly taken into consideration in determining / on
the basis of observation data.

For a set of sources M/, j = 1,2, • • • , m, the pollution concentration for each observation
station <?,-, i = 1,2, • • • , n is represented by

(4.31)

where

qi is the pollution concentration at the /th station; Uj is the intensity of thejth source; x[,y^
are the coordinates of the /th station; x~-,yj are the coordinates of the y'th source; n is the
number of stations and m is the number of sources.

This can be written in matrix form as

(4.32)

where

and
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Here F is called the "input-output matrix." Each element fy can be described by

(4.33)

which is estimated by using spatially distributed data. The equation obtained for one source
can be used for all other pollution sources. The matrix F is determined by applying
to each source. This is treated as a "rough" model because of its dependence on the
coordinate distances in the field. This is used to estimate the linear trend part of the system,
the remainder part, which is the unknown nonlinear part of the system, is described by

(4.34)

where

is the remainder at the ith point; N is the total number of points on the (x,y)
grid; the function is described by a polynomial of a certain degree in and
The remainder equation is estimated as an average of m source models that is identified
by using an inductive algorithm. The predictions obtained from the linear trend or rough
model are corrected with the help of a remainder model.

Problem formulations

The first problem is formulated to model the pollution field by using only the data of a few
stations; this is denoted as 1-1. Here the emphasis of modeling is to construct the pollution
field not only in the interpolation region, but also to extrapolate and predict the field in time.
Pollutants are assumed to change slowly in time so that complete information about them
is not used. Only the arguments from the stations data are included in the formulation.

1-1.

(i) for prediction

(ii) for extrapolation

(4.36)

where is the pollution parameter j measured at the station i at the time t; fj indicates
the vector of polynomial functions corresponding to j parameters. The input variables may
include delayed and higher-ordered arguments; for example, ,

at station /.
One can encounter the influence of the phenomena considering the settling of polluting

particles. External influences with the above diffusion process and source function are
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introduced. The source function includes perturbations such as the wind force vector P and
its projection on x—axis V'. In general, the formulation for prediction looks like

(4.37)

where f ( x , t) is the trend function with the coordinates of x and t is the pollution component;
similarly one can write for the extrapolation.

The second problem is formulated to model the physical field by using the "input-output
matrix" along with the above turbulant diffusion equations. This is usually recommended
when forecasting of the pollution changes in time. This has three formulations; these are
denoted by II-1, II-2, and II-3 as given below.

In the first formulation, the "input-output matrix" uses only information from the
stations. The prediction equation at the station / is

(4.38)

where qs denotes the vector of [q's,, q'~{ ' , - • • , cf~^, • • • , q's j, cf~jl, • • • , qf^T ]; j = 1, • • • , m
are pollution parameters; n is number of stations; / is a polynomial function operator; m is
the number of components. The pollution at the rth station (or field point) depends on the
values measured at the neighboring points. For example, n = 3, m = 2, and T = 2

(4.39)

77-2. In the second formulation, it uses the "input-output matrix" containing only informa-
tion about the pollutants. The prediction equation for station / is

(4.40)

where us denotes the vector of pollutants [u's , , w'rj1, • • • , u'~iT, • • • , «' iW, u'~^ ,'•'•> u's~m^ P is
the number of sources. For example, m = 2, r = 2, and p = 2

(4.41)

77-J. In the third formulation, it uses the "input-output matrix" containing the information
of neighboring stations and the pollution sources—both q and u appear in the matrix. The
prediction for station / is

(4.42)

It is good practice to add a source function Q to the above formulations in order to consider
external influences like wind force, temperature, and humidity. The complete descriptions
are obtained as sums of polynomials as was the case in the first problem. The formulations
with the source function may also be considered for multiplicative case; for example,

(4.43)



COMPARATIVE STUDIES 141

This is done if it provides a deeper minimum of the external criterion.
The third problem is formulated to model the pollution field by using the principles of

"close action" and "remote action." This has three formulations.

This uses the "close action" principle as well as information of stations forming
the "input-output matrix;" this means that a combination of 1-1 and II-1 is used in its
formulation.
7/7-2. This uses the "principle of close action" and information of pollutants forming the
"input-output matrix;" thus, a combination of 1-1 and II-2 is used in its formulation.
777-3. This uses the "principle of close action" and information of stations and sources of
pollutions from the extended "input-output matrix;" this means that a combination of 1-1
and II-3 is used in its formulation.

The above seven types of formulations are synthesized and compared for their extrapo-
lations and predictions by using a simulated physical field. The field is constructed using a
known deterministic formula that allows changes of pollution without wind and that assumes
that particles diffusion in space.

where k is the turbulant diffusion coefficient, R is the distance between station and source,
and / is time from the start of pollution to the time of measuring. The number of sources is
assumed to be one. The change of pollution source and concentration of polluting substances
are shown in Figure 4.5; the above formula is used to obtain the data. Integral values serve
as the arguments.

All polynomials are evaluated by the combined criterion c3, "bias plus prediction error."

(4.45)

where f)^s and 72(W) are the normalized minimum bias and prediction criteria, respectively.
For extrapolation error A2(C) is used instead of step-by-step prediction errors.

where 6 is the noise immune coefficient that varies from 1.5 to 3.0, and

The solutions of the first and second problems allow one to construct the field, extrapolate,
and predict along the spatial coordinates. The solution of the second problem also allows
one to interpolate, extrapolate, and predict pollution parameters at the stations. The results
show that the model, based on the "principle of close action," cannot survive alone for better
predictions compared with the model that are based on the "principle of remote action" (II-3)
and on the "combined principle" (III-2).

Model 11-3.



142 PHYSICAL FIELDS AND MODELING

Figure 4.5. (a) Change of pollution discharge in time (from the experiment) and (b) change in
concentrations of polluting substances at stations 1, 2, 3.

Model 7/7-2.

(4.49)

where j indicates the pollution component pertaining to the station 1.
Figures 4.6 to 4.8 illustrate the step-by-step predictions of all formulations. Table 4.4

gives the performance of these formulations on the given external criteria.
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Figure 4.6. Performance of model 1-1 ("close" action principle)

Table 4.4. Performance of the formulations

Formulation

1-1

II- 1
II-2
II-3

III-l
III-2
III-3

c3

0.032

0.061
0.089
0.080

0.064
0.033
0.115

ribs

0.017

0.046
0.082
0.054

0.063
0.009
0.050

A(Q

0.027

0.040
0.036
0.059

0.026
0.031
0.040

/

0.182

0.188
0.169
0.151

0.176
0.149
0.246

3 CYCLIC PROCESSES

We have studied the formulations based on the "principle of continuity or close action,"
the "principle of distant or remote action," and, to some extent the "principle of combined
action" using a combination of formulations. The "close action principle" is realized by
considering nearby cells and delayed arguments in the finite-difference analogues. The
"remote action principle" is arrived at by constructing the "input-output matrix," which is
one way of realizing this principle. The elements in the "input-output matrix" can be the
values of perturbations or values of variables in distant cells. The "combined action" gives
the way to consider the influence of both principles on the output variable.

Many processes in nature that have characteristic cyclic or seasonal trend are oscillatory.
For example, the mean monthly air temperature has characteristic maxima during the sum-
mer months and minima during the winter months. These values of maxima and minima
do not coincide with one another from year to another. Therefore, processes with seasonal
fluctuations of this kind are called cyclic in contrast with the strictly periodic processes.
They include all natural processes with constant duration—a cycle (year or day). The vari-
ations in these processes are determined by the influence of supplementary factors. Certain
agricultural productions, economical processes (sale of seasonal goods, etc.), and techno-
logical processes might be classified as cyclic. These are described by integro-differential



144 PHYSICAL FIELDS AND MODELING

Figure 4.7. Performance of (a) model II-1, (b) model H-2, and (c) model II-3 for "remote" action
principle
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Figure 4.8. Performances of (a) model III-l, (b) model III-2, and (c) model III-3 for "close" and
"remote" action principles
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equations—among such processes are the non-Markov processes. Such equations contain
terms such as moving averages (sometimes referred to as "summation patterns"). For ex-
ample, an equation of the form

has a finite-difference analogue as

The "summation pattern" represents the moving average of k cells in the interval of integra-
tion. In training the system, the moving averages take place along with the other arguments
of the model. For each position of the pattern on the time-axis, corresponding summation
patterns are considered.

The use of summation patterns for obtaining predictive models implies a change from
the principle of close- or short-range action to the principle of combined action because the
general pattern of the finite-difference scheme is doubly connected. In other words, during
self-organization modeling, two patterns are used: one for predicting the output value and
the other for the value of the sum. Predictive models have a single pattern that is based on
the "principle of close action" are suitable only for short-range predictions. For example,
weather forecasting for more than 15 days in advance using hydrodynamic equations (the
principle of close action) is impossible.

Long-range predictions require a transfer to equations based on the principle of long-
range action and combined models. In a specific sense, such models are a result of using the
interior of balance of variables based on the combined principle. The external criterion that
is based on a balance law allows specification of a point in the distant future, through which
the integral curve of stepwise prediction passes, and selects the optimal prediction model.
It enables overcoming the limit of prediction characteristic of the principle of short-range
action.

The criterion of balance-of-variables (refer to Chapter 1) is the simplest way to find
a definite relationship (a physical law) among several variables being simultaneously pre-
dicted. This is the basis of long-range prediction using the ring of "direct" and "inverse"
functions. The ring can be applied both for algebraic and finite-difference equations. The
second form of the balance-of-variables criterion is the prediction balance criterion, which
fulfills the balance law. This simultaneously uses two or more predictions that differ in the
interval of variable averaging in selecting the optimal model. For example, in choosing a
system of monthly models the algorithm utilizes the sequence of applying the criteria

(4.52)

where F\ number of models are selected out of FQ number of models using the minimum
bias criterion 77^ or prediction criterion /—in the case of a small number of data points.
Using the monthly balance criterion Bmonth, F2 number of models are selected from
Finally, using the annual balance, one optimal model or a few models (Fj,) are chosen.

Here we describe the model formulations with one-dimensional and two-dimensional
readout and the realization of the prediction balance criterion for cyclic processes.

3.1 Model formulations

One-dimensional and two-dimensional models are given for comparison.
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Figure 4.9. Pattern movement. The arrow indicates movement during training along (a) a t—axis,
and (b) a T—axis

One-dimensional time readout

Let us assume that given a sampled data, q' is the output value at time t depending on its
delayed values q'~l,q'~2, • • •. We have

where/i is the source function, which is a trend equation as q' =f\(t). The data, given in
discrete form, is designated at equal intervals of time (Figure 4.9).

Two-dimensional time readout

If the process has an apparent repetitive (seasonal, monthly) cycle, one can also apply a
two-dimensional readout. For example, let / be time measured in months and T the time
measured in years. The experimental data takes the shape of a rectangular grid (Figure 4.10).
The model includes the delayed arguments from both the monthly and yearly dimensions
in the two-dimensional fields,

(4.54)

where/i(f, T) is the two-dimensional "source function"—considered two-dimensional time
trend equation.

The trend functions are obtained through self-organization modeling by using the min-
imum bias criterion. With the one-dimensional time readout, the training of the data is
carried out using its transposition along the horizontal axis t. With the two-dimensional
time readout, training is done by transposing the pattern along the vertical axis T (Figure
4.11) for individual columnwise models or along the both axes (t,T) for a single model.
Connecting the participating delayed arguments of the output variable provides the shape
of the pattern used in the formulation.

One advantage with the data of two-dimensional time readout is that it can be used to
build up a system of equations (the seasonal fluctuations in the data are taken care of by
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(a)

(b)

Figure 4.10. Scheme for two-dimensional time readout: (a) a model using predictions of moving
averages O-^^T) an^ (b) a model using the averages cric(t_l^ as arguments.
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Figure 4.11. Schematic diagram for training of the model for the month of March by transposing
patterns q, 7- and a^(t j} along the T— axis.

the system of equations). Each model in the system of equations is valid only for the given
month and the system of equations (twelve monthly models) for the whole process. For a
long-range prediction with stepwise integration, a transition is realized from one month"s
model to the next month's model. Similarly, the idea of three-dimensional time readout can
be realized in modeling cyclic processes (for example, period of solar activity; see Figure
4.12).

Moving averages In modeling of cyclic processes, one or more of the following moving
averages are considered arguments of the model [65].

(4.55)

When one moving average is used, it is reasonable to select precisely that moving average
which ensures the deepest minimum to the model. If all possible moving averages are used,
there remain only the most significant ones—usually two averages 0-3 and a\^_ corresponding
to season and year remain more frequently than others. Moving averages can also be
considered by giving weights to the individual elements.



150 PHYSICAL FIELDS AND MODELING

Figure 4.12. Pattern representation for three-dimensional time readout, where t represents months
T years, and r units of 11.2 years (in case of solar activity).
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Monthly models

In the two-dimensional time readout, each cell of the numeric grid (/, T) is represented
through the output value q and the estimated value of a moving average a^. For example,
a monthly prediction model has the form

(4.56)

The estimated values q,j and akt T are not known in the process of prediction, but the others
can be determined from the initial data or by predictions. The monthly prediction model
(full description) for o>; T is

(4.57)

where and/4 are the polynomials. There are auxiliary variables that can be used
in the complete descriptions.

3.2 Realization of prediction balance

The balance relation b for the prediction of sth year is expressed by

(4.58)

where s = 1,2, • • • , Af and N is the number of years of observing process. The criterion of
monthly prediction balance for each month is written as

(4.59)

It is difficult to see the feasibility of the criterion in this form because we need to know akf T

to predict q,tT. We need to know q,j to predict o>r T. This requires a recursive procedure.
Assuming the initial value qtj - 0, we find a^ T, trie second value qtj, and so on until the
value of the criterion Bmonth decreases. It is necessary to eliminate either akf T or qtj from
the composition of the arguments. (Possible simplification follows below.)

The monthly prediction model for q is

(4.60)

The monthly prediction model for crk is

(4.61)

The criterion of monthly balance remains unchanged and is in usable form with the simpli-
fication in the formulations.

N

Bmonth = £X- (4'62)

«=3
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The sequential application of criteria is according to the scheme
F3(Byear).

The patterns of the above models are doubly connected (Figure 4.10). One can use the
expanded set of arguments and can also eliminate the predicted value of (TktT- One can
use the combined criterion of "minimum bias plus prediction" in place of minimum bias
criterion. When a small number of data points are used, minimum bias criterion can be
replaced by the prediction criterion for step-by-step predictions of A months ahead.

(4.63)

For example, let us assume that A = 3. To select models for the month of March, one must
obtain all possible models for March, April, and May. The predictions of these models
are used sequentially in computing the prediction criterion error. To obtain the data, the
patterns are used along the /, 7-coordinate field as indicated in Figure 4.11.

(4.64)

The criterion 7(3) demands that the average error in predictions that consider a three-month
model should be minimal. This determines the optimal March model; number of March
models are selected. Usually FI is not greater than two to three models.

The criterion of yearly balance is used in selecting all 12 models; one model for each
month is selected such that the system of 12 models would give the maximum assurance
of the most precise prediction for the year.

(4.65)

where qyear is the average yearly value computed directly and used in training. The predic-
tions (qyear) can be obtained by using a separate algorithm, such as a harmonic algorithm,
while the Byear is calculated.

Various sequences of applying criteria can be written as

(4.66)

and so on. The selection of sequence differs in a number of ways depending on the
mathematical formulation, availability of data, and user's choice.
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3.3 Example—Modeling of tea crop productions

Example 5. Modeling of a cyclic process such as tea crop production is considered here
[59], [87].

First we give a brief description of the system. The cultivation of tea on a large scale
is only about 100 years old. North Indian tea crop production accounts for 5/6 percent
of the country's tea output. Tea is cultivated in nearly all the subtropics and mountainous
regions of the tropics. When dormant, the tea shrub withstands temperatures considerably
below freezing point, but the northern and southern limits for profitable tea culture are set
by the freezing point. A well-distributed annual rain fall of 150 to 250 cms. is good for
satisfactory growth. Well drained, deep friable loam or forest land rich in organic matter
is ideal for growing the tea crop. Indian tea soils are low in lime content and therefore
somewhat acidic. The subsoil should not be hard or stiff. The fertilizer mixtures of 27 kg.
of N, 14 kg. of T^Os and 14 kg. of K^O per acre are applied in one or two doses.

In North India tea leaves are plucked at intervals of seven to ten days from April to
December; whereas in the South plucking is done throughout the year at weekly intervals
during March to May (the peak season) and at intervals of 10 to 14 days during other
months. The average yield per acre is about 230 to 280 kg. of processed tea. Vegetatively
propagated clones often give as much as 910 kg. of tea per acre. The quality of tea depends
not only on the soil and the elevation at which the plant is grown, but also on the care taken
during its cultivation and processing.

Here two cases are considered: one for modeling of North Indian tea crop productions
and another for South Indian tea crop productions. The weather variables, such as mean
monthly sunshine hours, mean monthly rain fall, and mean monthly water evaporation (data
collected from the meteorological stations during the same period), can be used in the
modeling.

The following sets of variables are considered for the model formulations.

(4.67)

where / and T are the time coordinates measured in months and years, respectively; qt,r is
considered the output variable measured at the coordinates of (r, 7); qt-tj

 and Qtj-j are
the delayed arguments at / units in months and j units in years, correspondingly; 0> f_ ( T -

^(q,-\j + qt-2,T + • • • +qt-kj) are the moving averages of length k. The weather variables
S, R, and E represent sunshine hours, rainfall, and water evaporation, correspondingly.

In modeling North Indian tea crop productions the following model formulation is adopted
for each month.

7-7.

(4.68)

Because of a small number of data points, the complete polynomial below is used as
reference function for each month.

qtj = ao+aiqt-i,T + a2qt,T-i + a^t_, T + fl4cr6,_, T - (4.69)



154 PHYSICAL FIELDS AND MODELING

The sequence of criteria, which has shown better performance than other sequences, is
shown here.

(4.70)

The total number of data points correspond to eleven years; NA = 5,NB = 5, and Nc = \.
The coefficient values of the best system of monthly models are given as

Month <

1
2
3
4
5
6
7
8
9
10
11
12

ao

0.318
-0.010
-6.730
-0.620

0.276
35.350
18.010
67.730
18.110

-10.340
-23.850
-10.530

fli

0.026
0.022

-1.040
-0.820

-1.124
0.313
1.110

-1.017

02

-0.366
-0.384

-0.084

-0.174
0.321

-0.293

a3

0.013

2.289

-1.459

3.498

a4

0.452
1.309
4.335

1.227
4.571
0.576

2.485
-2.933

The blank spaces indicate that the corresponding variable does not participated in the model.
The prediction error on the final-year data is computed as 0.0616. The system of monthly
models is checked for stability in a long-range perspective.

In modeling South Indian tea crop productions, five types of model formulations are
considered as complete polynomials that are studied independently.

Different formulations

77-7.

(4.71)

where / is a single function that considers all variables. It is considered a one-dimensional
model that represents the system.

77-2.

(4.72)

where/i is the trend function in two time coordinates;/^ is the function of delayed arguments,
moving averages, and other input variables. Use of the two-dimensional time trend function
is preferred when the initial data is noiseless and when individual components of the cyclic
processes that have a character of time variation have no effect. The behavior of/2 is
supposed to be effected by these variables.

This formulation is evaluated in two levels. First, the trend function is estimated based
on whole data, residuals are computed, and the function /2 is estimated using the residuals.
The final prediction formulation will be the summation of both.

77-3.

(4.73)

This is similar to the formulation II-1, but represents the system of 12 monthly models; 12
separate prediction formulas ft for each month.



CYCLIC PROCESSES 155

B

Figure 4.13. Selection of optimal model on two criterion analysis

12. (4.74)

This is similar to the formulation II-2, but has a system of 12 monthly models at the second
level. The trend function is a single formula, as in the formulation II-2. The residuals
are computed on all data; this data is used for identifying the system of 12 monthly models

(4.75)

Time-trend equations for each month are separately identified; in other words, the function
/I.(T) is considered a function of T for each month. The residuals are computed and the
second set/2, of the system of monthly models are obtained. This makes a set of combined
models for me system.

Each formulation is formed for its complete polynomial; combinatorial algorithm is used
in each case for sorting all possible combinations of partial polynomials as "structure of
functions." The optimal models obtained from each case are compared further for their
performance in predictions. The scheme of the selection criteria is

(4.76)

where c3 is the combined criterion with "minimum bias (77^) plus prediction (i(W))," i(W)
being the prediction criterion used for step-by-step predictions on the set W, and i(N)—the
whole data set N.

The data used in this case belong to ten years; NA = 4, NB = 4, and two years data is
preserved for checking the models in the prediction region. The simplest possible pattern
is considered for the formulations II-3, II-4, and II-5, because of the availability of a few
collected data. In the monthly models the weather variables are not considered for simplicity.
One can see the influence of such external variables in the analysis of cyclic processes. All
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12 24 Time

Figure 4.14. Performance of the best model

optimal models are compared for their step-by-step predictions of up to ten years and tested
for their stability in long-range actions. The results indicate that the formulation II-5 has
optimal ability in characterizing the stable prdictions (shown in Figures 4.13 and 4.14). The
system of monthly models in an optimum case is given below; first, the set of time trend
models is

where

(4.77)

Month /

1
2
3
4
5
6
1
8
9
10
11
12

a0

5.801
12.380
6.289
9.454

10.364
8.141
6.009
5.665
7.678
6.588
6.288
5.659

a\

0.048
-1.587

-0.082
0.368
0.937
0.057
0.076
0.316
1.917

0.076

ClJ

-.070

-.013
-.258

«3

0.070

tf4

-0.006
-.000012

-.000012

and the set of remainder models is

/2,GP,cr) = biqt^ij + b2q,j-\+b3(T3[ tT+b4vut_]r, (4.78)
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where
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Month /
1
2
3
4
5
6
7
8
9
10
11
12

*i
0.626
0.168
1.489

-0.774
1.189

-0.514
-0.162

0.355
0.334

-0.298
1.630

-0.069

b2

-0.034
-0.039

£3
-0.317
-0.923
-1.501
-1.976
-2.196

3.176
-0.647

0.109

0.931

&4

-0.260
0.292

-2.611
3.481
1.215

-1.588
1.188

-0.587
-0.190

0.132
-3.238

0.205

The blank space indicates that the corresponding variable does not participate in the monthly
model. These two sets of monthly model systems form the optimal model for an overall
system.

1-2 & 11-6. Here is another idea for forming a model formulation which is not discussed
above. This considers a harmonical trend at the first level instead of time trend.

(4.79)

where represents a single harmonic function for the whole process with the arbitrary
frequencies and/2, is the system of monthly models. At the first level the harmonic trend
is obtained as q, = /i (sin w/, cos wt) using the harmonical inductive algorithm. Residuals
(Aq, = q, — qt) are computed using the harmonic trend, then the system of monthly models
are estimated as in the above cases.

The first level of operation for obtaining the harmonical trend of tea crop productions is
shown. The data q, is considered a time series data of mean monthly tea crop productions.
The function is the sum of m harmonic components with pairwise distinct frequencies
vv,t, k = 1, 2, • • • ,m.

