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Preface

One can see the development of automatic control theory from single-cycled to the mul-
ticycled systems and to the development of feedback control systems that have brainlike
network structures (Stafford Beer). The pattern recognition theory has a history of about fifty
years—beginning with single-layered classificators, it developed into multi-layered neural
networks and from there to connectionist networks. Analogical developments can be seen
in the cognitive system theory starting with the simple classifications of the single-layered
perceptrons and further extended to the system of perceptrons with the feedback links. The
next step is the stage of "neuronets.”

One of the great open frontiers in the study of systems science, cybernetics, and engineer-
ing is the understanding of the complex nonlinear phenomena which arise naturally in the
world we live in. Historically, most achievements were based on the deductive approach.
But with the advent of significant theoretical breakthroughs, layered inductive networks,
and associated modern high-speed digital computing facilities, we have witnessed progress
in understanding more redlistic and complicated underlying nonlinear systems. Recollect,
for example, the story of Rosenblatt's perceptron theory. Until recently, the absence of
good mathematical description with the demonstration by Minsky and Papert (1969) that
only linear descrimination could be represented by two-layered perceptron, led to a waning
of interest in multilayered networks. Still Rosenblatt's terminology has not been recovered;
for example, we say "hidden units" instead of Rosenblatt's "association units' and so on.

Moving in the direction of unification we consider the inductive learning technique
caled Group Method of Data Handling (GMDH), the theory originated from the theory
of perceptron and is based on the principle of self-organization. It was developed to solve
the problems of pattern recognition, modeling, and predictions of the random processes. The
new algorithms that are based on the inductive approach are very similar to the processes
in our brain. Scientists who took part in the development have accepted "this science' as
a unification of pattern recognition theory, cybernetics, informatics, systems science, and
various other fields. Inspite of this, "this science" is quickly developing, and everybody
feels comfortable in using