(4.80)

where vv, ^ w,-, / / j; 0 < w^ < TV, k = 1,2, • • • , m. The function is defined by its values in
the interval of data length jV(l < / < AT).

The initial data is divided into training NA, testing NB, and examining NC points. The
maximum number of harmonics is mmaxlN/3 (1 < m < mmux). The sorting of the partial
trends that are formed based on the combination of harmonics is done by the multilayer
selection of trends. In the first layer, the freedom of choice F best harmonics are obtained
by the selection criterion on the basis of the testing sequence, the remainders are then
calculated. In the second layer, the procedure is continued using the data of remainders and
is repeated in all subsequent layers. Finally F best harmonics are selected. The complexity
of the trends increases as long as the value of the "inbalance" decreases (refer to Chapter 2
for details on the harmonic algorithm). In the last layer, the unique solution corresponding
to the minimum of the criterion is selected. As this algorithm is based on the data of
remainders, the sifting of harmonics can be stopped usually at the second or third layer.

The data is separated into NA = 90%, NB - 6%, and NC = 4%, and mmax is considered
as eight in these cases.
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In North Indian tea crop productions model, the structure of the optimal harmonic trend
is obtained as

(4.81)

where qt is the estimated output, / is the number of layers, m, are the number of harmonic
components at each layer, and the parameters for / = 3 are given as

Layer

/

1

2
3

Components

mi

1

\
6

Frequency

wij

0.523
0.693
1.052
1.570
1.988
2.285
2.775
4.598
0.458
0.917
1.278
1.847
2.203
2.699

Coefficients

AV
-24.64
-0.64
-1.24
-0.60

0.28
-0.63

0.53
0.20

-0.68
-0.37
-0.32
-0.15
-0.12
-0.21

BU
-13.09

0.23
-2.13
-2.50
-0.08

0.16
-0.13

0.18
0.69
0.07
0.16
0.82
0.22

-0.23

The root mean square (RMS) error on overall data is achieved as 0.0943.
In South Indian tea crop productions modeling, the data is initially smoothed to reduce

the effect of noise by taking moving averages as

(4.82)

This transformation acts as a filter that does not change the spectral composition of the
process, but changes only the amplitude relation of the harmonic components [130]. The
harmonic trend for q, can be written as

(4.83)

(4.84)

The filtered data is used for obtaining the harmonic trend. For fixing the optimal smoothing
interval, the length of the summation interval L was varied from one to ten. For L < 3,
the algorithm was not effective. Lopt is achieved at 4 because it is not expedient to greatly
increase the value of L (Table 4.5). The optimal harmonic components for 1 = 3 and L = 4
are listed as

(4.85)

After simple transformations, this can be reduced to the form:
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Table 4.5. Effect of smoothing interval on the noisy data

where q, is the estimated filtered output;

Layer

i

1

2

3

Components

mi

4

5

3

Frequency

wij
0.486
0.846
1.073
2.371
0.282
0.508
0.721
1.016
1.193
0.452
0.853
1.236

Coefficients

Aij
-0.25
-0.01

0.08
-0.002

0.002
0.309
-0.26

0.11
-0.005

0.41
0.03

-0.03

BU
0.70
0.08

-0.38
0.001

0.33
0.03
0.04
0.32

-0.03
-0.21
-0.01

0.05

The RMS error on the filtered data is achieved as 0.05579. Part of the prediction results
are shown in Figure 4.15.

3.4 Example—Modeling of maximum applicable frequency (MAP)

Example 6. Modeling of maximum applicable frequency (MAP) of the reflecting iono-
spheric layer [43].

This example shows the applicability of self-organization method using the two-level
prediction balance criterion for constructing short-range hourly forecasting models for the
process of MAP variations at a preassigned point of the reflecting ionospheric layer. The
general formulation of the models for the process of MAP variations can be set down as
follows:

(4.86)

(4.87)

where qt+] is the MAP value at the time /+ 1 in MHz; is the delayed argument of q at
the time t — r; t is the time of the day and u is the vector of the external perturbations. The
size of the MAP is influenced by a large number of external perturbations, such as solar
activity, agitation of the geomagnetic field, interplanetary magnetic field, cosmic rays, and
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so on. These perturbations are estimated by several indices, such as the K- and A-indices
and the geomagnetic field components //, T7, D, etc.

Here the scope of the example is limited to the use of first formulation to compare the
performances of individual models and system of equations. The combinatorial inductive
algorithm is used in synthesizing the models.

Experiment 1. Because MAP variations depend on the time of the day, time of day is
considered one of the arguments. The following complete polynomial is considered in the
first experiment.

(4.88)

where are the time values corresponding to the output variable and its
delayed arguments.

Observations are made for five days and 65 data points were tabulated. Two series of
data are made up: one for interval of small variations (from SAM to SPM), another for
interval of sharp variations (from SPM to SAM). For these two types intervals of data,
individual models are constructed considering r = 5. The prediction criterion / is used to
select these models; for an interval of small MAP variation

(4.89)

For an interval of sharp MAP variation

Figure 4.15. Performance of the harmonic model with L = 4
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In addition to the above, another model is constructed without having to divide the data
into separate segments.

(4.91)

Figure 4.16a demonstrates the performance of predictions of these models. The thin line
indicates the actual MAP variations for 12 hours ahead, the thick line is for predictions
using two individual models, and the broken line is the predictions using the single model.
Two individual models are considerably more accurate in comparison to the single model.

Experiment 2. Here two-dimensional readout (t, T) is used—t indicates the time in hours
and T indicates the time in days. The value of the process output variable q is taken as the
average for each hour. The complete polynomial is considered as:

(4.92)

where t = 1, • • • , 24; rt and TT are the limits of the delayed arguments on both directions t
and r, correspondingly. &kt_l T,k = 2,3, • • • , L are the moving averages, maximum length
of L considered.

Combinatorial algorithm is used to select the F variants of 24 models in relation to the
combined criterion of "minimum bias plus regularity." From these F variants of 24 hourly
models, one model—the best set of 24 models—is chosen according to the prediction balance
criterion,

(4.93)

where qjj - 1, 2, • • • , N are the daily averages of MAP variations for N days; q { j , i =
1,2, • • • , 24, j = 1, 2, • • • , /V are the estimated values of the hourly values using the hourly
models by step-by-step predictions given the initial values. The hourly data was collected
for 25 days and arranged in two-dimensional readout. The system of equations obtained are
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Figure 4.16. (a) Predictions using individual models and (b) predictions using system of equations
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921,7 = 3.056+ 2.592920,7+ 2.7749,9,7-5.734(73^ + 1.2250-6^,
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924,7 = 1.683 + 0.797<7323 T (4.94)

Figure 4.16b exhibits the actual and forecast values of the MAP variations on 24-hour
duration of the interval considered. It shows that the models of this class select a basically
regular cyclical component in the process.

Inductive algorithms make it possible to synthesize more universal models to forecast
both regular and abrupt irregular MAP variations by providing the information on external
perturbations. This also makes it possible to raise forecast accuracy and anticipation time
by using prediction balance criterion with two-dimensional time readout.



Chapter 5
Clusterization and Recognition

1 SELF-ORGANIZATION MODELING AND CLUSTERING

The inductive approach shows that the most accurate predictive models can be obtained in
the domain of nonphysical models that do not possess full complexity. This corresponds
to Shannon's second limit theorem of the general communication theory. The principle of
self-organization is built up based on the Godel's incompleteness theorem. The term "self-
organization modeling" is understood as a sorting of many candidates or partial models by
the set of external criteria with the aim of finding a model with an optimal structure.

A "fuzzy" object is an object with parameters that change slowly with time. Let us
denote N as a number of data points and m as a number of variables. For N < m, the
sample is called short and the object "fuzzy" (under-determined). The greater the ratio
m/N, the "fuzzier" the object.

By describing the relationships, clustering is considered a model of an object in a "fuzzy"
language. Sorting of clusters with the aim of finding an optimal cluster is called "self-
organization clustering." Although self-organization clustering has not yet been developed
in detail, it has adapted the main principles and practical procedures from the theory of "self-
organization modeling." This chapter presents the recent developments of self-organization
clustering and nonparametric forecasting and explains how the principles of self-organi-
zation theory are applicable for identifying the structure of the most accurate and unbiased
clusterizations.

Analogy with Shannon's approach

Structural identification by self-organization modeling is directed not only toward obtaining
a physical model, but also toward obtaining a better, and not overly complicated, prediction
model. The theoretical basis of this statement is taken from the communication theory by
Shannon's second-limit theorem for transmission channels with noise. The optimal com-
plexity of clusterizations is required as the optimal frequency passband in a communication
system. Complexity must decrease as the variance of noise increases. The complexity of
the models to be evaluated is often measured by the number of parameters and the order
of the equation. The complexity of clusterization is usually measured by the number of
clusters and attributes. The complexity of a model or clusterization is determined by the
magnitude of the minimum-bias of the criterion as minimum of the Shannon-bias. The
greater the bias, the simpler the object of investigation. The measurement of bias represents
the difference of the abscissa of the characteristic point of the physical model. Bias is mea-
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sured for different models of varying complexities. However, without Shannon's approach,
it would be incomprehensible why one cannot find a physical model for noisy data and why
a physical model is not suitable for predictions. This is analogous to the noise immunity of
the criteria for template sorting in cluster analysis.

Godel and non-Godel types of systems

The inductive approach is fundamentally a different approach. It has a completely opposite
assertion to the deductive opinion of "the more complex the model, the more accurate it
is" with regard to the existence of a unique model with a structure of optimal complexity.
It is possible to find an optimal model for identification and prediction only by using the
external criteria.

The concept of "external criteria" is connected with the Godel's incompleteness theorem.
This means that the Godel type systems use a criterion realizing the support of the system on
an external medium, which is like an external controller in a feedback control system. There
is no such controller in the non-Godel type systems. Usually, the controller is replaced by
a differential element for comparison of two quantities without any explicit reference to the
external medium.

Let us recall some of the basic propositions of these theories of modeling. In case of ideal
data (without noise), both approaches produce the same choice of optimal models or cluster-
ing with the same optimal set of features. In case of noisy data, the advantage with Godel's
approach is that although the method is robust compared to the non-Godel type, it captures
the optimal robust model or clustering with its basic features. It conveys to the modeler
that it is simpler to follow traditional approaches without taking any complicated paths with
inductive approaches. However, an obvious affirmative solution to this question, in which
the training data sample does not participate, must be sought among external criteria.

One important feasibility of such a criterion that possesses the properties of an external
controller is the partitioning of data sample into two subsets A and B by the subsequent
comparison of the modeling or clustering results obtained for each of them. Various exam-
ples of constructing the criteria differ according to the initial requirement and in the degree
of fuzziness of the mathematical language.

Division of data as per dipoles

In self-organization modeling, usually the data points with a larger variance of the output
quantity are taken into the training set A and the points with a smaller variance are taken into
the testing set B. Such a division is not applicable in self-organization clustering because
"local clusters" of points for the subsamples are destroyed. The "dipoles" of the data sample
as point separations allow us to find (N/2 — 1) pairs of points nearest to one another, where
N denotes the total number of points in the sample. Figure 5.1 depicts six "dipoles" whose
vertices are used to form the sets A and B, as well as C and D. The points located closer to
the observation point / are taken into the set A, while those closer to the observation point
// are taken into the set B. The other vertices of the dipoles respectively form the sets C
and D. This is also demonstrated in one of the examples given in this chapter.

Clusterization using internal and external criteria

Cluster analysis is usually viewed as a theory of pattern recognition "without teacher"; i.e.,
without indication of a target function. The result of the process is called clusterization. We
know that the theory of clustering is not a new one. One can find a number of clustering
algorithms existing in pattern-recognition literature that allow clusterization to be obtained;
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I -1 II

Figure 5.1. Partitioning of data sets A, B from observation I and C, D from observation II

namely, to divide a given set of objects represented by data points in a multi-dimensional
space of attributes into a given number of compact groups or clusters. Most of the traditional
algorithms are used in the formation of clusters and in the determination of their optimal
number by using a single internal criterion having a meaning related to its accuracy or
information. With a single criterion, we obtain "the more clusters—the more accurate the
clusterization." It is needed for specifyng either a threshold or some constraints when the
choice of the number of clusters is made.

Here it describes algorithms for objective computer clusterization (OCC) in which clusters
are formed according to an internal, minimum-distance criterion. Their optimal number and
the composition of attributes are determined by an external, minimum-bias criterion called
a consistency or non-contradictory criterion. Any criterion is said to be external when it
does not require specification of subjective thresholds or constraints. The criteria regularity
(called precision or accuracy here), consistency, balance-of-variables, and so on, serve as
examples of external criteria. Internal criteria are those that do not form the minimum, and
therefore exclude the possibility of determining a unique model or clusterization in optimal
complexity corresponding to global minimum.

Explicit and implicit templates

The main difference between self-organization modeling and self-organization clustering
is the degree of detail of the mathematical language. In clustering analysis, one uses the
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language of cluster relationships for representing the symptoms and the distance measure-
ments as objective functions instead of equations. The synthesis of models in the implicit
form f ( x ) = 0 corresponds to the procedure of unsupervised learning (without teacher, in
the literature it is also notified as competitive learning) and in the explicit form
corresponds to the procedure of supervised learning (with teacher).

The objective system analysis (OSA) algorithm usually chooses a system that contains
three to five functions which are clearly insufficient for describing large scale systems. Such
"modesty" of the OSA algorithm is only superficial. Indeed, a small system of equations
is basic, but the algorithm identifies many other systems which embrace all the necessary
variables using the minimum-bias criterion. The final best system of equations is chosen by
experts or by further sorting of the best ones. What one really has to sort in the inductive
approach is not models, plans, or clusterings, but their explicit or implicit templates (Figure
5.2). This helps in the attainment of unimodality of the "criterion-template complexity." If
the unimodality is ensured, then the characteristics look as they do in Figure 5.3 for different
noise levels. The figures demonstrate the results of sorting of explicit and implicit templates;
i.e., in single and system models, correspondingly. These are obtained by computational
experiments that use inductive algorithms with regularity and consistent criteria. "Locus of
the minima" represents the path across the minimum values achieved at each noise level.

Self-organization of clusterization systems

The types of problems we discuss here—one is the sorting of partial models and other is
sorting of clusters—can be dealt with with some care and modeling experience. Figure
5.3b shows the curves that are characteristic for objective systems analysis. Here the model
is represented not by a single equation, but by a system of equations, and one can see a
gradual widening of the boundaries of the modeling region. There is a region which is
optimal with respect to the criterion. The problem of convolution of the partial criteria of
individual equations are encountered into a single system criterion.

The theory behind obtaining the system of equations also applies to clusterization in the
form of partial clusterization systems that differ from one another in the set of attributes and
output target functions. For example, in certain properties of the object, two independent
autonomous clusterizations of the form

have to be replaced by a system of two clusterizations being jointly considered

where and are the output components corresponding to certain properties of the object
first denote two data points corresponding to the m

input attributes.
This is analogous to the operation of going from explicit to implicit templates. The opti-

mal number of partial clusterizations forming the system is determined objectively according
to the attainable depth of the minimum of the criteria as achieved in the OSA algorithm.

Figure 5.4 illustrates the results of self-organization in sorting of clusterings by showing
a special shape of curve using two criteria: consistency and regularity. The objective based
self-organization algorithms are oriented toward the search for those clusterizations that are
unique and optimal for each noise level, although the overall consistency criterion leads to
zero as the noise variance is reduced. It is helpful to have some noise within the limits in the
data; however, the greater the inaccuracy of the data, the simpler the optimal clusterization.
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Figure 5.2. Representation of increase in complexity of (a) explicit, (b) implicit templates, and (c)
their movement in the data table (k indicates delayed index)
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Figure 5.3. Results of experiments with (a) explicit patterns using vector models and (b) implicit
patterns using objective systems analysis algorithm
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Figure 5.4. Results of experiments in clustering analysis, where LM stands for locus of the miniminima

Clusterization as investigation of a model in a "fuzzy" language

Clusterization algorithms differ according to their learning techniques that are categorized
as learning "without teacher" and learning "with teacher." This means that in the latter case,
the problem consists not only of the spontaneous division of the attribute space into clusters,
but also of establishing the correspondence of each cluster with some point or region in the
target function space. These algorithms are described for both the techniques as different
stages "with teacher" and "without teacher." In other words, it leads to clusterization not
only with the space of attributes X but also of the target function space Y, or of the united
space XY where the target function is one of the attributes. As a result, clusterization
< A r > < - > < F > o r < XY ><-»< Y > is obtained—considered a certain "fuzzy" analogue
of the model y = /(*) of the object under investigation. The obtained model is optimal
with respect to the criteria used and is unique for each object. In ideal data (without noise),
it corresponds to the true target of the physical model. In noisy data, it corresponds to
the nonphysical model—unique for that level of noise variance. Stability is considered
according to the Darwin's classification of species and Mendelev's table of elements which
confirm the uniqueness of classifications.

Artificial analogue of the target function

When the target function is not specified, it is sometimes necessary to visualize the output or
target function through certain analysis. Visualization here means to make visible that which
objectively exists but is concealed from a measurement process. This can refer to a person
making a choice of initial data, not intentionally making it nonrepresentative, arranging it
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along certain axes—"weak-strong," "many-few," "good-bad," etc.—even when the target
function is not completely known. A sample of conventionally obtained measurements thus
contains information about the target function. Therefore all clusters must be represented in
a sample for it to be representative. This is verified in various examples: in water quality
problems, samples without any direct indication of the quality spanned the entire range from
"purest" to "dirtiest" water. In tests of a person's intelligent quotient (IQ), it represents a
broad range of values (IQ = 10 - 170). Since it is also determined by experts, it is always
possible to check the idea of visualization of the target function. As results indicate, the
experimentally measured target function correlates with its artificial analogue of correlation
function (value ranges from 0.75 to 0.80), which is considered as adequate. Even for
some experiments these are of higher values. The component analysis or Karhunen-Loeve
transformation which is used to determine the analogue of the target function can be scalar,
two-dimensional or three-dimensional (not more than three) corresponding to visualization
of a scalar or a vector target function.

True, undercomplex, and overcomplex clusterizations

The view of clusterization as a model allows us to transfer the basic concepts and procedures
of self-organization modeling theory into the self-organization theory of clusterization. A
true clusterization corresponds to the so-called physical model which is unique and can be
found in ideal and complete data using the first-level external criteria.

The consistent criterion expresses the requirement of clusterization structures as unbi-
ased. Clusterization obtained using the set A must differ as little as possible from the
clusterization obtained using the set B (A U B = W). The simplest among the unbiased
(overcomplex) clusterizations is called true clusterization—the point with the optimum set
of features denoted as "actual model" in Figure 5.3b. The overcomplex ones are located
to the right of that point. Optimal clusterization corresponding to the minimum of the cri-
terion is also unique, but only for a certain level of noise variance (the trivial consistent
clusterization where the number of clusters is equal to the number of given points is not
considered here). It is determined according to the objectives of the clusterization, and it
cannot be specified. This explains the word "objective" in "objective computer clusteriza-
tion." Optimal clusterizations are found by searching the set of candidate clusterizations
differing from one another in the number of clusters and attribute ensembles. The first-level
external criteria are explained previously in self-organization modeling. The basic criteria
for clusterizations are defined analogously.

The consistency criterion of clusterizations is given as

(5.1)

where p is the number of clusters or the number of individual points subject to clusterization
in the subsets A and B; A/: is the number of identical clusters in A and B [70]. The regularity
criterion of clusterizations is measured by the difference between the number of clusters (&#)
of the attribute space in the subset B and their actual number (k) indicated by the teacher.
This is represented as

It has been established that in the problem of sorting models the values of the minimum-
bias criterion depend on the design of the experiment and on the method of its partitioning
into two equal parts. For an ideal data (without noise), the criterion is equal to zero both
for the physical model and for all the overcomplicated models. The greater the difference
between the separated sets A and B, the greater the value of the criterion. It is recommended
that one can range the data points according to the variance of the output variable, then
partition the series into equal parts of A and B. In clustering (delayed arguments are not
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considered), it is recommended that one choose a sufficiently small difference between the
sets to preserve the characteristics of different clusters. If the clusters on the sets A and B
are not similar, it is not worth using the consistent criterion. We cannot expect a complete
coincidence of subsets A and B, which is inadmissible. Consequently, the problem of sorting
clusters becomes a delicate one.

The consistent criterion is almost equal to zero for all the ensembles when the data are
exact. It is recommended that the data be partitioned in such a manner that the criterion does
not operate on the exact data. However, one can use various procedures to find the unique
consistent cluster: (i) according to regularity criterion, (ii) according to system criterion of
consistency by forming more supplementary consistent
criteria computed on other s partitions, (iii) by adding noise to the data and from there
finding the most noise-immune clustering, or (iv) by involving experts.

Necessity for regularization

Mathematical theory so far has not been able to suggest an expression for a consistency
criterion indicating the closeness of all properties of models and clusterizations for the
subsets A and B. The most widely used form of the criterion (minimum-bias criterion)
stipulates the idea that the number of clusters (kA = kB) be equal and that there be no
clusters containing different points (A/: = 0). The patterns of point divisions into A and B
must coincide completely in the case of consistent clusterization. The consistent criterion is
a criterion that is necessary but not sufficient to eliminate "false" clustrizations. This means
that a circumstance might occur that leads to nonuniqueness of the selection. Several "false"
clusterizations will be chosen along with the required consistent clusterizations. In these
situations, regularization is necessary to filter out false clusterizations.

When the consistency criterion is used in sorting, a small number of clusterizations is
found from which the most consistent one is selected—unique for each level of noise vari-
ance. For regularization, it is suggested that one use the consistent criterion once more, but
employ a different method of forming it. To obtain a unique sample while sorting and using
the consistency criterion, only a small number of clusterizations should be taken—chosen
by an auxiliary unimodal criterion. Such an auxiliary, regularizing criterion is provided
by a consistency criterion calculated on the other data sets C and D. For consistency of
clusterizations, the patterns of point divisions into A and fi, as well as C and D must com-
pletely coincide. In addition to this, the optimal consistent clusterization must be unique.
If more than one clusterization are obtained, then the regularization must be continued by
introducing another two-subselections until a single answer is obtained. If the computer
declares that there are no consistent clusterizations, then the sorting domain is extended by
introducing new attributes and their covariances (higher order of the terms), introducing
their values with delayed values in order to find a unique consistent clusterization.

High effectiveness of inductive algorithms

As in self-organization modeling, the model with optimal complexity does not coincide
with the expert's opinions. The best cluster, being consistent and optimal according to
the regularity precision, does not coincide with a priori specified expert decisions. Expert
decisions are related to complete and exact data. The self-organization clustering that
considers the effect of noise in the data, reduces the number of symptoms in the ensemble
and the number of clusters. The greater the noise variance, the greater will be the reduction
in the number. The computer takes the role of arbiter and judge in specific decisions
concerning the results of modeling, predictions and clustering analysis of incomplete and
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noisy data. This explains the presence of the word "computer" in the name "objective
computer clusterization."

It is simply amazing how much world-wide effort has been spent on building the most
complex theories oriented toward, surely, the hopeless business of finding a physical model
and its equivalent exact clusterizations by investigating only the domain of overcomplex
structures. The revolution associated with the emergence of the inductive learning approach
consists of the problem of identification of a physical model and clusterization. The prob-
lems of prediction are solved in the other direction—of proceeding from undercomplex
biased estimates and structures. Optimal biased models and clusterizations are directly rec-
ommended for prediction. Advancements in this direction propose a procedure for plotting
the "locus of the minima" (LM) of external criteria for identification of the physical model
and true clusterization.

Calculation and extrapolation of locus of the minima

The analogy between the theory of self-organization modeling and the theory of self-
organization clustering can be continued to find optimal undercomplex clusterizations. One
can use either search for variants according to external criteria or calculation of the locus
of the minima of these criteria.

The calculation and extrapolation of the locus of the minima of external criteria is an
effective method of establishing true clusterization from noisy or incomplete data. A special
procedure for extrapolating the locus of the minima or the use of the canonical form of the
criterion is recommended in various works [138] and [45] for finding a physical model or
an exact clusterization. (Refer to Chapter 3 for the procedures in case of ideal criteria.)
One can only imagine the effect of the analytical calculation of the locus of the minima on
various criteria. This is calculated for a number of values of the variance and for various
distributions of perturbation probabilities.

Usage of canonical form of the criterion for extrapolating LM. All the quadratic criteria
can be transformed into a normalized canonical form by dividing the trace of the matrix of
the criterion. The criterion is expressed as follows.

(5.2)

where CR indicates an external criterion in the canonical form. Y and YT are the output
vector and its transpose, correspondingly. is the canonical matrix of the criterion for
different structural complexities.

The mathematical expectation of the criterion for all the models is

(5.3)

For example, SQ corresponds to a physical model, then

and Ss corresponding to a nonphysical model, then

(5.4)

Hence,
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Theorem. The minimum of the mathematical expectation of the criterion in canonical
form for nonphysical models is greater than it is for a physical model [138].

It is shown that all the criteria in canonical form create LM which coincides with the
ordinate of the physical model (Figure 5.5). From a geometric point of view, transformation
of the criterion to canonical form means rotation of the coordinate axes around the point
SQ and some small nonlinear transformation of the coordinate scale. Figure 5.5 exhibits the
locus of the minima: (a) for an external criterion with the usual form and (b) for its canonical
form taking the values of CR/ trS. This shows that with the use of the canonical form of
the criteria, one can find a model in optimal complexity without adding any auxiliary noise
to the data.

The choice of a rule for restoring the actual or physical model depends on the number of
candidate models subject to descrimination, the perturbation level, and the type of criterion.

First rule. If the number of candidate models and the perturbation level are so small that
the noise level a2 is not exceeded; there is no need for special procedures. The actual
clustering is found by using the consistency criterion.

Second rule. If the number of models or candidate clusterings and the perturbation level
are comparatively large, a "jump" to the left by the locus of the minima is observed (Figure
5.5a). By imposing supplementary noise on the data sample, one can find several points
of the envelope of locus of the minima and use its extrapolation to determine the physical
model or actual clustering [45].

Third rule. Addition of auxiliary noise is not needed if the criterion is transformed into
canonical form. The ordinate of the minimum of the canonical criterion will indicate the
optimal structure (or template) of the physical model or of the clustering if the perturbation
variance is within considerable limits (Figure 5.5b).

Asymptotic theory of criteria and templates

In Chapter 3, we discussed the asymptotic properties of certain external criteria. For the
mathematical expectation of the external criterion with an infinitely long data sample, the
characteristic of the criterion-template sorting is unimodal which is required according to
the principle of self-organization. One should not conclude from this result that every
time-averaging of the criteria is well only in asymptotic behavior. But unimodality is
attained considerably within the limits for a sample length of five to ten correlation intervals;
however, a more accurate estimate of the required time-averaging of the criteria is to be
found analytically—a subject of theoretical interest.

Asymptotic theory of templates is also not yet developed, although it has been estab-
lished experimentally. The gradual increase in the number of models according to a specific
template leads to an increase in the probability (number of occurrences) of attaining uni-
modality. Figure 5.6 demonstrates the proposed dependence using the consistency criterion
in the plane of "perturbation variants-template complexity."

The future asymptotic theory of templates requires the investigation of the behavior
not of the average line of criterion variation, as one selects out of each cluster of feature
variants that comes for sorting only one model—the best. This is done by distinguishing
among the patterns of variation using a partial, solitary, and overall consistency criteria. For
features with noiseless data in clusterizations, the partial nonoverall consistency criterion
is identically equal to zero for the entire duration of sorting if the subsamples A and B
are close to each other, but nonetheless distinct. The interval of the zero values of the
consistency criterion shrinks with sufficiently high probability as the perturbation variance
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(a)

(b)

Figure 5.5. Locus of minima (LM) in transition (a) to the ordinary, and (b) to the canonical forms
of the criteria, depending on model complexity S and noise dispersion a.
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Figure 5.6. Proposed change in probability P of attaining unimodality of the consistency criterion:
(1) region of loss of unimodality, (2) region of unimodality without extension of determination, (3)
region in which extension of determination required

increases. When it becomes sufficiently small to distinguish between the templates, it
becomes expedient to extend the sorting by using an accuracy criterion or a series of
consistency criteria calculated for various partitions of data sample. For a larger perturbation
variance, it will be in the region of unimodality of a solitary criterion, where a larger
perturbation variance is required for more complex templates. Strictly speaking, this serves
as the basis for the asymptotic theory of templates. For excessively large perturbations, it
becomes impossible to find an optimal consistent model or clusterization, since the regular
nature of the curve disappears (Figure 5.6).

2 METHODS OF SELF-ORGANIZATION CLUSTERING

Unlike the sorting of partial models, which is almost always obtained, the sorting of clusters
can be implemented only for a sufficiently large number of points that are located favorably
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in the symptoms (variables). The importance of special experimental designs are enhanced
in this section.

If there are m symptoms, one can construct 2m different ensembles and evaluate them by
a suitable external criterion; for example, regularity criterion for an accurate approach and
the system criterion of consistency for a robust approach. This corresponds to unsupervised
learning because of the absence of specific objectives. If the objective is specified as
the ensembles are grouped to a known target function, then it corresponds to supervised
learning. The self-organization clustering methods vary according to the techniques used
for the reduction of computational volume.

The first method is a selection-type of sorting method based on unsupervised learning
[39]. At the first step, all the symptoms at the time of succession are evaluated by the
specified basic criterion and the best of F (freedom-of-choice) are chosen (for example,
F = 3 and the symptoms are x\,x-] and JCQ). At the second step, all the ensembles that
contain two symptoms are evaluated. These ensembles include all the symptoms selected
at the first step.

(5.6)

The/7best ensembles (for example, F = 3, and they are X\X~I,XT,X-I, and x\xi) are selected. At
the third step, the ensembles that have three symptoms by including the ensembles selected
at the second step are evaluated. This evaluation continues until the 3 x m ensembles are
selected.

The second method, which is based on correlation analysis [70], is suitable for the
precision in the approach. Here, one can obtain a series of m symptoms which range
according to their effectiveness; only m different ensembles are evaluated by the criterion.

The third method uses one of the basic inductive learning algorithms, either combinatorial
or multi-layer, to find m effective ensembles. For example, one can use a device like
combinatorial type of "structure of functions" for generating all combinations of ensembles
by limiting the number of symptoms. The consistent criterion is used with the data sequences
of A and B that are close to each other.

The latter two methods correspond to the supervised learning (learning with teacher)
because they use information about the output vector Y based on the comparison among
the actual and the estimated data. One way of doing this is by specifying the output data
from the experiment and another way is by using the orthogonal Karhunen-Loeve projection
method for obtaining the artificial data.

The above methods does not limit the scope of all possibilities. They are feasible
only when the unimodality characteristic of the "criterion-clustering complexity" is ensured.
These we see in detail below.

2.1 Objective clustering—case of unsupervised learning

There are various computer algorithms that have been proposed for separating a set of
ensembles or clusters given in a multidimensional space of variables or symptoms. This
includes the classical algorithm of ISODATA (Iterative Self-Organizing Data Analysis Tech-
niques Algorithm) [124] that is based on comparing all possible clusters using the minimum
distance criterion. In this program, the number of clusters are specified in advance by the
expert.

Objective clustering is envisaged by the inductive approach in which a gradual increase
in the number of clusters is specified to the computer and are compared according to the
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consistent criterion. In separating a multidimensional data space into clusters, the consistent
criterion may, for example, stipulate that the partitioned clusters differ from one another
as little as possible as they are partitioned according to the odd and even-indexed points
of initial data. As is well known, typographical images of some pattern consist of dots.
Even when the even or odd dots are excluded, it preserves the image with large numbers of
initial data points. If the original image is chaotic; i.e., even if it contains no information
conforming to some law, the criterion allows discovery of a physical law.

The object or image is given in a multidimensional space represented in the form of
observation data with symptoms xi,X2,---,xm. The first part of the problem consists of
dividing the space into a specified number of regions or clusters using the measurements
of distance between the points [124]. The number of clusters is specified in advance by
the experts. Self-organization involves iteration of such clusterings for various numbers of
clusters from k = 2 to k = N/2, where N is the number of data points. It also invloves
comparison of results by the consistent criterion—non-contradictory clusters are selected.
A single-valued choice is achieved by regularization. Here regularization is selecting the
single most appropriate cluster from several non-contradictory clusterings indicated by the
computer. The role of regularization criterion is to use the minimizing function which takes
into account the number of k and number of variables or symptoms m according to the
computer's and expert's clusterings.

(5.7)

where kexp is the number of clusters specified by the expert and kcomp is the number of
clusters in the process of computer clustering.

If kexp is known, then the computer completes the determination of clusters—for example,
by using the function L = k/m. This is also determined by other relations, in case it is
required by agreeing results on three equal parts of the selection.

Even if the kexp is not known, one can use the consistent criterion calculated in other
parts of the data sample. It evaluates the degree of non-contradiction on various clusters
and helps to choose the best one.

Example 1. Clustering of water quality indices (one-dimensional problem).
The initial data contain the following variables: x\—suspended matter in mg/liter, X2—

chemical consumption of oxygen (CCO), JC3—mineralization in mg/liter, x$—carbohydrates
in mg/liter, and ^5—sulphates in mg/liter. The data is normalized according to the formula

X; —X;

-. The measurements are averaged on seven years of data for each

station. The data sets A and B include all stations with even and odd numbers, respectively.
The algorithm is confronted with the problem of isolating all non-contradictory clusterings

using the given set of variables and all subsets which could be obtained from them. Thus,
the water quality expert could choose the most valid clustering and find the number of
clusters and the set of variables that are optimal under given conditions. It computes the
value of the criterion for all possible combinations of the set of given variables. In this case
the validity of clustering is not verified because of the absence of expert clustering. The
sorting process showed that it is not possible to obtain a non-contradictory cluster using
all five variables. For each identified cluster, the centers and boundaries are found and
the water quality at the given station using the corresponding variables from the cluster is
computed.

Example 2. Clustering of water quality along the series of water stations along a river
system.
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In this case, expert clustering is known. It is established based on the information
available on ecologic-sanitary classification of the quality of surface waters of dry land. It
differs from certain variables which are absent from the data (out of total of 21 variables,
only 14 participated in the example). The data of 14 variables is normalized and separated
into two sets A and B.

The number of clusters specified by experts is k = 9 with the variables m = 14. There
is no single set of variables chosen from the given 14 variables which would yield a non-
contradictory partition of the stations into nine clusters as required by the experts. This
means that the expert cluster is contradictory.

Non-contradictory partitions into eight clusters are given by a comparatively small num-
ber of variables which include Many sets of vari-
ables give non-contradictory partitions into seven clusters; eight such sets are

and 22 sets—each having three variables (from x\x2x^ to
x\x\2X\4). The following three sets each with 10 variables give a partition which is closest
to one of the expert's clusterings:

The sets with higher number of variables (11, 12, 13 and 14) do not increase the number
of clusters. The set of variables m = 9 is denoted as optimal in this example which gives
a non-contradictory partition into seven clusters. The boundaries, the stations making up
their composition, and the cluster centers are indicated for all non-contradictory clusters for
further analysis of water quality.

2.2 Objective clustering—case of supervised learning

Classification, recognition, and clusterization of classes are similar names given for process-
ing a measured input data. The space of measured data for input attributes X ( x \ , X 2 , • • • , ,vm)
with a given space of output Y(y\,y2, • • • ,>'/) representing a target or goal function (where

m) is common in these algorithms. The problem task is to divide both spaces into cer-
tain subspaces or clusters to establish a correspondence between the clusters of the attribute
space and goal function space X <-+ Y.

Unlike in traditional subjective algorithms, the number of clusters are not specified in
advance in objective clustering, but the number of clusters is chosen by the computer so
that clusterization is consistent. This means that it remains the same in different parts of
the initial input data. This number is reduced to preserve the consistency in case of noisy
and incomplete data.

As it is mentioned earlier, the objective computer clustering is based on the search for
the variants of ensemble of attributes and the number of clusters using the consistency
criterion on the given measured data assuming certain errors. The algorithm gives the
consistent clusterizations while all existing measurements are distributed over the clusters.
The new measurements that do not participate in the clustering also belong to certain cluster,
according to the nearest neighbor rule, or according to the minimum-distance rule from the
center of the cluster.

The search for the attribute ensembles and for the number of clusters leads to multiple
solutions: several variants of ensembles giving consistent clusterizations are found on the
plane "ensemble of attributes-number of clusters." This is solved by further determination
of consistent clusterings using some second-level criterion or by inquiring from experts.
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Table 5.1. Initial Data

No.
1
2
3
4
5

19
20
21
22
23
24

37
38
39
40

X]

2.131
2.031
2.076
2.084
2.057

2.109
2.143
2.115
2.150
1.919
2.046

2.005
2.047
2.013
2.123

X2

10.41
9.797
9.892
10.09
9.816

10.05
10.52
10.24
10.45
9.295
9.840

9.631
9.937
9.864
10.37

*3

69.22
69.26
69.06
69.02
68.97

68.81
68.76
68.77
68.71
68.66
68.63

68.01
68.06
68.06
68.03

X4

73.52
74.10
73.42
73.36
73.32

73.16
73.01
73.07
73.10
73.06
73.06

72.33
72.43
72.42
72.42

*5

4.43
4.84
4.36
4.34
4.45

4.31
4.25
4.30
4.39
4.40
4.43

4.32
4.37
4.36
4.39

y
12.23
11.86
11.72
11.83
11.47

12.05
12.48
12.22
12.38
10.96
11.64

11.50
11.67
11.60
12.30

Example 3. Objective clustering of the process of rolling of tubes [71].
Here the problem of objective partitioning of an m-dimensional space of features

• • -, xm into clusters corresponding to compact groups of images is considered; each image
is defined by a data sample of observations.

Objective clustering of images (data points) is done based on sorting a set of candidate
clusterings using the consistency criterion to choose the optimally consistent clusterings.
The data is divided into four subsets: Ar\B and CnD. Here the concept of dipoles (pairs of
points close to each other) is used; one vertex of a dipole goes into one subsample and the
other into another. Thus, the greatest possible closeness of points forming the subsamples
is achieved. This example demonstrates the various stages of self-organization clustering
algorithm which does not require computations of the mean square distances between the
points.

The table of initial data is given (Table 5.1), where x\ is the length of the blank, x2 is
the length of the tube after the first pass, ;c3 and *4 are the distances between the rollers in
front of the two passes, x$ (= x<\ — XT,) is the change in distance between the rollers, and

is the length of the tube.
The objective clustering is conducted in the five-dimensional space of the features

The clustering for which we obtain the deepest minimum of the consistency
criterion is the optimal one. The stage-wise analysis of the algorithm is shown below.

Stage 1. To compute the table of interpoint distances. The first TV = 34 data points from
the 40 points of the original sample are used to form the subsets The
remaining six points are kept as testing sample to check the final results of clustering and
for establishing the connection between the output variable y and the cluster numbers. The
initial data table is represented as a matrix
(here N = 34 and m = 5).
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Table 5.2. Interpoint distances between dipoles

No.
1
2
3
4
5
6

32
33
34

1
0

2
1.015

0

3
0.310
0.743

0

4
0.171
0.943
0.449

0

5
0.484
0.845

0.0325
0.092

0

6
0.344
1.434
0.399
0.636
0.318

0

32
3.779
5.211
2.547
2.503
2.115
1.990

0

33
1.952
2.339
1.195
1.150
0.895
1.465

0.966
0

34
3.484
5.376
2.561
2.391
2.169
2.361

0.111
0.954

0

The interpoint distances are calculated as

The results are shown in the Table 5.2.

(5.8)

Stage 2. To determine the pairs of closest points and partition into subsets. The clusterings
are to be identified in the two subsets of AC\B and CflD. Thus, the coincidence of clusters
is required, indicating that they are consistent. This leads to the attainment of a unique
choice of consistent clustering.

The subsets A n B and C n D are formed using the values of the dipoles. The dipoles
are arranged in increasing length: for N = 34, there are N(N — l)/2 = 561 dipoles. The
shortest dipoles are exhibited as

1) 11 0.0020 14, 2) 12 0.0038 13, 3)23 0.0850 25, ...

To form the subsets A and B, the shortest dipoles are chosen in such a
way that the data points are not repeated. In this specific example, it turns out that these 16
dipoles are obtained from the first 389 dipoles; the 17th dipole which satisfies the condition
is obtained at the end of the series; i.e., the 561st dipole connects the points 2 and 34 at a
length of = 5.376 units.

The following 16 shortest dipoles belong to the subsamples A and B.

From the remaining dipoles, the 16 shortest dipoles are chosen in an analogous manner to
form the subsamples C and D.
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The dipoles obtained in this way enable the formation of the set of points into the subsets
A, fl, C, and D.

A : 11,12,25,26, 16,15, 8,24,20,7,34,29,18,21,4, 30;
B : 14,13,23,27,19,10, 5, 17,22,3,31,33,6,9,1,28;
C : 23,21,16,10,14,19,5,22, 31,24,7, 34,27,25, 33,1;
D : 18,13,17,8,15,12,3,9,30,11,4,32,20,6,26,2.

Stage 3 To sort the clusterings according to the consistency criterion.
The following steps are followed:

1. Grouping the subsets into 16 clusters (k - 16). The points in subsets A and B are
indexed from 1 to 16 as vertex numbers, indicating a group of 16 clusters shown
below:

Number of corresponding vertices or clusters:

A* =1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 16.

In each subset A or B, the upper row denotes the actual data point and the lower row
denotes the number of the vertex of the dipole. If the number of the vertices coincide,
then those vertices are called "corresponding" vertices. Here, all vertices of subset
A correspond to the vertices of the subset B. The consistency criterion is computed
as r\c = (p — A/:)//? = (16 — 16)/16 = 0, where p is considered the total number of
vertices and A/: is the corresponding vertices which coincide.

2. Grouping the subsets into 15 clusters (k - 15). Tables of interpoint distances are to be
compiled for the points of each subset A and B (Tables 5.3 and 5.4, correspondingly).
Points 2-14 in subset A and points 1-8 in subset B are the closest to each other.

For the evaluation of the consistency criterion, it is grouped into 15 clusters in the
following form.

Number of corresponding vertices:

A*=0+0+1+1+1+1+1+0+1+1+1+1+1+0+1+1=12.

The double number of the vertices indicate the formation of a cluster consisting of
two points. Having the corresponding vertices as Afc = 12, the consistency criterion
is r/c = (16- 12)/16 = 0.25.
Grouping the subsets into 14 clusters (k = 14). Again the tables of interpoint distances
are compiled, considering the formed clusters from the previous step. According to
the nearest neighbor method, the distance from a cluster to a point is taken to be the



Table 5.3. Interpoint distances for subset A

No.
11
12
25
26
16
15
8

24
20
7
34
29
18
21
4
30

11
0

12
0.184

0

25
0.363
1.021

0

26
0.219
0.141
0.782

0

16
0.098
0.047
0.694
0.052

0

15
0.032
0.189
0.343
0.205
0.081

0

8
0.044
0.216
0.429
0.342
0.151
0.039

0

24
0.067
0.216
0.358
0.093
0.065
0.047
0.139

0

20
0.572
0.142
1.697
0.223
0.248
0.597
0.683
0.524

0

7
0.107
0.238
0.614
0.465
0.225
0.135
0.042
0.264
0.716

0

34
1.510
1.766
1.424
0.956
1.385
1.586
1.934
1.109
1.649
2.298

0

29
0.929
1.213
0.711
0.600
0.803
0.782
1.119
0.521
1.467
1.417
0.671

0

18
0.290
0.915
0.026
0.791
0.637
0.301
0.307
0.348
1.631
0.451
1.726
0.897

0

21
0.221
0.022
1.047
0.075
0.046
0.234
0.295
0.201
0.085
0.346
1.461
1.078
0.979

0

4
0.193
0.077
1.005
0.359
0.145
0.179
0.130
0.314
0.386
0.108
2.391
1.519
0.827
0.171

0

30
0.952
1.028
1.222
0.425
0.740
0.965
1.283
0.598
0.939
1.568
0.136
1.376
1.337
0.799
1.544

0



Table 5.4. Interpoint distances for subset B

No.
14
13
23
27
19
10
5
17
22
3

31
33
6
9
1

28

14
0

13
0.173

0

23
0.315
0.938

0

27
0.173
0.108
0.734

0

19
0.065
0.029
0.647
0.081

0

10
0.048
0.305
0.243
0.338
0.167

0

5
0.078
0.214
0.455
0.334
0.128
0.034

0

17
0.027
0.102
0.438
0.099
0.028
0.077
0.084

0

22
0.446
0.092
1.392
0.134
0.182
0.640
0.531
0.288

0

3
0.152
0.208
0.672
0.452
0.158
0.125
0.0325
0.160
0.542

0

31
1.156
1.404
1.156
0.738
1.220
1.412
1.718
1.099
1.296
2.086

0

33
0.739
0.918
0.802
0.533
0.765
0.723
0.895
0.580
0.862
1.195
0.606

0

6
0.296
0.849
0.185
0.900
0.608
0.218
0.318
0.475
1.442
0.399
1.966
1.465

0

9
0.623
0.144
1.764
0.291
0.288
0.841
0.663
0.451
0.036
0.612
1.729
1.231
1.691

0

1
0.685
0.292
1.823
0.746
0.427
0.761
0.484
0.590
0.446
0.310
2.968
1.952
0.344
0.323

0

28
1.021
0.946
1.546
0.522
0.924
1.362
1.503
0.958
0.801
1.745
0.410
1.108
2.014
1.040
2.117

0
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smaller of the two distances. For example, the distance from point 1 to cluster 2,14 is
the smaller of the two quantities d\-2 = 0.184 and d\-\^ = 0.221; ie., ^1-2,14 = 0.184.
Thus, the closest points to each other are 3-13 (subset A) and 5-1,8 (subset /?)•

The third candidate is grouped into 14 clusters of the form

Number of corresponding vertices:

A£ = 0 + 0 + 0 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 1 + 1+0 + 0-1-1 + 1 = 9

and ric = (16 -9)/16 = 0.437.
4. Fourth and subsequent steps. Continuation of the partitioning of the subsets into

clusters and evaluation by consistency criterion is followed from k = 13 to k = 2.
For the last two clusterings; i.e., in case of k = 2, rjc = (16 — 16)/16 = 0, and in

case of k = 3, rjc = (16 - 16)/16 = 0.

All groupings of the clusterings is complete. From the above evaluation, the consistent
clusterings for k = 2, 3, and 16 can be chosen because rjc = 0 in these groupings.

One can note that if the table of interpoint distances consists of two equal numbers,
then the number of clusters changes by two units. To avoid this, one must either raise the
accuracy of the measurement distances in such a way that there will not be equal numbers
in the table, or skip the given step of sorting of clusterings in one of the subsets. The
consistency criterion is used only when the number of clusters is the same on two subsets
A nB and CD/); otherwise, the amount of sorting increases and it ends up with bad results.

To reduce the computational time of the algorithm, the comparison of the variants of the
clusterings can be started with eight clusters instead of 16 clusters. This means that at the
first step the points are not combined by two, but by eight points.

Stage 4. Repetition of clustering analysis on subsets A and B for all possible sets of
variable attributes (scales) and compilation of the resulting charts (Figure 5.7a).

The cluster analysis described above should be repeated for all possible compositions
of the variable attributes. As there are m = 5 attributes, there are altogether 25 — 1 = 31
variants. The dots in the figure indicate the most consistent clusterings which are obtained
on the subsets A and B.

Stage 5. To single out the unique consistent clustering with the aid of experts or by using
the subsets C and D (regularization).

It is desirable to choose a single most consistent one from the clusterings obtained on
the subsets A and B. This can be done in two ways: One way of singling out is with the
help of experts for whom examination of a small number of variants of clusterings does
not constitute any great difficulty. The unique clustering suggested by the expert might not
be the most consistent clustering, but merely one of the sufficiently consistent clustering.
Another way is by repeating the clustering analysis on subsets C and D to obtain a clustering
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Figure 5.7. Results of search for the most consistent clusterings on (a) subsamples A and B and (b)
subsamples C and D

that will prove to be sufficiently consistent both for the subsets A n B and C n D. Figure
5.7b shows the results of choice of consistent clusterings on subsets C and D. The value of
the consistency criterion for the clustering corresponding to the point O2 is zero both on the
subsets A n B and C H D. For the clustering O\, it is zero only for C n D. Here clustering
02 is considered to be the true most consistent ones.

If unique clustering is not obtained, the points are further divided into three equal subsets,
thus forming another consistency criterion and so on until the goal of the regularization—a
single consistent clustering—is achieved.

Figure 5.7 shows less than eight clusters (out of the 16 possible ones) along the abscissa,
since further increase in their number yields an inadmissibly small mean number of points
in each of them (total 34 points are subjected to grouping in clusters).

For reducing the sorting of attributes, it is recommended that

1. the attribute sets for which half or more of the dipoles on A n B (or C n D) do not
coincide are not considered, and

2. for analysis on subsets C and D, one considers only those attribute sets for which
small values of the criterion during the analysis on the subsets A and B are obtained.

Stage 6. Results of the two clusterings corresponding to O\ and 02-
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Corresponding to the point O\, three clusters are obtained with respect to four scales of
attributes x\,x2,xi, and x4. The points of the original data sample are distributed among
the clusters as below (the point numbers and the mean values of the output variable y are
given):

Corresponding to the point #2, six clusters are obtained with respect to the two scales of
attributes x\ and KI-

Stage 7. To check the optimal clustering using the checking sample of data points (35 to
40) according to the prediction accuracy of required quality of the tube length.

The single consistent clustering can be used to predict the output variable y from the
cluster number. For example, let us consider the three clusters corresponding to the point
O\ with the attributes x\,X2,X3, and (the three clusters with the point numbers and mean
values of the variable y are given above). The mean values of y are arranged in an increasing
order and the regression line for y according to the groupings of clusters N is given in Figure
5.8. A new point belongs to the cluster for which the distance from it to the closest point
of the cluster is least; knowing the cluster, the estimated value of y can be obtained from
the figure. This type of prediction is checked for the testing sample points 35 to 40. Out
of six points, five are correctly predicted.

2.3 Unimodality—"criterion-clustering complexity"

We understand that the experimental design is feasible only when the unimodality of the
"criterion-clustering complexity" characteristic is ensured. This can be done in three ways to
determine the optimal consistent clustering: (i) extend the cluster analysis using a regularity
criterion for further precision, (ii) design the cluster analysis for using a overall or system
criterion of consistency by increasing the number of summed partial consistency criteria,
and (iii) design the experiment by applying a supplementary noise to the data.

The applicability of the first method is demonstrated in the preceding example.
The second method of attaining unimodality is when an increase in the number of partial

criteria which constitute the overall consistency criterion reduces the number of consistent
clusterings from which an optimal one is to be selected. Specially designing the experiment
can make this method very efficient in yielding a single consistent clusterization. The
following example demonstrates the usefulness of this method.

Example 4. Investigation of the consistent criterion by computational experiments [69].
Here is a test example to clarify whether (i) it is possible to select a data sample such
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Mean length
of strip (m)

11

10

N clusters

Figure 5.8. Regression line for prediction of mean strip length for the cluster number N for the set

that sorting of clusterings by the consistency criterion yields a unique solution and (ii) the
overall consistency criterion leads to a unique solution.

The consistency criterion is expressed as r)c = (k — A&)//:, where k is the number of
clusters and A& is the number of identical clusters in the subsets A and B.

According to the procedure involved in the experimental design of cluster analysis,
the original data sample is divided into two equal parts by ranking their distances from
the coordinate origin. Then the consistent clusterings are found by complete sorting of
hypotheses about the number of clusters, proceeding from k = N/2 to a single cluster,
where TV is the total number of points in the data sample. The initial data sample along
with their ranked distances are given in Table 5.5 and in Figure 5.9, where, for simplicity,
two variants of ten points (N = 10) on the plane of two attributes are shown.

Figure 5,10 shows the procedure for sorting of clusters using the tables of interpoint
distances for subsets A and B.

For each transition from one number of clusters to another, the tables of interpoint
distances for each subset are rewritten such that the newly formed row in the table contains
(when the poles of the dipoles are united) the shortest distance in the two cells of the
preceding table. The poles of the dipoles are united in pairs for each hypothesis according
to the minimum of the criterion of interpoint distance in this example.

The subsets A and B are taken into two equal parts. This is represented as an original
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7,A,II

9.A.V

10.B.V

10,A,V

Figure 5.9. Location of the points of the two samples A, B in the plane; I, II, ..., V are the address
of dipoles
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Table 5.5. Two samples of initial data ranked by distances

No.

1
2
3
4
5
6
7
8
9
10

First sample of points
xi

0.00
0.00

-2.32
2.80

-2.70
2.60

-4.61
-4.70

5.50
5.85

*2
0.40

-0.40
-0.69

0.68
-1.25

1.60
0.93
0.25
0.60

-0.75

x\2+x2
2

0.16
0.16
5.86
8.30
8.85
9.32

22.12
22.15
30.61
34.78

Second

*t
0.00
0.00

-2.48
2.54

-2.76
2.52

-4.40
4.76

-4.99
5.44

sample of points
x2

0.40
-0.40
-0.69
0.785

-1.32
1.78
0.90

-0.10
0.99
0.75

n~ Uj

X^+X^
0.16
0.16
6.62
7.07
9.36
9.52

20.17
22.67
25.88
30.16

code:

(a) k = 4:

(b) * = 3:

(c) k = 2:

It is known that the consistency criterion indicates the false consistent clusterings with
the actual consistent clusterings. The false consistent clusterings; i.e., false zeros of the
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Figure 5.10. Calculation of consistency criterion on the two equal parts of the data sample

criterion can be removed by (i) a special experimental design, the purpose of which is to
form a data sample for which the criterion does not indicate false zeros and (ii) using the
overall consistent criterion, which is equal to the sum of partial criteria obtained for different
compositions of subsets A and B.

To sort among the hypotheses, the notations are introduced for the original data sample
and to the subsets (vertex numbers) as below:
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where / — V are the dipole addresses and 00000 is the initial code for the sample. A dipole
is a two-point subsample. Selected dipoles have the shortest dimension of all the feasible
points of the considered sample. The code changes if the corresponding dipole changes the
pole addresses in the subsets. For example,

The partial consistency criteria are calculated for all the variants of subset composition, and
their dependencies on the number of clusters are constructed. As shown in Figure 5.11,
some partitioning variants for the first sample of data points do indeed yield false zeros.
This gives rise to the problem of removing false zeros of the false clusterings. Repetition
of the experiment with the second sample of the data points showed that none of the 16
characteristics yields false zeros.

In this example, the consistency criterion for the selected original data sample is uni-
modal. One can see from Figure 5.9 that a very small variation in the locations of the
sample points disturbs the unimodality. So, the above experimental design aimed at attain-
ing criterion unimodality may lead to the required result, although it is still very sensitive.
This means that a small deviation in the data leads to the formation of false value of the
criterion.

Overall consistency criterion

The overall consistency criterion is the sum of the values of the partial criteria obtained for
all possible compositions of subsets A and B.

(5.9)

where
Figure 5.11 demonstrates the performance of the overall consistency criterion, which does

not lead to the formation of false zeros for various numbers of clusters. The experiment
explains the physical meaning of the stability of the overall criterion and substantiates the
basic conclusions of the coding theory as follows:

• if the overall criterion does not lead to the formation of complete zeros, then among
the partial codes there is at least one that ensures the same result;

• if at least one of the codes does not form false zeros, then the overall code will also
be effective; and

• for a complete sorting of the codes, one necessarily finds a partitioning into parts that
leads to false zeros (the unsuccessful partitioning).

Apparently, one can apply the optimal coding theory, developed in the communication
theory, for determining the optimal partitioning of a data sample into subsamples.

The goal of the experimental design is to attain the global minimum among the mod-
els. The high sensitivity to small variations in the input data and absence of unimodality
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Figure 5.11. Dependence of the criterion on the number of clusters for various compositions of
subsamples A and B

are characteristic symptoms of the noncorrectness of the problem of selecting a model or
clusterization on the basis of a single consistency criterion. The transition to an overall
consistency criterion can be viewed as one possible regularization method. With a robust
approach as demonstrated above, the main goal must be the attainment of the unimodality
of the consistency criterion. Sometimes, the use of the overall criterion might be insufficient
in removing all the composite zeros, even for all possible partitions of the data sample into
two subsets. This can be avoided by further splitting the data into subsets.

The third method of attaining unimodality consists of superimposing an auxiliary normal
noise to the data sample. Its variance is increased until the most noise-immune consistent
clusterization as the "locus of the minima" is achieved. One can obtain consistent clusteri-
zation without extending the experiment for regularization by the precision criterion or by
experts.

Further development of this method is done by appling the canonical form of the external
criterion. The locus of the minimum of the criterion coincides with the coordinates of the
optimal design of the experiments and the optimal model structure. The Shannon-bias as
displacement of the criterion becomes zero for all the designs and structures. This leads to
a new dimension of research which will be discussed in detail in our future works.

3 OBJECTIVE COMPUTER CLUSTERING ALGORITHM

The objective computer clustering (OCC) algorithm in a generalized form is given here.
The algorithm consists of the following blocks.
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Block 1. Normalization of variables

Normalization is done here for the input variables measured at N time in-
stances as

(5.10)

where ,j= 1,2, • • • , m are the mean values of corresponding variables;
are the normalized values. This can be done not only from the mean value

but also from a trend of the variable. It is also useful to extend the table of attributes with
the additional generalized attributes such as

(5.11)

where
In addition to the input attributes, information about the goal function can be included

into the original data in the form of columns with the deviated data of the output variables
where ml; and ml is the total number of primary and generalized

attributes. The information about the goal function is very useful for reducing the amount
of cluster search. In many clustering problems the dimension of the space / of the goal
function is known: constant. If it is not specified, it can be determined by the successive
test of Karhunen-Loeve projection on to an axis, a plane, a cube, etc. or by means of the
component analysis.

This is justified as follows: The modeler, while compiling the table of data, knows the
goal function without fully realizing it. There necessarily exists certain axes like "good-
bad," "strong-weak," "much-little," etc. These correspond to the axes serving as orthogonal
projection. The space of the goal function in certain cases is two-dimensional or three-
dimensional. For example, clustering of atmospheric circulation, is distinguished between
two axes: the "form" and "type" of circulation; the Karhunen-Loeve orthogonal projection
is applied on two variables Y(y\,y2).

Sub-block 1a: Choose dimension of goal function

The clustering target function may be expressed by a particular vector of qualities, rather
than by a scalar value. In most complex clustering problems, it is necessary to derive a
complete quality vector

There is a sample of observations Experts maintain that the target
function (at any rate, one of its components—the target index) may be determined from the
variance formula:

(5.12)

where is the mean value of the /th attribute.
The above formula represents the Karhunen-Loeve discrete transformation in the case

where m-dimensional space of factors is mapped into one average point ("center of gravity"
point, if each of the constituents has an identical mass), and the target formula is represented
as a single scalar value [137]. This way, more information is retained in projecting points
of an m-dimensional space onto a single axis y, although it remains a scalar quantity. The
y-axis is chosen in such a way that (i) it passes through the "center of gravity" of points
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that is the origin of the attributes jt,-, and (ii) the axis direction in the m-dimensional space
is such that the points have minimum moment of inertia around the y-axis.

In the same way, even more information is retained in projecting the m-dimensional
measurement space onto a two-, three-, or more dimensional spaces, to the state of projecting
it on itself and not loose information. To reduce the number of computations involved in
these operations, one can limit the comparisons of Karhunen-Loeve transformations to the
final stage at the point on the axis or on the two-dimensional plane. The target function
will be two-dimensional K(yi,y2), which is enough for many problems. The joint space
attributes correspond to the vector of XY(x\,X2,-• • ,xm,y\,y2). This might be excessive
for the optimal number of dimensions of the goal space in specific practical purposes. An
optimal number of measurements for the target function space is determined by comparing
the versions of the best number of coordinates that leads to consistent and accurate clusters,
and by positioning these closer to the number of clusters E specified by an expert.

A way of estimating the target index. An estimation method for a single dimensional axis
is developed as given below. The equation for the y-axis takes the form

(5.13)

where are the components of the unique target vector. The moment of inertia
is computed using the following criterion as

(5.14)

which amounts to the selection of The second term in the criterion Jmj is
maximal as max, with the constraints 1. The parameters

are found iteratively using the initial approximation of
This gives an equation for the y-axis. The projection of data points on the y-axis

are then found. The hyperplane passing through the ith point perpendicular to the y-axis
takes the orthogonal form

(5.15)

The coordinates for the projection are determined while solving the above equation
along with the equation for the y-axis. The function for allocating the projections along the
/-axis is found as

(5.16)

This is considered a target function and recorded in the input data.
For example, the input data corresponding to the nodes of a three-dimensional cube

are shown in the Figure 5.12. The minimum value of the criterion corresponds to the
maximum value of the function

(5.17)
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Figure 5.12. data for the given example

By iteration, l\ = 1, /2 = 1, and /3 = 1 are found. The equation of the j-axis is
Projections are allocated along the y-axis; at point 1, y = +y/3/2, at point 8, y = — A/3/2;
at points 2, 3, and 4, y = + A/3/6. At points 5, 6, and 7, y = — >/3/6. Here, it is better not
to use the Karhunen-Loeve transformation on the axis of the plane because of overlappings
of many point projections. Only two projections coincide on the plane. This is solved in a
different way in [124].

There is much in common between the successive application of Karhunen-Loeve pro-
jection and the method of principal components of factor analysis. The variance decreases
continuously as components are isolated. Specifing a threshold is required for choosing
the number of components. According to Shannon's second-limit theorem, there exists an
optimal number of factors which are to be isolated. In self-organization clustering, the
consistent criterion is recommended to select the optimal number of principal components;
consequently, the dimension of the goal function Y(y\,y2, • • • ,y/) is determined.

Block 2. Calculation of variances and covariances

The data sample is given in matrix form as
1,2, • • • , m. The matrix of variances and covariances G = jjX7X has the elements
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(5.18)

where jt/ and jc,- are the columns i and j of the matrix X.

Block 3. Isolation of effective ensembles

This is done in one of the following three ways:

Sub-block 3a. Full search over all attribute ensembles

This refers to clustering without goal function. A full search of all possible clusterings
differing by the contents of the set is to be carried out in the absence of the numerical data
on the goal function. For each value of the number of clusters k, 2ml clusterings are to be
tested using the consistency criterion, where ml is the number of attributes—including the
paired or generalized attributes. This type of cluster analysis is feasible for a small number
of attributes of up to m 1 = 6. In a larger dimension of the attribute space, effective attribute
ensembles are selected using the inductive learning algorithms or correlation analysis. At
the same time, the goal function (scalar or vector form) must be determined experimentally
by orthogonal projection. This means that it leads to clustering with goal function.

Sub-block 3b. Selection by inductive learning algorithms

This is done by using the inductive learning algorithms. The consistency criterion is used
in selecting the effective attribute ensembles. The models are of the form:

(5.19)

where F denotes the quantity of "freedom-of-choice." It is the number of models selected
on the last layer. This indicates an ensemble of attributes for which we have to seek the
most consistent clustering.

Sub-block 3c. Selection by correlation algorithm

If there are many attributes (m is large) and the number of measurements are small (N < 2m),
then it is better to use the correlation algorithm (also called "Wroslaw taxonomy") instead of
inductive learning algorithms. Initially, a table of correlation coefficients of paired attributes
(G) is set up. Using this matrix, the graphs of interrelated attributes for different limit
values of the correlation coefficient are set up. One attribute that is correlated least with the
output quantity is chosen from each graph. Ultimately, an ensemble of attributes which are
correlated as little as possible with the output are determined. The limit of the correlation
coefficient is gradually reduced commencing from r^ = 1 until all attributes fall into a
single path; i.e., until an ensemble containing a single attribute y = /(*/) is obtained. This
way, discriminant functions which indicate effective ensembles of attributes are found:
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Block 4. Division of data points

The ensembles obtained for different values of the correlation coefficient are subjected to
a search for consistent clusterings. All ensembles are processed using the same search
algorithm [124]. A square table of distances between points (with a zero diagonal) corre-
sponding to the attributes is set up. Segments connecting any two points in the attribute
space is called dipoles. These are arranged according to their length to form a full series
of dipoles.

The next step is to select dipoles whose nodes form the subsets A — 5, and C — D. The
two nodes of the shortest dipole go into A and B; the next in magnitude go into C and D,
and so on, until all nodes are investigated. Alternatively, first dipoles are chosen for A and
B, and the remaining dipoles are chosen for C and D.

Half of the nodes of the dipoles go into A, while the other half go into B; subsets C and
D are simply different division of the same full set of points. Conventionally, the nodes
of dipoles located nearer to the coordinate origin are introduced into A and C, while those
more remote are into B and D.

Block 5. Search for clusterings by consistency criterion

The next step is to carry out a search for all clusterings on the subsets A and B. Nodes
belonging to the same dipole are considered equivalent. Commencing from the division of
subsets into N/2 clusters, the number of clusters decreases to unity. The subsequent cluster-
ings are formed by uniting into a single cluster of two points located closest to one another.
The consistency criterion is determined for all clusterings by r]c = (p — A£)/p, where p is the
number of clusters or the number of individual points subject to clusterization, and A& is
the number of identical clusters in the subsets A and B. As a result, all clusterings for which
r\c = 0 are identified. The search is repeated for all possible attribute ensembles and a map
is obtained, in which consistent clusterings are denoted by dots (for example, Figure 5.8).

Additional analysis and exclusion of clusters with single dipoles. The clusters containing
more than two points and the clusters containing two points belonging to the same dipole
are obtained from the search of consistency criterion. The latter ones are better assigned to
other clusters, or excluded from the analysis because they can represent long dipoles. Such
clusters containing a single dipole are located at the end of the series of the dipoles ordered
according to their length.

If the initial data table is sufficiently large (for example, N 100, in order to avoid
formation of two-points clusters), it is sufficient to use N/3 points instead of N/2 points
and leave the rest of them for examining the clustering results.

Block 6. Regularization

The search is repeated on subsets C and D for further confirmation. Only those clusterings
that are consistent both on A and B and on C and D are in fact considered. If we again find
not one but several of the consistent clusterings, then the clustering closest to the clustering
recommended by the experts is chosen. Usually, the clustering recommended by the experts
turns out to be contradictory.
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Block 7. Formation of output data table

The output data table that contains the division of the points of the original table into an
optimal number of clusters is formed.

Block 8. Recognition

At this step, assignment of new points (images) to some cluster with the indication of the
value of the goal function is carried out according to the "nearest neighbor" rule. This
means that this is based on the minimum distance from the image to a point belonging to
a set indicated in the initial data table.

Here we can say that the two-stage algorithm in image recognition is established in the
OCC algorithms. At the first stage (teaching) of , the data about the space
of measurements (attributes) and about the space of the goal function is used to obtain the
discriminant functions with the objective of dividing the space into clusters. At the second
stage (recognition), new points are assigned to some class or cluster. The number of clusters
and the attribute ensemble are identified objectively using a variant search according to the
consistent criterion. All the blocks given above form a schematic flow of the OCC algorithm.

Calculation of membership function of a new image to some cluster. A membership func-
tion (taken from the theory of fuzzy sets of Zadey) is given as

(5.20)

where dxj is the distance from the image to the center of the cluster x; d x j , j = 1,2, • • - , / :
are the distances to the centers of all clusters measured; k is the number of clusters.

The greater the membership function of an image to a cluster, the smaller is the distance
from the image to the center of the cluster. The measurement of distances is carried out in
the space of an effective attribute ensemble.

Example 5. Application of OCC algorithm.
The objective clustering of the rolling conditions of steel strip is considered. The original

variables (jf i , jC2,JC3,JC4, and x$) and the goal function (strip length, y) are given. It is
expanded to other sets of generalized paired variables (xf, — x\s).

Block 1. Table 5.6 has been obtained as a result of normalization of the variables as
deviations from their mean values.

Block 2. The matrix of variances and covariances is given in Table 5.7.
Block 3c Isolation of the effective attribute ensembles by the correlation algorithm of

"Wroslaw taxonomy" yielded the 15 effective ensembles shown in Table 5.8.
Block 4 Division of the data according to the dipole search for the ensemble *5*i 1*12*13

is as follows:

subset A: 12, 23, 38, 37, 14, 27, 15, 24, 39, 19, 28, 11, 16, 29, 20, 34, 3, 22, 25, 40;
subset B: 13, 18, 31, 32, 8, 26, 10, 17, 35, 4, 30, 7, 21, 33, 9, 36, 5, 1, 6, 2;
subset C: 32, 14, 23, 21, 38, 24, 16, 31, 22, 13, 17, 8, 34, 28, 26, 20, 18, 10, 33, 7;
subset D: 36, 11, 25, 12, 39, 15, 27, 35, 9, 4, 19, 3, 37, 40, 30, 1, 6, 5, 2, 29.

Block 5. The cluster search is carried out using the consistency criterion by dividing the
subsets into eight.
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Table 5.6. Normalized initial data

No.
1
2
3
4
5

37
38
39
40

Xl

0.286
-.055
0.098
0.125
0.034

-.144
0.000
-.117
0.250

X2

0.374
-.091
-.019
0.131
-.077

-.217
0.016
-.040
0.346

*3
0.302
0.322
0.222
0.202
0.675

-.300
-.275
-.276
-.200

X4

0.303
0.619
0.249
0.216
0.195

-.343
-.280
-.205
-.205

*5
-.137
0.706
-.043
-.075
0.097

-.106
-.026
-.043
0.004

*6 - *B *14

-.077
0.766
0.003
-.033
0.236

-.166
-.082
-.098
-.054

-*15
-.081
0.771
0.001
-.035
0.127

-.157
-.073
-.089
-.044

y
0.338
0.111
0.026
0.093
-.127

-.110
-.005
-.048
0.381

Table 5.7. Matrix of variances and paired variances

Attributes
x\
X2

XT,

X4

*5

*14

*15

y

x\
0.0518

*2

0.0525
0.0602

*3

0.0086
0.0051
0.0492

*4

0.0054
0.0022
0.0433
0.0519

xs
-.0078
-.0077
-.0028
0.0114
0.0481

*14

-.0059
-.0066
0.0072
0.0200
0.0474

0.0482

X\5

-.0064
-.0070
0.0045
0.0194
0.0474

0.0479
0.0480

y
0.0515
0.0553
0.0047
0.0044
-.0058

-.0049
-.0048
0.0569

Table 5.8. Effective attribute ensembles
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Block 6. The consistent clusters are further determined by the condition of their presence
on the maps obtained for the subsets A,B and C, D and summarized on the summary map
as shown in Figure 5.13. The clustering marked C in the figure is the most effective one.

Block 7. The following data points are grouped into clusters according to the mean strip
length by using the above result of objective clustering.

Cluster 1: Points 6, 18, 23, and 25 for y = 10.99;
Cluster 2: Points 2, 29, and 33 for y = 11.63; and
Cluster 3: Points 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24,

26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, and 40 for y = 11.77.

Block 8. In the recognition stage, let us assume that a new image is obtained with
the attribute values of xs = 4.373, Jtn = 26.986, *12 = 6.631, and *13 = 70.202. Then
the distances from the point obtained to all 40 initial points are calculated. The nearest
point is located as the point 30 with the attribute values of x$ = 4.410, x\\ = 26.96, =
6.65, and ;t13 = 70.28. This point belongs to the third cluster; consequently, the new point
image belongs to the third cluster. The values of the membership function reveal that the
first cluster z - 0.203, the second cluster z = 0.240, and the third cluster z = 0.553; i.e., the
input image affiliates more to the third cluster.

4 LEVELS OF DISCRETIZATION AND BALANCE CRITERION

The criteria of differential type are quite varied, but they, nonetheless, ensure the basic
requirement of Godel's approach. They are a clustering found by sorting according to a
criterion using a new data set which is not used with the internal criterion. In the algorithms
described above, the basic criterion used is consistency. Here is another form of differen-
tial criterion: the criterion of balance of discretization is proposed for selecting optimal
clusterings in self-organization clustering algorithms for a varying degree of fuzziness of
the mathematical description language [34]. The principle behind this criterion is that the
overall picture of the arrangement of the clusters in the multidimensional space of features
must not differ greatly from the type of discretization of the variable attributes. The optimal
clustering (the number of clusters and the set of features) must be the same—independent
of the number of levels of discretization of the variables indicated in the data sample.

Initial data sample is discretized into various levels on the coordinate axes to find the
optimal clustering. Hierarchical trees for sorting the number of clusters are set up from the
tables of interpoint distances. The optimal number of clusters coincides at the higher levels
of hierarchy of reading variables. The balance of discretization criterion is used like the
criterion of consistency; i.e., according to the number of identical clusters.

In self-organization modeling the criterion of consistency, which is called the minimum-
bias criterion to estimate the balance of structures, is computed according to the formula

The criterion requires that the model obtained for the subset
differs as little as possible from the model obtained for the subset . If the criterion
has several equal minima (balances), then we have to apply some method of regularization.

In self-organization clustering, the data sample is discretized into different numbers of
levels according to the coordinates of the points for obtaining subsets A and B. It is then
sorted among the hypotheses as to the number of clusters for each of the subsets and the
results compared with one another. The optimal clustering corresponds to the minimum of
the consistency criterion; usually its zero value resembles the balance of clusterings on both
the subsets.
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Number of
attributes

Number of
attributes

Figure 5.13. Maps of location of consistent clusterizations
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(a)

(b)

Figure 5.14. Discretization of the coordinates jci and x2 at the levels of (a) five and (b) eleven
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Levels of discretization

Figure 5.14 illustrates the different levels of discretization of the coordinates of the points
;ci and x.2 according to Widrow's recommendations. It is suggested that the number of
discretization levels of the multiples correspond to obtaining the false zeros of the criterion;
for example, here it is = N = II and — 1 = 5 levels.

In computing the criterion of consistency or balance of discretizations, one has to carry
out a special procedure of superimposing square matrices of interpoint distances. The
following matrices are obtained according to the llth and 5th levels of discretizations.

The following matrix shows the inter-cluster distances of clusters from both of the above
tables. The table for five levels does not differ essentially from the table for eleven levels.

Calculation of the criterion

The criterion of balance of discretization is calculated in a special way, which is very
convenient for programming. This is done at each step of the construction of hierarchical

frees for sorting nypotneses as to tne number of clusters. The points tnat make a cfuster
are marked with indices (vertices) in a space of N x N matrices for subsets A and B. The
criterion is computed as
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where and is the number of coincidence points or indices on the marking spaces.
The final values are trivial and always hold good. It gives = 0 for the optimal clusters,

which corresponds to our human impressions when looking at the given arrangement of
points.

Regularization

If in the interval from k = 1 to k = N/2 several zero values of the criterion BL are formed
(excluding ends of the interval), it is necessary to determine which of the "zeros" are false
and which are true. This can be checked by repeating the construction of the sorting tree
for the hypotheses from some intermediate number of levels (for example, seven or eight if
it was checked for 11 before). The whole procedure does not cause any special difficulties
for larger number of points and levels.

Example 6. Optimal clustering using the criterion of balance of discretization.
The data is given in Figure 5.14b for the attributes x\ and X2 at the discretization level

of 11. The table of interpoint distances for the entire sample is measured as given in the
matrix

1
2
3
4
5
6
7
8
9
10
11

1 2 3
0 1 2

0 1
0

4
7
6
6
0

5
9
8
8
2
0

6
9
8
7
2
2
0

7
11
10
10
4
2
3
0

8
7
7
6
5
7
5
7
0

9
8
8
7
4
6
4
6
2
0

10
9
9
8
7
8
6
7
2
2
0

11
11
10
9
7
7
4
5
3
3
2
0

The dipoles are constructed so that they start with the shortest until all the points are in the
subsets A and B without repeating them. The following dipoles are obtained and formed
into subsets A and B.

They are addressed as The matrices of interpoint dis-
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tances are compiled for the subsets A and B separately as below:

Two hierarchical trees of sorting hypotheses as to the clusters (figure 5.15) are built up
using the compiled interpoint distance matrices. The criterion of balance of discretization is
calculated at each step of constructing the hierarchical trees. The vertices of the dipoles are
combined in the tree into a cluster. The elements of the clusters are marked with indices
or circles in the matrix form as mapped out in Figure 5.16. Superimposition of the matrix
constructed for subset A on the matrix constructed for subset B makes it possible to compute
the criterion is the number of cells that are
coinciding in the matrices.

The "zero" values for the criterion are found for = 1,3,5, and 11 by comparing
both the trees.

If there are several "zero" values of the criterion, then one has to "invert" certain dipoles
and calculate the overall criterion of consistency or one has to repeat the procedure with
the different number of levels of discretization.

The examples described in this chapter show that sorting according to the differential
criteria (having the properties of the external criteria), consistency, and balance of discretiza-
tion can replace a human expert in arriving at subjective notions regarding the number and
composition of points of the clusters.

In the traditional deductive methods of modeling, specifying the output and input variables
is usually required. The number of variables is equal to or less than the number of data
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measurements. In regression analysis, there are additional limitations, such as the noise
factor affecting the output variable, the regressor set being complete, and the regressors
not taking into account the equation operate as additional noise. The theories of principal
component analysis and pattern analysis for predicting biological, ecological, economic, and
social systems which have proven to be possible in a fuzzy language are not new. Again,
this is based on the deductive principle that the more fuzzy the mathematical language of
prediction, the longer its maximum achievable anticipation time.

Unlike deductive algorithms, the objective system analysis (OSA) algorithm has addi-
tional advantages. This does not require an output variable to be specified. In turn, all
variables are considered as output variables and the best variant is chosen by the external
criterion. The weak point of the inductive learning algorithms is that the estimate of param-
eters is done by means of the regression analysis. The limitations of the regression analysis
cannot be overcome even by using the orthogonal polynomials. The resultant expectations
of estimators are biased both by noise in the initial data and the incomplete number of input
variables. A physical model is the simplest one among unbiased ones derived with the exact
data or with the infinitely large data sample.

Nonparametric inductive learning algorithms offer another possibility and promise to
be more effective than the deductive and parametric inductive ones. Its approach is to
clarify that in the area of complex systems modeling and forecasting where objects and
their mathematical models are ill-defined, the optimum results are achieved as the degree
of "fuzzyness" of a model is adequate to the "fuzzyness" of an object. This means that the

(a) (b)

Figure 5.15. Hierarchical trees of sorting hypotheses as to the number of clusters using different
discretization levels
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Ninth step: = (121 - 121)/121 = 0

Figure 5.16. Calculation of the consistency criterion from the mappings
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Figure 5.17. Four positions of the "sliding window" and coresponding four clusterizations (number
of clusters decreases from four to three)
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equal "fuzzyness" is reached automatically if the object itself is used for forecasting. This is
done by searching analogues from the given data sample as the clusterizations are tracked
using a "sliding window" that moves along the data sample in time axis. For example,
the data sample for the ecosystem of Lake Baykal contains measurements over an interval
of 50 years (Figure 5.17). One can obtain 40 clusterization forms used to track how the
ecological system varies by moving a 10-year wide sliding window in order to predict its
further developement. The longest anticipation time of a prediction is obtained without
using any polynomial formulations. The objective clusterization of the given data sample is
used to calculate the graph of the probability of transition from one class to another. This
makes it possible to find an analogue of the current state of the object in prehistory and,
consequently, to indicate the long-term prediction. It follows that the choice of the number
of clusters is a convenient method of changing the degree of fuzziness in the mathematical
language description of the object. By varying the width of the "sliding window," one can
realize an analogous action in the choice of the patterns. This approach has an advantage
over the clustering analysis given by the OCC algorithm and also the OSA algorithm for
having a minimum number of points.

5.1 Group analogues for process forecasting

The method of group analogues leads to the solution of the forecasting problem of a mul-
tidimensional process by pattern and cluster search with a subsequent development of a
weak into a detailed forecast by the forecasting method of analogues. A sample of obser-
vations (AO of a multidimensional process serves as the initial data, and the set of measured
variables is sufficiently representative; i.e., it characterizes the state of the
observed object and what has occurred in the past is repeated in the present if the initial
state has been analogous.

In the problems of ecology, economics, or sociology the available sample size is usually
small. The number of forecast characteristic variables ra is significantly larger than the
number of sample points N (N <C tri). Nevertheless, the forecasts are necessary and are of
the basic means of increasing their effectiveness through the use of the "method of group
analogues."

Forecasts are not calculated, but selected from the table of observation data. This opens
up the possibility of more successful forecasting of multidimensional processes.

Formula for forecast measure

The forecasting accuracy of each variable is characterized by the forecast variation of

(5.22)

where is the actual value of the /th variable, is the forecast obtained as explained
below, and is the mean value (for a quasi-stationary process) without taking the forecast
point into account. If the process is nonstationary; i.e., if some of the variables have a clear
expression of trend (they increase or decrease continuously), then Xjk equals the value of
the trend at each forecasting step. The above formula compares the average error of the
forecast by the analogues method with respect to the average error of the forecast as the
mean value or trend value.

The forecast of each variable is considered to be successful if the variation (or

in percentage, < 100%). Usually, only some variables forecast well. In the best case for
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all m variables 1.0 (or = 100%). To successfully increase this percentage of forecast
variables for a short sample of initial data, one has to go from a search for one analogue in
prehistory to the problem of combining several analogues.

Forecast space of several analogues

Here */ is the point in the multidimensional (Euclidean) space of variables and jc/, in the
space of forecasts, corresponds to each row of the table of initial data sample. The former
space is used for computing the interpoint distances, while the latter is used to approximate
the forecasts by splines or polynomial formulations.

The point B of the multidimensional spaces jc, and Jc,- is denoted as the output point
for forecasting. This is either the last point of the sample in time or the last one that
would be possible in estimating the variation of the obtained forecast by the last row. The
distances between the point B and all other points measured in the space jc,- determine the
possibility of using them as analogues. The closest point is called the first analogue,
the next one in distance A2 is called second analogue, and so on until the last analogue

A specific forecast corresponds in the forecast space to each analogue. The
number of analogues are combined—either specified by an expert or determined according
to an inductive algorithm. Various methods can be proposed. Here the method based on
extrapolating the forecast space by splines is considered. It is assumed that some forecast
value, which is determined by using the forecasts at adjacent points of the space, exists at
each point of the forecast space

"Combining" forecasts by splines

Here "combining" means approximating the data by splines or polynomial equations with a
subsequent calculation of the forecast at the point B. The forecast is defined with the help
of weighted summing of forecast analogues using spline equations

(5.23)

The splines are selected such that the point B approaches the optimal set of analogues
i.e., the difference between their forecasts decreases. The closer the points

in the forecast space are, the closer are the forecasts themselves at these points.
Distances between points for a short-range one-step forecast are measured in the space

X; as below:

(5.24)

where are the Euclidean distances of the point B from the analogues
is the first analogue (closest), is the second more distant analogue, is the third

even more distant analogue, and so on.
The Euclidean distance is a convenient measure of proximity of a point, but only for

a one-step forecast. The repetitive procedure of stepwise forecast can be used to obtain a
long-range forecast with a multi-step lead, in which a "correlative measure" is estimated
for the proximity of groups of points. The canonical correlation coefficient [104] is also
recommended as a proximity measure for forecasting more than four steps.

The interpoint distances are used for calculating the coefficients of the
following splines;
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1. for one analogue (F = 1):

(5.25)

2. when two analogues are taken into consideration (F = 2):

(5.26)

3. when the forecasts of three analogues are taken into account (F = 3):

(5.27)

4. when the forecasts of F analogues are taken into account:

(5.28)

The largest number of analogues that are taken into account is F < N. Here F behaves
like the "freedom-of-choice."

Alternatively, one can use a parametric inductive algorithm for combining the forecast
analogues in which a complete polynomial of the form

(5.29)

is used instead of the splines.
The following choices are to be considered to provide the most accurate forecasting

process:

• choice of the optimal number of complexed analogues

• choice of optimal set of features and

• choice of the permissible variable measurement step width

Method of reducing variable set size

The two-stage method given below enables us to find the optimal set of effective features.

Stage 1. Variables are ordered according to their efficiency F = 1, 2, 3, • • • (not more than
five) using the partial cross- validation criterion CVj —>• min, defined with the help of moving
a so-called "sliding window" (which is equal to one line) along the data sample (Figure
5.18). For each position of the "sliding line" its analogues are found in prehistory and the
common analogue forecast is calculated using the splines. The discrepancy between the
"sliding line" and the forecast analogue defines a forecast error for each variable. The error
is found for all positions of the "sliding line" in the sample. The results are summed and
averaged according to the following formulae:

TV
/=!

(5.30)
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Figure 5.18. Schematic flow of the algorithm corresponding to process forecasts for calculating the
cross-validation criterion when two analogues complexed, where fi-current position of sliding
window, S-spline, and |AJc|—absolute errors.
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where i,j are numbers of data rows and columns respectively
is the cross-validation criterion for choosing optimal set of input variables (features),

|Aiy| are the absolute values of errors, and |AjCy|min are the minimal value of |AJc,y| in the
lines of sample. In general, a different series of features ordered according to the criterion
CVj are produced for different numbers F of complex analogues. This is analyzed on a
plane of F versus m.

Stage 2. The feature series are arranged as per the values of the criterion CVj. A small
number of feature sets are selected from all possible sets for further sorting out using the
complete cross-validation criterion,

(5.31)

The ordered feature set shows which sets should remain and which should be excluded. The
complete set of feature sets is divided into groups, containing an equal number of features.
Only one set, in which less efficient features are absent, remains in each group.

For example, there exists an ordered feature series of (the best feature is the
worst one is jt4); then the following sets are to be sorted out:

one set containing all four features:
one set containing three features:
one set containing two features:
one set consisting of one variable:

The whole number of sets tested is equal to four, being equal to the number of features.

Algorithm for optimal forecast analogue

The schematic flow of mode of operation of the algorithm for optimal forecast analogue
is illustrated in Figure 5.19. The overall algorithm consists of two levels: the first one
corresponds to obtaining the optimal parameter set by using the two- stage method and the
second one corresponds to the process forecasting. Figure 5.19a illustrates the analogue
search and evaluation of the forecast error for each position of the "sliding window"
and the process observation. Figure 5.19b illustrates the efficiency estimation and ordering
of variables using the criterion min. Figure 5.19c illustrates how to obtain Fopt and
mopt with the help of the criterion CV —>• min. The variable sets are obtained using the
criterion min, and the complete cross-validation criterion min is calculated
for them as explained above. The results are plotted on the plane of F — m, where the
minimum value of the criterion is found. Optimization of the criterion for set of variables
is evaluated as

The point of the plane which gives the criterion minimum, defines the optimal parameters
and sought for.

Variable set optimization enables the so called "useful" and "harmful" features in an
initial sample to be highlighted; i.e., it makes possible the exclusion of some data sample
columns. The forecast sought for is then read out from the sample using only those optimal
parameter values. Figure 5.19d illustrates the forecast at the output position of the "sliding
window" B.
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(a) (b)

(c)

(d)

forecast

Figure 5.19. Modes of operation of recognition/forecast algorithm when two analogues and
are complexed; (a) and (b) calculation of errors and criteria, (c) optimization of the criterion ̂  CV,

and (d) application mode; where max.
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Pattern width optimization

This concerns the choice of permissible variable measurement width hmax. One observation
point in the data table is called a pattern—in other words, it is a complete line of expansion.
These lines of expansions can be transformed by summing up two, three, etc. adjoining
lines and averaging the result. Due to overlapping of the number of lines in each junction,
it is only reduced by unit; i.e., a sample containing twenty lines can be transformed into
a sample containing nineteen doubled lines, or a sample containing eighteen tripled lines,
and so forth. The sorting out of data sample makes it possible to select a permissible
pattern width. Thus, the amount of sorting of the ensemble variants is reduced substantially
if one succeeds in ranking the predictor-attributes (placing them in a row according to
their effectiveness) in advance. The solution for the problem becomes simple. When the
algorithm for optimal forecast analogue is used, one estimates each predictor separately
according to the forecast measure This simplifies substantially the problem of
choosing an effective ensemble of predictor-attributes. This means that one should identify
the pattern width which provides a forecast variance value less than unity for all
variables treated. To estimate the value of the forecast is to be calculated for the
penultimate pattern.

We conclude that, in general, the optimization of the process forecast analogue algorithm
is done in a three-dimensional space of the choices for Y = 0, where F is the
number of complexed analogues, m is the number of features taken into account, h is the
data sample pattern width, and Y is the target function which is not specified.

5.2 Group analogues for event forecasting

The above procedure of process forecasting is described without specifying the output vector
Y (target function); i.e., it deals only with the data sample of the variable attributes of X.

We extend this problem to a forecasting event where the output vector Y is defined as an
event. In solving this type of problem, it is important that there be a correlation between
the columns of the samples X and Y. However, it is usually absent. For successful events
forecasting, samples X and Y must be complete and representative. In other words, the data
sample has to contain a complete set of events of all types. For instance, when a crop harvest
is forecasted, examples of "bad," "mean" and "good" harvests should be represented in Y.
The data is complete if it contains a complete set of typical classes of observed functions.
In addition, the sample should be representative. This means that clusters of matrices X and
Y must coincide in time.

One of the tests for completeness and representativeness is that the matrices X and Y be
subjected to cluster analysis using one of the known criteria. If identical correspondence
clusters are obtained on the matrices (for example, good harvest has to correspond to good
weather conditions and proper cultivation), then the sample is representative.

The problem of event forecasting is formulated in a more specific cause and effect manner
and it has wider field of applications. In the formulation, the sample of attribute variables
X is given in (N+1) time intervals, and the event factor Y is given in N intervals, if forecast
of event Y in the (N + l)st step is required. Some of the examples are:

1. sample X —observations of cultivation modes and weather conditions for (N + 1)
years.
sample Y —harvest data for N years.
It is necessary to predict the harvest for (N + l)st year.

2. sample X —design and production features of (N + 1) electronic devices.
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sample Y —"life-time" and damage size data for N devices.
It is to predict the duration of uninterrupted operation of the (N + l)st device.

3. to forecast the result of a surgical cancer treatment;
sample Y —used as a loss vector containing three binary components; y\ (recovery),
>>2 (relapse), yj, (metastases), and >>4 (the extent of disease, evaluated by the experts
as a continuous quality).
matrix X —includes various features (about 20), describing the state and method of
surgical treatment for 31 patients.

The results are known for 30 patients. These results are then used to predict the
surgical treatment result for the recently operated 31st patient after the operation.

These are some typical examples of the event forecasting.
In order to predict the events, it is necessary to consider the following aspects to provide

the accurate event forecasting;

• choice of the optimal number of complexed analogues F = Fopt;
• choice of the optimal set of features m = mopt\ and
• choice of the optimal target function vector Y = Yopt.

The first two entities describe the process forecasting algorithm, whereas the latter is a
specific aspect of the event forecasting problem.

Here, the pattern width (measurement step) h - 1 should not be changed. It is strictly
equal to one line of an initial sample and the data sample cannot be transformed as explained
before. Instead it is expedient to sort out the components of the vector Y (output value).
For example, the harvest can be represented in the data sample not only by crops weight,
but also by its sort and quality. The sorting out procedure allows only those components
which give the minimal value for the criterion CV leading to a more accurate forecast to
remain.

First, it is necessary to reduce the number of feature sets involved in the sorting. This
is demonstrated in the Figure 5.20. The distinction from the method described in Figure
5.18 is that here two matrices X and Y are participating. Instead of getting the difference
between sliding line and complexed analogue forecast, the differences of the vectors Y (not
their forecasts) are calculated as

|A*,y| = xij(B)-xij(Al,A2,A3). (5.33)

The logic of feature choice is that the value of an effective feature at the current line and
its analogues must be as close to each other as possible. A large discrepancy in the value
means the feature does not define the output value Y; i.e., it is ineffective. The criterion
CVj is calculated as the difference of feature values of the line, and the analogues averaged
over the sample columns.

1 N

CVj = -^lAj^l-nniii. (5.34)
1=1

Analogues are searched to find the matrix Y. At least one component of Y must be measured
continuously and accurately for a unique analogue. However, if the analogue is not unique
as defined, then the two components of a target function, which are derived from the
Karhunen-Loeve algorithm, are added to the vector Y.

The schematic explanation to the algorithm is exhibited in Figure 5.21. Here "a" is the
analogue choice, "b" is the calculation of the partial cross-validation criterion CVj —>• min for
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Figure 5.20. Schematic flow of the algorithm corresponding to events forecasts for calculating the
cross-validation criterion when two analogues complexed as per the occurring events, where B-
current position of sliding window, and S-spline; the criteria evaluated are CV —> mm, min,
and max.
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(a)

new vector forecast

Figure 5.21. Modes of operation of an events forecast algorithm when two analogues A\ and A 2
complexed (a) choice of analogue, (b) calculation of partial cross-validation criterion (c) arranging
on the plane to obtain optimal point, and (d) the second stage of the event recognition/ forecast

(b)
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ordering features, "c" is the calculation of values of the complete cross-validation criterion
max. with the purpose of defining the optimal values of

and r is the forecast of the event corresponding to the (N + l)st sample line under
optimal algorithm parameter values.

Note that matrices X and Y are used in one direction (anti-clockwise) at the optimization
stage, and in the opposite one (clockwise) at the forecast stage.

Other features

Use of convolution for an analogue choice in sorting out the vector components of Y.
One can use a convolution of components in the target function instead of calculating the
analogues in the multidimensional space. This helps the modeler to include components
which lead to more accurate forecast. The analogues will be the same, but the calculations
are simpler. The target function Y must have a continuous scale for a unique definition
of the analogues. Thus, when at least one of the components of Y has such a reading
scale, it is recommended that the convolution of the normalized component values Y =

for analogue searching be used. If all components are binary variables
(equal to 0 or 1), it is necessary to expand the component set by introducing one or two
components of the orthogonal Karhunen-Loeve transform (for the joint sample XY).

(5.35)

where z\ and 12 are components of the artificial target function [137]. Sorting out of the
target function is meant for excluding some items from the expression.

The complete sorting of variants of criterion values CV —> min is carried out in a three-
dimensional space of as h = 1, where F is the number of complex analogues, m is
the number of feature sets, and / is the number of components in the target function.

Correlation measure of distances beftveen points and "Wroslaw taxonomy. " The simplest
measure to calculate the distance between the points of the multidimensional feature space
is the Euclidean distance for continuous features and Hamming distance for binary ones. If
the data are nonstationary, for example, values will show an increasing or decreasing trend.
The trend is then defined either as an averaged sum of normalized values of the variables
or each variable trend is found separately (by a regression line in the form of polynomial
of second- or third-order). Deviation of the variable from its trend is read out individually.
The correlation coefficient of the deviation of each of the two measured points serves as a
correlation measure of distance between them.

When the distance correlation measure is used, it is logical to apply the "Wroslaw
taxonomy" algorithm for feature-ordering according to their efficiency. This algorithm is
based on the partial cross-validation criterion min and makes it possible to order
features according to their efficiency, and then excludes them one by one in the optimization
process of the events-forecasting procedure to find the optimal feature set and the optimal
number of complexed analogues.

The "Wroslaw taxonomy" algorithm is applicable only when the target function is defined
in the problem. For this reason it is useful only in event forecasting, but not in the process
forecasting.

Once the system is trained for a specific problem of event forecasting, it can be considered
as the algorithm for recognition of new images. Thus, the event forecasting algorithm is
treated as a particular case of the more general problem of image recognition; i.e., when
recognizing the (N + l)st vector of the target function Y is necessary.



�

&KDSWHU���IURP�WKH�ERRN��,QGXFWLYH�/HDUQLQJ�$OJRULWKPV�IRU�&RPSOH[�6\VWHP�0RGHOLQJ���0DGDOD�+�5� DQG�,YDNKQHQNR�$�*���������,6%1�����������������&5&�3UHVV�



�



�



�



�



�



�



�



�



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



��



Mathematical literature reveals that the number of neural network structures, concepts,
methods, and their applications have been well known in neural modeling literature for
sometime. It started with the work of McCulloch and Pitts [93], who considered the brain
a computer consisting of well-defined computing elements, the neurons. Systems theoretic
approaches to brain functioning are discussed in various disciplines like cybernetics, pattern
recognition, artificial intelligence, biophysics, theoretical biology, mathematical psychology,
control system sciences, and others. The concept of neural networks have been adopted to
problem-solving studies related to various applied sciences and to studies on computer hard-
ware implementations for parallel distributed processing and structures of non-von Neuman
design.

In 1958 Rosenblatt gave the theoretical concept of "perceptron" based on the neural
functioning [105]. The adaptive linear neuron element (adaline), which is based on the
perceptron theory, was developed by Widrow and Hopf for pattern recognition at the start
of the sixties [131]. It is popular for its use in various applications in signal processing and
communications. The inductive learning technique called group method of data handling
(GMDH) and which is based on the perceptron theory, was developed by Ivakhnenko
during the sixties for system identification, modeling, and predictions of complex systems.
Modified versions of these algorithms are used in several modeling applications. Since then,
one will find the studies and developments on perceptron-based works in the United States
as well as in other parts of the world [3], [26], [82].

There is rapid development in artificial neural network modeling, mainly in the direc-
tion of connectionism among the neural units in network structures and in adaptations of
"learning" mechanisms. The techniques differ according to the mechanisms adapted in the
networks. They are distinguished for making successive adjustments in connection strengths
until the network performs a desired computation with certain accuracy. The least mean-
square (LMS) technique that is used in adaline is one of the important contributions to the
development of the perceptron theory. The back propagation learning technique has become
well known during this decade [107]. It became very popular through the works of the PDF
group who used it in the multilayered feed-forward networks for various problem-solving.

1 SELF-ORGANIZATION MECHANISM IN THE NETWORKS

Any artificial neural network consists of processing units. They can be of three types:
input, output, and hidden or associative. The associative units are the communication links
between input and output units. The main task of the network is to make a set of associations
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of the input patterns x with the output patterns y. When a new input pattern is added to
the configuration, the association must be able to identify its output pattern. The units
are connected to each other through connection weights; usually negative values are called
inhibitory and positive ones, excitatory.

A process is said to undergo self-organization when identification or recognition cate-
gories emerge through the system's environment. The self-organization of knowledge is
mainly formed in adaptation of the learning mechanism in the network structure [5], [8].
Self-organization in the network is considered while building up the connections among
the processing units in the layers to represent discrete input and output items. Adaptive
processes (interactions between state variables) are considered within the units.

Linear or nonlinear threshold functions are applied on the units for an additional activation
of their outputs. A standard threshold function is a linear transfer function that is used for
binary categorization of feature patterns. Nonlinear transfer functions such as sigmoid
functions are used to transform the unit outputs. Threshold objective functions are used in
the inductive networks as a special case to measure the objectivity of the unit and to decide
whether to make the unit go "on" or "off." The strategy is that the units compete with each
other and win the race. In the former case the output of the unit is transformed according
to the threshold function and fed forward; whereas in the latter, the output of the unit is
fed forward directly if it is "on" according to the threshold objective function. A state
function is used to compute the capacity of each unit. Each unit is analyzed independently
of the others. The next level of interaction comes from mutual connections between the
units; the collective phenomenon is considered from loops of the network. Because of such
connections, each unit depends on the state of many other units. Such a network structure
can be switched over to self-organizing mode by using a statistical learning law. A learning
law is used to connect a specific form of acquired change through the synaptic weights—one
that connects present to past behavior in an adaptive fashion so that positive or negative
outcomes of events serve as signals for something else. This law could be a mathematical
function, such as an energy function that dissipates energy into the network or an error
function that measures the output residual error.

A learning method follows a procedure that evaluates this function to make pseudorandom
changes in the weight values, retaining those changes that result in improvements to obtain
the optimum output response. Several different procedures have been developed based on
the minimization of the average squared error of the unit output (least squares technique is
the simplest and the most popular).

(7.1)

where _y) is the estimated output of y'th unit depending on a relationship, and yj is the desired
output of the ith example. Each unit has a continuous state function of their total input
and the error measure is minimized by starting with any set of weights and updating each
weight w by an amount proportional to as where is a learning
rate constant.

The ultimate goal of any learning procedure is to sweep through the whole set of associ-
ations and obtain a final set of weights in the direction that reduces the error function. This
is realized in different forms of the networks [29], [77], [107], [131].

The statistical mechanism built in the network enables it to adapt itself to the examples
of what it should be doing and to organize information within itself and, thereby, to learn.
The collective computation of the overall process of self-organization helps in obtaining the
optimum output response.



Figure 7.1. Unbounded feedforward network where X and Y are input/output vectors and W and K
are weight matrices

This chapter presents differences and commonalities among inductive-based learning al-
gorithms, deductive-based adaline, and backpropagation techniques. Multilayered inductive
algorithm, adaline, backpropagation, and self-organization boolean logic techniques are con-
sidered here because of their commonality as parallel optimization algorithms in minimizing
the output residual error and for their inductive and deductive approaches in dealing with
the state functions. Self-organizing processes and criteria that help in obtaining the opti-
mum output responses in the algorithms are explained through the collective computational
approaches of these networks. The differences in empirical analyzing capabilities of the
processing units are described. The relevance of local minima depends on various activat-
ing laws and heuristics used in the networks and knowledge embedded in the algorithms.
This comparison study would be helpful in understanding the inductive learning mechanism
compared with the standard neural techniques and in designing better and faster mechanisms
for modeling and predictions of complex systems.

1.1 Some concepts, definitions, and tools

Let us consider a two-layered feedforward unbounded network with the matrices of con-
nected weights of W at first layer and K at output layer (Figure 7.1). The functional
algorithm is as follows:

Step 1, Initialize with random weights. Apply set of inputs and compute resulting
outputs at each unit.

Step 2. Compare these outputs with the desired outputs. Find out the difference,
square it, sum all of the squares. The object of training is to minimize this
difference.

Step 3. Adjust each weight by a small random amount. If the adjustment helps in
minimizing the differences, retain it; otherwise, return the weight to its previous
value.
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Step 4. Repeat from step 2 onward until the network is trained to the desired degree
of minimization.

Any statistical learning algorithm follows these four steps. In working with such self-
organization networks, one has to specify and build certain features of the network such
as type of "input-output" processing, state function, threshold transfer function (decision
function), and adopting technique. Overall, the networks can be comprised according to the
following blocks:

1. "Black box" or "input-output" processing

• batch processing

• iterative processing

• deductive approach (summation functions are based on the unbounded form of
the network)

• inductive approach (summation functions are based on the bounded form of the
network)

• multi-input single output

• multi-input multi-output

2. Considering state functions

• linear

• nonlinear [29], [103], [132]

• boolean logic

• parallel

• sequential

3. Activating with threshold transfer functions

• linear threshold logic unit (TLU)

• nonlinear or sigmoid

• objective function (competitive threshold without transformations)

4. Adapting techniques

• minimization of mean square error function (simplest case)

• backpropagation of the output errors

• minimizing an objective function ("simulated annealing")

• front propagation of the output errors.

Some of the terminology given above are meant mainly for comparing self-organization
networks. The term "deductive approach" is used for the network with unbounded con-
nections and a full form of state function by including all input variables—contrary to the
inductive approach that considers the randomly selected partial forms.

State functions

Unbounded structure considers the summation function with all input variables at each node:
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where n is the total number of input variables; Sj is the output of the node; jc, are the input
terms; is the biased term, and are the connection weights.

Bounded structure considers the summation function with a partial list (r) of input vari-
ables:

(7.3)

where and r+1 is the number of the partial list of variables. A network with an
unbounded/bounded structure with threshold logic function is called deductive because of
its apriori fixedness. A network with a bounded structure and a threshold objective function
is inductive because of its competitiveness among the units with randomly connected partial
sets of inputs.

Parallel function is defined as the state function with the inputs from the previous layer or
iteration '/; whereas, the sequential form depends on the terms from the previous iteration
and the past ones of the same iteration:

(7.4)

The computationally sequential one takes more time and can be replaced by a parallel one
if we appropriately choose input terms from the previous layer.

Transfer functions

These are used in the TLUs for activating the units. Various forms of transfer functions
are used by scientists in various applications. The analytical characteristics of linear type
TLUs are extensively studied by the group of Fokas [19]. Here is a brief listing of linear
and nonlinear TLUs for an interested reader.

Linear type TLUs or discrete-event transformations. The following are widely used thresh-
old logic functions in perceptron and other structures.

(i) Majority rule:

F(u) = 1 if u > 0

0 if u < 0;

(ii) Signum function:

F(u) = 1 if u > 0

-1 if w < 0 ;

(iii) Piecewise linear function:

F(u) = u if u > 0

0 if u < 0;

(iv) Signum-0-function:

F(u) - 1 if u > 0

0 if M = 0

- 1 if u < 0; and
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(v) Parity rule:

F(u) = 1 if u is even

0 if M is zero or odd . (7.5)

This is used in cellular automata and soliton automata [19]. In all the cases u is unit output.

Nonlinear or discrete analogue transformations

(i) Here are some forms of sigmoid function ( F(u) = tanh u ) often used in various
applications. They provide continuous monotonic mapping of the input; some map
into the range of — 1 and 1, and some into the range of 0 and 1:

(7.6)

where in which g is the gain width. In all the nonlinear cases the curve has
a characteristic sigmoidal shape that is symmetrical around the origin. For example,
take the last one. When u is positive, the exponential exceeds unity and the function
is positive, implying preference for growth. When u is negative, the exponential is
less than unity and the function is negative, reflecting a tendency to retract. When u
is zero, the function is zero, corresponding to a 50-50 chance of growth or retraction.
For large positive values of u, the exponentials dominate each term and the expression
approaches unity, corresponding to certain growth. For large negative values of u,
the exponentials vanish and the expression approaches —1, corresponding to certain
retraction. Here are some other types of transformations:

(ii) Sine function:

The use of this function leads to a generalized Fourier analysis,
(iii) Parametric exponential function:

where a and b are the parameters;
(iv) Gaussian function:

where fj, is the mean value and a is the covariance term; and
(v) Green function:

(7.7)

where ca are coefficients which are unknown, and ta are parameters which are called
centers in the radial case [101].
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Threshold objective functions. There are various forms of threshold objective functions
such as regularity, minimum-bias, balance-of-variables, and prediction criterion, used mainly
in inductive networks. These are built up based on objectives like regularization, forecasting,
finding physical law, obtained minimum biased model or the combination of two or three
objectives which might vary from problem to problem.

2 NETWORK TECHNIQUES

The focus here is on the presentation of emperical analyzing capabilities of the networks; i.e.,
multilayered inductive technique, adaline, backpropagation, and self-organization boolean
logic technique, to represent the input-output behavior of a system. The aspects considered
are: basic functioning at unit-level based on these approaches connectivity of units for
recognition and prediction type of problems.

2.1 Inductive technique

Suppose we have a sample of N observations, a set of input-output pairs
where N is a domain of certain data observations, and we have to train the

network using these input-output pairs to solve an identification problem. For the given
input of variables x corrupted by some noise is expected to reproduce the
output Oj and to identify the physical laws, if any, embedded in the system. The prediction
problem concerns the given input that is expected to predict exactly the output
from a model of the domain that it has learned during the training.

In the inductive approaches, a general form of summation function is considered Kolmo-
gorov-Gabor polynomial which is a discrete form of Volterra functional series [21]:

where the estimated output is designated by the external input vector x by
and a are the weights or coefficients. This is linear in parameters a and nonlinear in x. The
nonlinear type functions were first introduced by the school of Widrow [132]. The input
variables x could be independent variables or functional terms or finite difference terms;
i.e., the function is either an algebraic equation, a finite difference equation, or an equation
with mixed terms. The partial form of this function as a state functional is developed at
each simulated unit and activated in parallel to build up the complexity.

Let us see the function at the unit level. Assume that unit n receives input variables; for
the state function of the unit is a partial function in a finite form

of (7.8):

(7.9)

where w are the connection weights to the unit n. If there are ml input variables and two
of them are randomly fed at each unit, the network needs units at
first layer to generate such partial forms. If we denote as the actual value and as
the estimated value of the output for the function being considered for pth observation, the
output error is given by

eP = sP-f (peN). (7.10)
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The total squared error at unit n is:

(7.11)

This corresponds to the minimization of the averaged error in estimating the weights w.
This is the least squares technique. The weights are computed using a specific training set
at all units that are represented with different input arguments of ml. This is realized at
each unit of the layered network structure.

Multilayered structure is a parallel bounded structure built up based on the connectionistic
approach; information flows forward only. One of the important functions built into the
structure is the ability to solve implicitly defined relational functionals. The units are
determined as independent elements of the partial functionals; all values in the domain of
the variables which satisfy the conditions expressed as equations are comprised of possible
solutions [15], [29]. Each layer contains a group of units that are interconnected to the units
in the next layer. The weights of the state functions generated at the units are estimated
using a training set A which is a part of N. A threshold objective function is used to activate
the units "on" or "off" in comparison with a testing set B which is another part of TV. The
unit outputs are fed forward as inputs to the next layer; i.e., the output of nth unit if it is in
the domain of local threshold measure would become input to some other units in the next
level. The process continues layer after layer. The estimated weights of the connected units
are memorized in the local memory. A global minimum of the objective function would be
achieved in a particular layer; this is guaranteed because of steepest descent in the output
error with respect to the connection weights in the solution space, in which it is searched
according to a specific objective by cross-validating the weights.

2.2 Adaline

Adaline is a single element structure with the threshold logic unit and variable connection
strengths. It computes a weighted sum of activities of the inputs times the synaptic weights,
including a bias element. It takes +1 or —1 as inputs. If the sum of the state function is
greater than zero, output becomes +1, and if it is equal to or less than zero, output is —1;
this is the threshold linear function. Recent literature reveals the use of sigmoid functions
in these networks [98]. The complexity of the network is increased by adding the number
of adalines, called "madaline," in parallel. For simplicity, the functions of the adaline are
described here.

Function at Single Element

Let us consider adaline with m input units, whose output is designated by y and with external
inputs xk(k - 1, • • • ,ra). Denote the corresponding weights in the interconnections by w^.
Output is given by a general formula in the form of a summation function:

(7.12)

where is a bias term and the activation level of the unit output is

5=/(5). (7.13)

Given a specific input pattern and the corresponding desired value of the output the
output error is given by

ep = sf-yp (peAO, (7.14)
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where N indicates the sample size. The total squared error on the sample is

(7.15)

The problem corresponds to minimizing the averaged error for obtaining the optimum
weights. This is computed for a specific sample of training set. This is realized in the
iterative least mean-square (LMS) algorithm.

LMS algorithm or Widrow-Hopf delta rule

At each iteration the weight vector is updated as

(7.16)

where is the next value of the weight vector; is the present value of the weight
vector; is present pattern vector; is the present error according to Equation (7.14) and

equals the number of weights.

ptii iteration:

(7.17)

where T indicates transpose. From Equation (7.16) we can write

(7.18)

This can be substituted in Equation (7.17) to deduce the following:

(7.19)

The error is reduced by a factor of a as the weights are changed while holding the input
pattern fixed. Adding a new input pattern starts the next adapt cycle. The next error is
reduced by a factor a, and the process continues. The choice of a controls stability and
speed of convergence. Stability requires that A practical range for a is given
as

Suppose we want to store a set of pattern vectors by choosing the
weights w in such a way that when we present the network with a new pattern vector it
will respond by producing one of the stored patterns which it resembles most closely. The
general nature of the task of the feed-forward network is to make a set of associations of
the input patterns with the output patterns When the input layer units are put in the
configuration x?k the output units should produce the corresponding 5, are denoted as
activations of output units based on the threshold sigmoid function and are those of the
intermediate or hidden layer units.
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(i) For a 2-layer net, unit output is given by:

(7.20)

(ii) For a 3-layer net:

(7.21)

In either case the connection weights w's are chosen so that This corresponds
to the gradient minimization of the average of (7.22) for estimating the weights. The
computational power of such a network depends on how many layers of units it has. If it
has only two, it is quite limited; the reason is that it must discriminate solely on the basis
of the linear combination of its inputs [95].

Learning by Evaluating Delta Rule

A way to iteratively compute the weights is based on gradually changing them so that the
total squared-error decreases at each step:

(7.22)

This can be guaranteed by making the change in w proportional to the negative gradient
with respect to w (sliding down hill in w space on the error surface ).

(7.23)

where is a learning rate constant of proportionality. This implies a gradient descent of
the total error for the entire set p. This can be computed from Equations (7.20) or (7.21).

For a 2-layer net:

(7.24)

where is the state function and is the derivative of the activation function
/() at the output unit /. This is called a generalized delta rule.

For a 3-layer net: input patterns are replaced by of the intermediate units.

(7.25)

By using the chain rule the derivative of (7.21) is evaluated:

(7.26)

This can be generalized to more layers. All the changes are simply expressed in terms of the
auxiliary quantities and the for one layer are computed by simple recursions
from those of the subsequent layer. This provides a training algorithm where the responses
are fed forward and the errors are propagated back to compute the weight changes of layers
from the output to the previous layers.
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2.4 Self-organization boolean logic

In the context of principle of self-organization, it is interesting to look at a network of
boolean operators (gates) which performs a task via learning by example scheme based on
the work of Patarnello and Carnevali [99].

The general problem of modeling the boolean operator network is formulated as below.
The system is considered for a boolean function like addition between two binary operands,
each of L bits, which gives a result of the same length. It is provided with a number of
examples of input values and the actual results. The system organizes its connections in
order to minimize the mean-squared error on these examples between the actual and network
results. Global optimization is achieved using simulated annealing based on the methods of
statistical mechanics.

The overall system is formalized as follows. The network is configured by NG gates and
connections, where each gate has two inputs, an arbitrary number of outputs, and realizes
one of the 16 possible boolean functions of two variables. The array
with integer values between 1 and 16 indicates the operation implemented by /th gate. The
experiments performed are chosen to organize the network in such a way that a gate can
take input either from the input bits or from one of the preceding gates (the feedback is
not allowed in the circuit). This means that = 0 when / > j. The incidence matrices

and represent the connections whose elements are zero except when gate j takes its

left input from output gate i; then = 1 and = 1 is for right input. The output bits
are connected randomly to any gate in the network.

The training is performed by identifying and correcting, for each example, a small
subset of network connections which are considered responsible for the error. The problem
is treated as a global optimization problem, without assigning adhoc rules to back propagate
corrections on some nodes. The optimization is performed as a Monte Carlo procedure
toward zero temperature (simulated annealing), where the energy or "cost" function e of the
system is the difference between the actual result and the calculated circuit output, averaged
over the number of examples NA fed to the system (chosen randomly at the beginning and
kept fixed during the annealing).

(7.27)

where is the actual result of the /th bit in the k\h example, is the estimated
output of the circuit. Thus, is the average number of wrong bits for the examples used in
the training for a random network of 1 /2.

The search for the optimal circuit is done over the possible choice for X by choosing
A randomly at the beginning and keeping it fixed during the annealing procedure and
performing the average. The optimization procedure proceeds to change the input connection
of a gate according to the resulting energy change If 0, the change is accepted;
otherwise, it is accepted with the probability where T is the temperature—a
control parameter which is slowly decreased to zero according to some suitable "annealing
schedule." The "partition" function for the problem is considered as

(7.28)

The testing part of the system is straight forward; given the optimal circuit obtained
after the training procedure, its correctness is tested by evaluating the average error over the
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exhaustive set of the operations, in the specific case all possible additions of 2L-bit integers,
of which there are

(7.29)

where the quantities and are the same as those in the above formula.
The performance of the boolean network is understood from the quantities and

the low values of the mean that the system is trained very well and the small values
of mean that the system is able to generalize properly. So, usually one expects the
existence of two regimes (discrimination and generalization) between which possibly a state
of "confusion" takes place.

Experiments are shown [100] for different values and with L = 8. It is found
that a typical learning procedure requires an annealing schedule with approximately
Monte Carlo steps per temperature, with temperature ranging from down to

(roughly 70 temperatures for a total of ~ 200 million steps). The schedule
was slow enough to obtain correct results when is large, and is redundantly long when

is small. The system achieved zero errors as well as = 0; i.e., it finds a rule
for the addition) in some cases considered (NG = 160,A^ = 224 or 480). In these cases, as
not all possible two-input operators process information, one can consider the number of
"effective" circuits, which turn out to be approximately 40.

According to the annealing schedule, reaching T ~ 0 implies that learning takes place as
an ordering phenomenon. The studies conducted on small systems are promising. Knowing
Z exactly, the thermodynamics of these systems are analyzed using the "specific heat,"
which is defined as

(7.30)

The "specific heat" is a response function of the system and a differential quantity
that indicates the amount of heat a system releases when the temperature is infinitesimally
lowered. The interesting features of these studies are given below:

• for each problem there is a characteristic temperature such that has a maximum
value;

• the harder problem, the lower its characteristic temperature; and
• the sharpness of the maximum indicates the difficulty of the problem, and in very

hard problems, the peak remains one of the singularities in large critical systems.

In these networks, the complexity of a given problem for generalization is architecture-
dependent and can be measured by how many networks solve that problem from the trained
circuits with a reasonably high probability. The occurrence of generalization and learning
of a problem is an entropic effect and is directly related to the implementation of many
different networks.

3 GENERALIZATION

Studies have shown that any unbounded network could be replaced by a bounded network
according to the capacities and energy dissipations in their architectures [18]. Here two
types of bounded network structures are considered.

One of the important functions built into the feedforward structure is the ability to solve
implicitly defined relational functionals—the units of which are determined as independent
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elements of the partial functionals. All values in the domain of the variables that satisfy the
conditions, expressed as equations are comprised of possible solutions.

3.1 Bounded with transformations

Let us assume that unit k receives variables. For instance, that is, the state
function of the unit is a partial function in a finite form of (7.8):

(7.31)

where w are the connection weights to the unit k. There are n input variables and two of
them are consecutively fed at each unit. There are n units at each layer. If we denote as
the actual value and as the estimated value of the output for the function being considered
for the pth observation, the output error is given by

(7.32)

The total squared-error at unit k is:

(7.33)

This corresponds to the minimization of the averaged error in estimating the weights w.
The output is activated by a transfer function such as a sigmoid function F( ):

(7.34)

where is the activated output fed forward as an input to the next layer.
The schematic functional flow of the structure can be given as follows. Let us assume

that there are n input variables of x including nonlinear terms fed in pairs at each unit of
the first layer (Figure 7.2). There are n units at each layer. The state functions at the first
layer are:

(7.35)

These are formed in a fixed order of cyclic rotation. The outputs are
activated by a sigmoid function and fed forward to the second layer:

(7.36)

where are the activated outputs of first layer and are the outputs
of the second layer. The process is repeated at the third layer:

(7.37)

where are the activated outputs of the second layer fed forward
to the third layer; s" are the outputs; and jcj" are the activated outputs of the third layer.
The process goes on repetitively as the complexity of the state function increases as given



Figure 7.2. Bounded network structure with five input terms using a sigmoid function

below. For example, the state function at the unit k of the third layer with the activated
output of jt£" is described as:

(7.38)

where are the unit outputs at the first layer evaluated from the input variables of
The optimal response according to the transformations is obtained

through the connecting weights and is measured by using the standard average residual sum
of squared error. This converges because of the gradient descent of the error by least-squares
minimization and reduction in the energy dissipations of the network that is achieved by
nonlinear mapping of the unit outputs through the threshold function, such as the sigmoid
function.

3.2 Bounded with objective functions

Let us assume that unit j at the first layer receives variables. For instance, i.e.,
the state function of the unit is a partial function in a finite form of (7.8):

(7.39)

where w are the connection weights to the unity. If there are ml input variables and two
of them are randomly fed at each unit, the network needs units at
the first layer to generate such partial forms. If we denote as the actual value and as
the estimated value of the output for the function being considered for ptf\ observation, the
output error is given by (7.28). The total squared error at unit j is computed as in (7.29).
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This corresponds to the minimization of the averaged error in estimating the weights w.
Each layer contains a group of units, which are interconnected to the units in the next layer.
The weights of the state functions generated at the units are estimated using a training set A
which is a part of N. An objective function as a threshold is used to activate the units "on"
or "off" in comparison with a testing set B which is another part of N. The unit outputs are
fed forward as inputs to the next layer; i.e., the output of y'th unit—in the domain of local
threshold measure—would become input to some other units in the next level. The process
continues layer after layer. The estimated weights of the connected units are memorized
in the local memory. A global minimum of the objective function would be achieved in
a particular layer; this is guaranteed because of steepest descent in the output error with
respect to the connection weights in the solution space, in which it is searched according
to a specific objective by cross-validating the weights.

The schematic functional flow of the structure can be described as follows. Let us assume
that there are ml input variables of jc, including nonlinear terms fed in pairs randomly at
each unit of the first layer. There are units in this layer that use the state functions of
the form (7.35):

(7.40)

where x'n is the estimated output of unit and
w' are the connecting weights. Outputs of units are made "on" by the threshold
function to pass on to the second layer as inputs. There are units in the second layer
and state functions of the form (7.35) are considered:

(7.41)

where *" is the estimated output, and w" are the
connecting weights. Outputs of units are passed on to the third layer according
to the threshold function. In the third layer units are used with the state functions of
the form (7.35):

(7.42)

where jc"' is the estimated output, and w'" are
the connecting weights. This provides an inductive learning algorithm which continues
layer after layer and is stopped when one of the units achieves a global minimum on the
objective measure. The state function of a unit in the third layer might be equivalent to the
function of some original input variables of x:

(7.43)

where and are the estimated outputs from the second and
first layers, respectively, and are from the input layer (Figure 7.3). A
typical threshold objective function such as regularization is measured for its total squared



Figure 7.3. Functional flow to unit n of third layer in a multilayered inductive structure

error on testing set B as:

(7.44)

where y is the actual output value and x1" is the estimated output of unit n of the third
layer. The optimal response according to the objective function is obtained through the
connecting weights w, which are memorized at the units in the preceding layers [90]. Figure
7.4 illustrates the multilayered feedforward network structure with five input variables and
with the selections of five at each layer.

4 COMPARISON AND SIMULATION RESULTS

The major difference among the networks is that the inductive technique uses a bounded
network structure with all combinations of input pairs as it is trained and tested by scanning
the measure of threshold objective function through the optimal connection weights. This
type of structure is directly useful for modeling multi-input single-output (MISO) systems,
whereas adaline and backpropagation use an unbounded network structure to represent a
model of the system as it is trained and tested through the unit transformations for its optimal
connection weights. This type of structure is used for modeling multi-input multi-output
(MIMO) systems.

Mechanisms shown in the generalized bounded network structures are easily worked
out for any type of systems—MISO or MIMO. In adaline and backpropagation, input and



Figure 7.4. Feedforward multilayered inductive structure with ml = 5,m2 = 5, and m3 = 5 using
threshold objective function

output data are considered either {—!,+!} or {0, 1}. In the inductive approach, input and
output data are in discrete analogue form, but one can normalize data between { — !,+!} or
(0, 1}. The relevance of local minima depends on the complexity of the task on which the
system is trained. The learning adaptations considered in the generalized networks differ in
two ways: the way they activate and forward the unit outputs. In backpropagation the unit
outputs are transformed and fed forward. The errors at the output layer are propagated back
to compute the weight changes in the layers and in the inductive algorithm the outputs are
fed forward based on a decision from the threshold function. The backpropagation handles
the problem that gradient descent requires infinitesimally small steps to evaluate the output
error and manages with one or two hidden layers. The adaline uses the LMS algorithm
with its sample size in minimizing the error measure, whereas in the inductive algorithm it
is done by using the least squares technique. The parameters within each unit of inductive
network are estimated to minimize, on a training set of observations, the sum of squared
errors of the fit of the unit to the final desired output.

The batchwise procedure of least squares technique sweeps through all the points of the
measured data accumulating before changing the weights. It is guaranteed to move
in the direction of steepest descent. The online procedure updates the weights for each
measured data point separately [131]. Sometimes this increases the total error but by
making the weight changes sufficiently small the total change in the weights after a complete
sweep through all the measured points can be made to closely and arbitrarily approximate
the steepest descent. The use of batchwise procedure in the unbounded networks requires
more computer memory, whereas in the bounded networks such as multilayered inductive
networks, this problem does not arise.



Figure 7.5. Bounded inductive network structure with linear inputs using threshold objective function
(only activated links are shown)

Simulation experiments are conducted to compare the performances of inductive versus
deductive networks by evaluating the output error as a learning law [91], [92]. Here the
above general types of bounded network structures with inputs fed in pairs are considered.
One is deductive network with sigmoid transfer function where is the
gain factor and another is inductive network with threshold objective function which is
a combined criterion (c2) of regularity and minimum-bias. As a special case, sinusoidal
transformations are used for deductive network in one of the studies. In both the structures,
the complexity of state function is increased layer by layer. The batchwise procedure of
least squares technique is used in estimating the weights. Various randomly generated data
and actual emperical data in the discrete analogue form in the range { — !,+!} are used in
these experiments. The network structures are unique in that they obtain optimal weights
in their performances. Two examples for linear and nonlinear cases and another example
on deductive network without any activations are discussed below:

(i) In linear case, the output data is generated from the equation:

(7.45)

where are randomly generated input variables, y is the output variable, and
is the noise added to the data.

(a) Five input variables are fed to the inductive network through
the input layer. The global measure is obtained at a unit in the sixth layer
(c2 = 0.0247). The mean-square error of the unit is computed as 0.0183.
Figure 7.5 shows the iterations of the self-organization network (not all links
are shown for clarity). The values of c2 are given at each node.

(b) The same input and output data are used for the deductive network; unit outputs
are activated by sigmoid function. It converges to global minimum at a unit
in the third layer. The residual mean-square error (MSE) of the unit is 0.101.



Figure 7.6. Bounded network structure with linear inputs and sigmoid output activations; is the
biased term at each node

Figure 7.6 gives the evolutions of the generation of nodes by the network during
the search process and residual MSE at each node is also given. indicates
the node which achieved the optimum value in all the networks given.

(ii) In a nonlinear case, the output data is generated from the equation:

(7.46)

where are randomly generated input variables, y is the output variable, and
is the noise added to the data.

(a) are fed as input variables. In the inductive case the global
measure is obtained at a unit in the third layer (c2 = 0.0453). The residual MSE
of the unit is computed as 0.0406. Figure 7.7 gives the combined measure of
all units and residual MSE at the optimum node. Table 7.1 gives the connecting
weight values the value of the combined criterion, and the
residual MSE at each node.

(b) The same input/output data is used for the deductive network; sigmoid function
is used for activating the outputs. It is converged to global minimum at a unit in
the second layer. The average residual error of the unit is computed as 0.0223
for an optimum adjustment of g = 1.8. Figure 7.8 gives the residual MSE at
each node. Table 7.2 gives the connecting weight values and
the residual MSE at each node.

(c) In another case, the deductive network with the same input/output data is acti-
vated by the transfer function where u is the unit output and g
is the gain factor. The global minimum is tested for different gain factors of g

where varies from 0.0 to 1.0. As it varies, optimal units are shifted
to earlier layers with a slight change of increase in the minimum. For example,
at = 0.5 the unit in the third layer achieves the minimum of 0.0188 and at

= 0.8 the unit in the second layer has the minimum of 0.0199. The global
minimum of 0.0163 is achieved at the second unit of the sixth layer for = 0.0
(Figure 7.9).



Figure 7.7. Bounded inductive network structure with nonlinear inputs using threshold objective
function (only activated links are shown)

Figure 7.8. Bounded network structure with nonlinear inputs and sigmoid output activations; WQ is
the biased term at each node



Figure 7.9. Bounded network structure with nonlinear inputs and sinusoidal output transformations;
is the biased term at each node

(iii) Further, the network structures are tested for their performances without any threshold
activations at the units; i.e., the unit outputs are directly fed forward to the next layer.
Global minimum is not achieved; the residual error is reduced layer-by-layer as it
proceeds—ultimately, the network becomes unstable. This shows the importance of
the threshold functions in the convergence of these networks.

The resulting robustness in computations of self-organization modeling is one of the
features that has made these networks attractive. It is clear that network models have a
strong affinity with statistical mechanics. The main purpose of modeling is to obtain a better
input-output transfer relationship between the patterns by minimizing the effect of noise in
the input variables. This is possible only by providing more knowledge into the network
structures; that is, improving the network performance and achieving better computing
abilities in problem solving. In the inductive learning approach the threshold objective
function plays an important role in providing more informative models for identifying and
predicting complex systems. In the deductive case the unit output transformation through
the sigmoid function plays an important role when the functional relationship is sigmoid
rather than linear. Over all, one can see that the performance of the neural modeling can
be improved by adding one's experience and knowledge into the network structure as a
self-organization mechanism. It is an integration of various concepts from conventional
computing and artificial intelligence techniques.
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Table 7.2. Network structure with sigmoid function
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Chapter 8
Basic Algorithms and
Program Listings

The computer listings of the basic inductive network structures for multilayer, combinato-
rial and harmonical techniques, and their computational aspects are given here. Multilayer
algorithm uses a multilayered network structure with linearized input arguments and gener-
ates simple partial functionals. Combinatorial algorithm uses a single-layered structure with
all combinations of input arguments including the full description. Harmonical algorithm
follows the multilayered structure in obtaining the optimal harmonic trend with nonmultiple
frequencies for oscillatory processes. One can modify these source listings as per his/her
needs. These programs run on microcomputers and SPARC stations of SUN microsystems.
To some extent they were also previously given for NORD-100/500 systems [88].

1 COMPUTATIONAL ASPECTS OF MULTILAYERED ALGORITHM

The basic schematic functional flow of the multilayered inductive learning algorithm is
given in Chapters 2 and 7.

As the multilayer network procedure is more repetitive in nature, it is important to con-
sider the algorithm in modules and facilitate repetitive characteristics. The most economical
way of constructing the algorithm is to provide three main modules: (i) the first module
is for computations of common terms in the conditional symmetric matrix of the normal
equations for all input variables. This is done at the beginning of each layer with all fresh
input variables entering into the layer using the training set, (ii) the second module is for
generating the partial functions by forming the symmetric matrices of the normal equations
for all pairs of input variables, for estimating their coefficients, for computing the values of
the threshold objective functions on the testing set, and for memorizing the information of
coefficients and input variables of the best functions (this is done for each layer), and (iii)
the third module is for computing the coefficients of the optimal model by recollecting the
information from the associated units.

To initiate the program one has to specify the control parameters:
Ml — no. of input variables
N — total no. of data points
PE — percentage of points on training and testing sets;

50 < PE < 100; if PE = 80, then A = 80%, B = 80%,
and C = 20%



PM — no. of layers
ALPHA — weightage used in the combined criterion as

C = ALPHA*C1 + (1-ALPHA)*C2, where
C indicates the combined criterion (c2),
Cl indicates the minimum-bias criterion,
C2 indicates the regularity criterion,
and 0 < ALPHA < 1

CHO(I), I - 1, PM — freedom-of-choice at each layer of PM layers
FF — choice of optimal models at the end (FF > 1)

The values of these parameters are supplied through the file "param. dat. " The file "input. dat"
supplies the output and input data measurements.

The "input. dat" file is to be supplied according to the specified reference function. If the
reference function is a linear function (for example, (Ml = 6)), then

(8. 1)

where a are the coefficients; are the inputs to the network; and y\ is the desired
output variable. One has to supply the data file with N rows of points as

The higher-ordered terms are to be calculated and supplied in the file. Data sets A and B
are separated according to the dispersion analysis.

In the first module, common terms in the conditional matrix XH is computed using the
P2 input variables and the output variable Y. PI and PU indicate the number of functions
to be selected at the first layer and number of the layer, correspondingly.

In the second module, it forms the matrices (HM1, HM2, HM3) of normal equations for
each pair of input variables J and I, and estimates the weights or coefficients (KOI, KO2,
KO3) using the data sets A, B, and W correspondingly. All partial functions are
evaluated by the combined criterion. It stores the information on coefficients (KOE) and
input variables (NK) of the best PI nodes. Subroutine RANG is used to arrange all values
in ascending order. Standard subroutine GAUSS is used to estimate the coefficients of each
partial function.

Futhermore, the estimated outputs (YY) of PI functions are calculated to send it to the
next layer. To repeat the above two modules, we have to convert the outputs (YY) as inputs
(XX) and initialize with fresh control parameters of the layer—the number of the layer PU
is updated as PU+1, the number of input arguments P2 is equated to PI, and the number
of functions to be selected (freedom-of-choice) is taken from CHO(PU) as specified at the
beginning. This procedure is repeated until PU becomes the number of specified layers (PM).

Modules 1 and 2 with the subroutine NM, help in forming normal equations for each
pair in a more economical of utilizing computer time.

In the third module, it recollects the information for the function that has achieved global
minimum or FF functions. The parameter PDM is calculated in advance as an indicator of
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the number of original input arguments u activating in the function at a particular layer—
in the first layer PDM = 2 and in consecutive layers PDM = PDM*2. The coefficients
and number of input arguments of the optimal function are computed using the stored
information from KOE and NK.

The program listing and the sample output for a chosen example are given below.

1.1 Program listing

c

C THIS FORTRAN VERSION IS DEVELOPED BY H. MADALA

C MULTILAYER INDUCTIVE LEARNING ALGORITHM
C
C MAIN PROGRAM
C

INTEGER N,M,M1,PE,PM,N1,I,J,K,S,P,R,T,GG,PN,
1 FF,SH,PU,YP,Pl,BM,P2,NI,PDM,
2 PL,NL,EG,SS,MH,MHl,MH2,IFAIL

REAL XS,XM,OSH,TL,TX,YB,C,C1,C2,YM,AL,OL,H21,H2 2,Y3,Yll,
1 Y22,CTROO
REAL CML (30,10),X(15,200),Y(l,200),KX(15),AX(200),

1 XX(15,200),K01(15),K02(15),KO3(15),K04(15),CM(30),
2 HM1(15,16),HM2(15,16),HM3(15,16),CMM(30,10),
3 KOE(30,10,20),CT(15),CTRO(15),D2(15),AY(200),
4 XH(15,10,10),YY(20,200),SK(20),A(256),AD (256),
5 D22(200)

INTEGER NPP (200),NPl(200),NP2(200),NOl(200),NO2(200),
1 CHO(10),NK(30,10,20),NC(30),ND(15),ST(20,5),
2 NDD(200),AN (256),AND (256),OB(200,5)

C
OPEN(1,FILE='param.dat')
OPEN(8,FILE='input.dat')
OPEN(3,FILE='output.dat')

C INITIALIZATION
Q* * * * * * * * * * * * * * * *

READ(1,*)M1,N,PE,PM,ALPHA
READ(l,*)(CHO(I),I=l,PM), FF
XS =PE*N
PE =INT(XS/100.)

C M1 - NO. OF INPUT VARIABLES
C N - NO. OF DATA OBSERVATIONS
C PE - PERCENTAGE OF TOTAL PTS. ON TRAIN AND TESTING SETS
C PM - NO. OF LAYERS
C (CHO(I), I =l,PM) - CHOICE OF MODELS AT EACH LAYER
C FF - CHOICE OF OPTIMAL MODELS AT THE END

M=1
DO 91 I=l,N
READ(8,*)Y(1,I),(X(J,I),J=1,M1)

91 CONTINUE
C

92 FORMAT (2X,'CONTROL PARAMS:'/2X,' '/)
95 FORMAT (3x,'NO.OF INPUT VARIABLES (Ml) ',I2)
97 FORMAT (3x,'NO.OF DATA POINTS (N) ',I3)
99 FORMAT (3X,'PERCENTAGE OF TRAIN AND TEST POINTS (PE) ',I2)





















c
FUNCTION RND(S2)

R1= (S2 + 3.14159)*5.04
Rl=Rl-INT(Rl)
S2 = R1

RND=R1
RETURN
END

C
C

SUBROUTINE GAUSS(A,N,L,X,IF)
DIMENSION A(15,16),X(15)
IF=1
NN=N-1
DO 99 K=l,NN
J=K
KK=K+1
DO 100 I=KK,N
IF(ABS(A(J,K)).LT.ABS(A(I,K)))J=I

100 CONTINUE
IF(J.EQ.K)GOTO 11
DO 300 I = l,L
T=A(K,I)
A(K, I)=A(J,I)
A(J,I)=T

300 CONTINUE
11 DO 88 J=KK,N

IF(A(K,K).EQ.O.)GOTO 13
D=-A(J,K)/A(K,K)
DO 400 I=l,L
A(J,I)=A(J,I)+D*A(K, I)

400 CONTINUE
88 CONTINUE
99 CONTINUE

IF(A(N,N).EQ.O.)GOTO 13
X(N)=A(N,L)/A(N,N)
NN=N-1
DO 500 J=l,NN
K=N-J
SUM=0. 0
NNN=N-K
DO 200 JJ=l,NNN
M=K+JJ
SUM=SUM+A(K,M)*X(M)

200 CONTINUE
IF(A(K,K).EQ.O.)GOTO 13
X(K)=(A(K,L)-SUM)/A(K,K)

500 CONTINUE
GOTO 14

13 IF=0
14 RETURN

END
C

1.2 Sampleoutput

Example. The output data is generated from the equation:

y = 0.433 - 0.095jr, + 0.243*2 + 0.35^ - O.18jci *2 + e,



where x\, X2 are randomly generated input variables, _y is the output variable computed from
the above equation, and e is the noise added to the data. The data file "input.dat" is prepared
correspondingly.

The control parameters are supplied in the file "param.dat"

5 100 75 7 0.5
10 10 10 10 10 10 10 8

The parameters take the values as Ml =5, N =100, PE =75, PM =7, ALPHA =0.5,
CHO(l) =10, CHO(2) =10, ..., CHO(7) =10, and FF =8.

The program creates the output file "output.dat" with the results.
The results are given first with the control parameters, then the performance of the

network at each layer that include the values of the combined criterion for the best and
the worst models, the values of the residual mean-square error (MSE) for the best and the
worst models, and the residual MSE value for the best model according to the combined
criterion. The value of ERROR GAUSS indicates the number of singular nodes, if any in
the layer, and the SELECTED DESCRIPTION is the freedom-of-choice at each layer. The
EQUATION NUMBER indicates the number of the output variable. It is fixed as one (M
= 1) because it is dealt with as a single output equation. This can be changed to a number
of output equations and the program is modified accordingly.

The coefficient values of optimal models as a number specified for FF are displayed with
the constant term and the numbers of input variables with the layer number and the values
of the criteria. The second model in the list, obtained at the seventh layer, is the best among
all according to the combined criterion; this is read as

(8-3)

The output is written in the file "output.dat" as below:

M U L T I L A Y E R ALGORITHM

CONTROL PARAMS:

NO.OF INPUT VARIABLES (Ml) 5
NO.OF DATA POINTS (N) 100
PERCENTAGE OF TRAIN AND TEST POINTS (PE) 75
NO.OF LAYERS (PM) 7
WEIGHTAGE VALUE IN COMBINED CRIT (ALPHA) 0.5
FREEDOM-OF-CHOICE AT EACH LAYER(CHO) 10 10 10 10 10 10 10
NO.OF OPTIMAL MODELS (FF) 8
NO.OF OUTPUT VARIABLES (M) 1

PERFORMANCE OF THE NET:

EQUATION NUMBER= 1

LAYER^ 1 SELECTED DESCRIPTION^ 10
ERROR GAUSS= 0
COMBINED ERROR BEST= 0.644E-01 WORST= 0.275E+00
RESIDUAL MSE BEST= 0.304E-01 WORST= 0.961E-01
RESIDUAL MSE= 0.304E-01 AT THE BEST COMBINED NODE





2 COMPUTATIONAL ASPECTS OF COMBINATORIAL ALGORITHM

The algorithm given is for a single-layered structure. The mathematical description of
a system is represented as a reference function in the form of discrete Volterra series in
multivariate data and finite-difference equations in time series data.



where y and ;c, are the desired and input variables in the first polynomial; / is the number of
input variables; yt is the desired output at the time t; yt-i,yt-2, • • • are the delayed arguments
of the output as inputs in the finite-difference scheme.

The combinatorial algorithm frames all combinations of partial functions from the given
reference function. If the reference function is a linear function; for example,

y=f(xi,x2) = a0 + aixi+a2x2, (8.5)

then it generates

y = aQ, y = a\x\, y = a2x2, y = a0 + a\xi,

y = «o + a2x2, y = a\x\ + a2x2, and y = do + a\x\ + a2x2. (8.6)

Suppose there are m(= 3) parameters in the reference function, then the total combinations
are 2m — 1(= 7). The "structure of functions" is used to generate these partial models.

a2 a\ a0

0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

where each row indicates a partial function with its parameters represented by "1," the
number of rows indicates the total number of units, and the number of columns indicates
total number of parameters in the full description. This matrix is referred further in forming
the normal equations.

The weights are estimated for each partial equation by using the least squares technique
with a training data set at each unit and computed at its threshold measure according to the
external criterion using the test set. Then the unit errors are compared with each other and
the better functions are selected for their output responses and evaluated further.

For simplicity, the external criteria used in this algorithm are the minimum-bias, regu-
larity, and combined criterion of minimum-bias and regularity.

Three ways of splitting data are used here: sequential, alternative, and dispersion analysis.
The user can choose one of them or experiment with them for different types of splittings.

The program works for time series data as well as multivariate data. If it is time series
data, the user has to specify the number of autoregressive terms in the finite-difference
function and supply the "input.dat" file with the time series data. If it is multivariate data,
one has to specify the number of input variables and supply the "input.dat" file with the
rows of the data points for output and input variables.

The program listing and an example with the sample output are given below.

2.1 Program listing

c

C THIS PROGRAM IS THE RESULT OF EFFORTS FROM VARIOUS GRADUATE STUDENTS
C AND RESEARCH PROFESSIONALS AT THE COMBINED CONTROL SYSTEMS GROUP OF
C INSTITUTE OF CYBERNETICS, KIEV (UKRAINE)



















2.2 Sample outputs

Example.
I. Here the case of multivariate data is considered. The output data is generated from

the equation:

where are randomly generated input variables _y is the output variable, and is the
noise added to the data. The "input.dat" file is arranged for 100 measured points with the
values of

The initial control parameters of the program are fed through the terminal as it asks inputting
the values, starting with

GIVE TOTAL DISCRETE POINTS
100

TIME SERIES (1)/MULTIVARIATE DATA (2)??
2

GIVE NO.OF INPUT VARIABLES??
5



GIVE NO.OF TRAINING PTS??
30

GIVE NO.OF TESTING PTS??
L5

DATA SPLITTING BY (-1 DISP, 0 ALTER, 1 SEQUEN)??

GIVE ORDER OF THE MODEL??
L

Then it on the screen displays information to the user on how to feed further information:

NO.OF TERMS IN FULL MODEL = 6
NO.OF PARTIAL MODELS = 6 3

The user has to feed further data such as the number of optimal models to be selected
and the selection criterion to be used.

NO.OF OPTIMAL MODELS (NB)??
8

GIVE SELECT GRIT (1-REGUL, 2-MINBIAS, 3-COMBINED)?
1

The output is written in a file "results.dat" given here:

SINGLE L A Y E R E D COMBINATORIAL ALGORITHM

TOTAL NO.OF DATA PTS. =100

MODEL ORDER (IT)= 1
NO INPUT VAR.(L)= 5
TOTAL NO.PTS.(M)=100
NO.PTS.TESTSET(MP)= 15
NO.PTS.EXAM.SET (MAl)= 5

NO.TERMS IN FULL MODEL= 6
NO.PARTIAL MODELS= 63.

NO OF SELECT MODELS = 8
STRUCTURE OF THE FULL POLYNOMIAL

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

SORTING OUT BY REGULARITY CRITERION
DEPTH OF THE MINIMUM
0.647E-04 0.652E-04 0.219E-02 0.364E-02 0.352E-02
0.219E-02 0.394E-02 0.409E-02
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COEFFICIENTS:
0 . 4 3 4 -0.180 0 . 0 0 0 0 .350 0 . 2 4 3 - 0 . 0 9 5
0 . 4 3 4 -0.180 0 . 0 0 0 0 .350 0 .243 -0 .095
0.417 -0.192 0 . 0 0 5 0 . 2 6 6 0 . 2 4 2 0 . 0 0 0
0 . 4 4 2 0 . 0 0 0 0 . 0 0 0 0.174 0.161 0 . 0 0 0
0 . 4 3 7 0 . 0 0 0 - 0 . 0 3 0 0.173 0.190 0 . 0 0 0
0.416 -0.191 0 . 0 0 0 0 . 2 6 5 0 . 2 4 7 0 . 0 0 0
0 . 4 5 8 0 . 0 0 0 - 0 . 0 3 3 0 . 2 9 3 0.196 -0.127
0 . 4 6 3 0 . 0 0 0 0 . 0 0 0 0 . 2 9 2 0.163 -0.126

MSE AFTER ADAPTATION
0.469E-03 0.470E-03 0.116E-01 0.306E-01 0.303E-01
0.116E-01 0.260E-01 0.264E-01

ERROR ON THE EXAMIN SET
0.516E-03 0.527E-03 0.901E-02 0.268E-01 0.266E-01
0.900E-02 0.182E-01 0.182E-01

The STRUCTURE OF THE FULL POLYNOMIAL helps to read the coefficients in order.
For example, the first row indicates the constant term; the second row which contains 1
at the fifth column indicates that the second coefficient corresponds to the fifth variable;
similarly, the third row for the fourth variable, and so on until the last row indicates the
coefficient of first variable.

The COEFFICIENTS are given for eight optimal models; they are given according to the
order of STRUCTURE OF THE FULL POLYNOMIAL as a^a^a^a^a^ and a\. The
DEPTH OF THE MINIMUM for regularity criterion, MSE AFTER ADAPTATION, and
ERROR ON THE EXAMIN SET are given for each model in the order. The first model is
the best one among all; this is read as

(8.7)

II. The above example can also be solved alternatively by forming the "input.dat" with
the variables y, x\, and as

The control parameter values are the same as above, except the number of variables and
the value of the order of the model which must be fed as

GIVE NO.OF INPUT VARIABLES??
2

GIVE ORDER OF THE MODEL??
2

Then the output in "results.dat" is shown below:

SINGLE L A Y E R E D COMBINATORIAL ALGORITHM

TOTAL NO.OF DATA PTS. =100

MODEL ORDER (IT)= 2
NO INPUT VAR.(L)= 2
TOTAL NO.PTS.(M)=100
NO.PTS.TESTSET(MP)= 15
NO.PTS.EXAM.SET (MAl)= 5

NO.TERMS IN FULL MODEL= 6



NO.PARTIAL MODELS- 63.

NO OF SELECT MODELS = 8
STRUCTURE OF THE FULL POLYNOMIAL

0 0
0 1
0 2
1 0
1 1
2 0

SORTING OUT BY REGULARITY CRITERION
DEPTH OF THE MINIMUM
0.364E-02 0.646E-04 0.219E-02 0.651E-04 0.394E-02
0.352E-02 0.409E-02 0.219E-02

COEFFICIENTS:
0 . 4 4 2 0.161 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0.174
0 . 4 3 4 0 . 2 4 3 0 . 0 0 0 -0.095 -0.180 0.350
0.417 0 . 2 4 2 0 . 0 0 5 0 . 0 0 0 -0.192 0 . 2 6 6
0 . 4 3 4 0 . 2 4 3 0 . 0 0 0 -0 .095 -0.180 0 .350
0 . 4 5 8 0.196 -0 .033 -0.127 0 . 0 0 0 0 . 2 9 3
0 .437 0.190 -0 .030 0 . 0 0 0 0 . 0 0 0 0.173
0 . 4 6 3 0.163 0 . 0 0 0 -0.126 0 . 0 0 0 0 . 2 9 2
0.416 0 . 2 4 7 0 . 0 0 0 0 . 0 0 0 -0.191 0 . 2 6 5

MSE AFTER ADAPTATION
0.306E-01 0.469E-03 0.116E-01 0.470E-03 0.260E-01
0.303E-01 0.264E-01 0.116E-01

ERROR ON THE EXAMIN SET
0.268E-01 0.516E-03 0.901E-02 0.527E-03 0.182E-01
0.266E-01 0.182E-01 0.900E-02

Notice the change in the order of the coefficients. The first row of the STRUCTURE
OF THE POLYNOMIAL indicates that the first coefficient term is the constant term; the
second row indicates that the second coefficient term corresponds to the variable the
third row indicates that the third coefficient term corresponds to the variable the fourth
row indicates that the fourth coefficient term corresponds to the variable the fifth row
corresponds to the variable and the sixth row indicates the variable The second
model is the best optimal model among the eight models; this is read as

(8.8)

3 COMPUTATIONAL ASPECTS OF HARMONICAL ALGORITHM

This is used mainly to identify the harmonical trend of oscillatory processes [127]. It is
assumed that the effective reference functions of such processes are in the form of a sum of
harmonics with nonmultiple frequencies. This means that the harmonical function is formed
by several sinusoids with arbitrary frequencies which are not necessarily related.

Let us suppose that function f ( t ) is the process having a sum of m harmonic components
with distinct frequencies

(8.9)

where , is the constant term; and are the coefficients; and
TT, / = 1,2, • • • , m. The process has discrete data points of interval length of N (I < t < N).





of harmonic trends would take place according to the inductive principle of self-organization.
This is done by a successive increase in the number of terms of the harmonic components

The linear normal equations are constructed in
the first layer for any 1 < m < Mmax number of harmonics. The coefficients and
Bk are estimated for all the combinations based on the training set using the least squares
technique; the balance functions are then evaluated. The best trends are selected. The
output error residuals of the best trends are fed forward as inputs to the second layer. This
procedure is repeated in all subsequent layers. The complexity of the model increases layer
by layer as long as the value of the "imbalance" decreases. The optimal trend is the total
combination of the harmonical components obtained from the layers. The performance of
the optimal trend is tested on the checking set C.

The program listing and sample outputs for an example are given below.

3.1 Program listing

c

C THIS PROGRAM IS THE RESULT OF EFFORTS FROM VARIOUS GRADUATE STUDENTS
C AND RESEARCH PROFESSIONALS AT THE COMBINED CONTROL SYSTEMS GROUP OF
C INSTITUTE OF CYBERNETICS, KIEV (UKRAINE)

C
C HARMONICAL INDUCTIVE LEARNING ALGORITHM
C

























3.2 Sample output

Example. The time series data sample is supplied with a file "ts.dat." The data corresponds
to the air-temperature data that is collected at an interval of one day. The control parameters
are fed as input:

GIVE NO.OF TRAIN, TEST & EXAM PTS?
45 1 1
GIVE NO.OF PRED PTS??

5
GIVE MOVING AVERAGE VALUE (=1 or >!)?

1
HOW MANY SERIES?

3
GIVE MAX NO.OF FREQS(<=15)??

8
GIVE FREEDOM OF CHOICE(< MAX FREQS)??

7

One can choose the MOVING AVERAGE VALUE to smooth out the noises in the data;
if it is 1, then it takes the data as it is. SERIES indicates the number of layers in the
algorithm. Usually, one or two layers are sufficient to obtain the optimal trend. Even if
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the user chooses more number of layers, it selects the optimal trend from the layer where
it achieves the global minimum of the balance relation. MAX NO.OF FREQS which has
the limit of less than or equal to 15 indicates the maximum number of distinct frequencies
Mmax to be determined. FREEDOM OF CHOICE denotes the number of optimal trends to
be selected at each layer.

The performance of the algorithm is given for each layer. The values of the balance
function for training, testing, and examining sets (BAL A, BAL B, BAL C) and their error
values (ERR A, ERR B, ERR C) are given correspondingly for each selected trend. The
best trends or combinations of the freedom-of-choice are shown. The best one among them
according to the balance relation on training set (BAL A) is underlined. TRNO indicates
the trend number or combination number from the previous layer and FRNO indicates
the number of harmonical components in the current trend. For example, the optimum
trend underlined for SERIES 1 has seven frequencies (see output below). The best trend
underlined for SERIES 2 has also seven (FRNO =7) harmonical components. This is based
on the seventh trend or combination (TRNO =7) of the SERIES 1. Similarly, the best trend
in SERIES 3 has one frequency (FRNO =1) and is based on the second trend or combination
(TRNO = 2) of the SERIES 2.

The OPTIMAL TREND is collected starting from the SERIES, where the global mini-
mum on the balance relation (BAL A) is achieved, to the first layer. For the output given
below, the global minimum is achieved at the SERIES 3 with the value of BAL A equal
to 0.101E+01; it has one harmonical component. This is the follow up of the second com-
bination (TRNO = 2) of the SERIES 2. The second combination of the SERIES 2 has
eight harmonical components and is the follow up of the sixth trend (TRNO = 6) of the
SERIES 1. The sixth one in the SERIES 1 has six harmonic components. This means
that the recollected information of the optimal trend includes six harmonical components
from the SERIES 1, eight from the SERIES 2, and one from the SERIES 3 along with a
FREE TERM from each SERIES; the OPTIMAL TREND is printed giving the values of
the FREE TERMs, the frequencies (FREQ), and the coefficients (COEFFS A and B) at each
layer along with the AMPLITUDE values. This is represented as

(8.15)

where is the estimated output value; s denotes the number of series in the optimal trend;
denote the number of harmonic components at each series; is the free

term at j'th SERIES; and are the estimated coefficients of the Ath component of the
y'th SERIES; and are the corresponding frequency components.

ACTUAL and ESTIMATED VALUES are given for comparison and the RESIDUAL
SUM OF SQUARES (RSS) is computed as

(8.16)

where y and are the actual and estimated values and is the average value of the time
series.

The PREDICTED VALUES are given as specified using the optimal trend; this includes
the predictions for the points

The output is written in the file "output.dat" below.

L A Y E R E D HARMONICAL ALGORITHM



LENGTH OF TRAINING SET (A) 45

LENGTH OF TESTING SET ( B ) 1

LENGTH OF EXAMINING SET ( C ) 1

MAX NO. OF FREQUENCIES 8

FREEDOM OF CHOICE 7

NO. OF PREDICTION POINTS 5

MAX. NO. OF SERIES 3

SERIES 1
TRNO FRNO BAL A BAL B BAL C ERR A ERR B ERR C

0 1 0. 464E+01 0. 620E+00 0. 709E+01 0. 455E+01 0. 131E+01 0. 365E+01
0 2 0. 651E+01 0. 381E+01 0. 654E+01 0. 427E+01 0. 304E+01 0. 687E+01
0 8 0. 408E+01 0. 149E+02 0. 358E+01 0. 271E+01 0. 628E+01 0. 950E+01
0 4 0. 607E+01 0. 650E+01 0. 555E+01 0. 419E+01 0. 300E+00 0. 462E+01
0 5 0. 486E+01 0. 994E+01 0. 512E+00 0. 442E+01 0. 278E+01 0. 548E+01
0 6 0. 373E+01 0. 883E+01 0. 320E+01 0. 354E+01 0. 133E+01 0. 111E+01
0 7 0. 356E+01 0. 121E+02 0. 463E+01 0. 296E+01 0. 522E+01 0. 588E+01

SERIES 2
TRNO FRNO BAL A BAL B BAL C ERR A ERR B ERR C

7 7 0. 215E+01 0. 606E+01 0. 360E+01 0. 158E+01 0. 401E+01 0. 454E+01

6 8 0. 236E+01 0. 575E+01 0. 385E+01 0. 919E+00 0. 443E+00 0. 207E+00
7 8 0. 254E+01 0. 829E+01 0. 338E+01 0. 101E+01 0. 447E+01 0. 407E+01
6 7 0. 252E+01 0. 673E+01 0. 588E+01 0. 157E+01 0. 275E+01 0. 152E+01
3 7 0. 235E+01 0. 885E+01 0. 203E+01 0. 183E+01 0. 681E+01 0. 902E+01
3 5 0. 261E+01 0. 981E+01 0. 151E+01 0. 190E+01 0. 842E+01 0. 972E+01
7 6 0. 255E+01 0. 809E+01 0. 313E+01 0. 258E+01 0. 671E+01 0. 732E+01

SERIES 3
TRNO FRNO BAL A BAL B BAL C ERR A ERR B ERR C

3 3 0. 120E+01 0. 457E+01 0. 164E+01 0. 909E+00 0. 435E+01 0. 443E+01
2 4 0. 133E+01 0. 236E+01 0. 490E+00 0. 784E+00 0. 170E+00 0. 929E+00
3 2 0. 133E+01 0. 563E+01 0. 359E+01 0. 971E+00 0. 467E+01 0. 428E+01
2 3 0. 123E+01 0. 171E+01 0. 226E-01 0. 838E+00 0. 386E+00 0. 150E-01
2 2 0. 116E+01 0. 159E+01 0. 115E+01 0. 874E+00 0. 101E+01 0. 200E+00
3 8 0. 116E+01 0. 456E+01 0. 503E+00 0. 537E+00 0. 361E+01 0. 256E+01
2 1 0. 101E+01 0. 596E-01 0. 132E+01 0. 902E+00 0. 323E+00 0. 389E+00

OPTIMAL TREND

SERIES 1
FREE TERM -0. 56199
NO. OF FREQUENCIES 6
FREQ COEFFS A COEFFS B AMPLITUDE

0. 2369936 -1. 056414 1. 915627 2. 187610



0.7902706 -2.265249 -1.351049 2.637553
1.0355266 -0.320283 1.655817 1.686509
1.8367290 -0.274392 -0.120682 0.299759
2.1455603 1.113026 0.479222 1.211809
2.5376661 0.573313 -0.212797 0.611531

SERIES 2
FREE TERM -0.09219
NO.OF FREQUENCIES 8
FREQ COEFFS A COEFFS B AMPLITUDE

0.1195246 -3.281033 -2.040643 3.863858
0.6629882 1.209835 -0.435315 1.285768
0.9145533 -1.877773 -0.696096 2.002644
1.3779728 -0.100550 -0.039555 0.108051
1.8496013 -0.052124 -0.297579 0.302110
2.0773623 0.101575 0.242814 0.263203
2.3273549 0.492773 0.068364 0.497493
2.7066665 0.342581 -0.085725 0.353144

SERIES 3
FREE TERM -0.00055
NO.OF FREQUENCIES 1
FREQ COEFFS A COEFFS B AMPLITUDE

1.8217989 0.012065 0.247733 0.248027



Epilogue

When we solve any problem of mathematical or logical origin we take either the deductive
or inductive (combined) path and develop corresponding theories and algorithms. Deduction
is the application of a general law to many partial problems. Induction is the synthesis of a
general law from many particular observations. Since childhood, we have learned to prefer
the deductive way of thinking. The most respected sciences adhere to the mathematics
of deductive science. Theorems are proven on the basis of axiomatic theory. Thus, we
conceptualize scientific way as being deductive. Any other way of thinking is referred to
as "not proven" or "not scientific", or simply "heuristic or a rule of thumb." But both ways
are equally heuristic, and constrained. The main heuristic feature of the deductive approach
is an axiom based on a priori accepted information, whereas the main heuristic for the
inductive approach is its choice of the external criteria.

The choice of axiomatic or external criteria belongs to experts. But experts informed
about general possible properties of every type of criteria. Two types of external criteria are
considered in this book: accuracy and differential types. The most interesting criteria are
of the differential type. Some scientists conclude that the differential type of criteria (for
example, balance-of-variables) do not work (Ihara J, 1976); this is true only of noiseless
data. The inductive approach is realized in the form of multilayered perceptron-like and
combinatorial algorithms. Further developments are described in the book. For example, the
use of implicit patterns are suggested, and the objective computer clusterization algorithm
and the method of analogues are explained.

The ways to avoid a multivalued choice of decisions are called the "art of regulariza-
tion." Regularization is a very sophisticated, but interesting area of investigation. Authors
are inclined to use the general algebraic approach in all the investigations. By the solu-
tion of algebraic and difference equations, the selection characteristic is investigated. It
expresses the dependence of an external criterion from the noise dispersion when the length
of data sample is small and having constant dispersion of noise. The usual approach in the
pattern recognition theory which, on the contrary, includes investigation of the dependence
of criterion from the length of data sample. Thus, Shannon's second-limit theorem as a
displacement of criterion minimum is proven. The primary part of the book covers this idea
as it touches on parametric models. The second part of the book presents new developments
on nonparametric algorithms, particularly in the chapter "clustering." All the methods, al-
gorithms, and applications demonstrate the variety of possibilities of inductive methods that,
are very sophisticated in the learning mode, but very simple in the application mode. They
are not simple realizations of trial and error methods, but are based on sophisticated theory.
The inductive approach promises very simple decisions for many difficult tasks.
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The success of the Hopfield network with symmetric components partially reaches its
solution by the constrained optimization (for example, the traveling salesman problem).
Inductive algorithms can be easily applied to this type of problems too. The difference is
that in continuous-valued input data it is necessary to use the two-dimensional selection
type of algorithmic structures - binary-valued data, two one-dimensional selection type of
structures. The inductive approach rivals the deductive and always wins inspite of data
sample that is short length and noisy.

The problems show how wide the application of the inductive approach is in systems
modeling, pattern recognition, and artificial intelligence is. Authors express their hope
that this book would stimulate an interest in developing and applying inductive learning
algorithms to various complex systems studies.
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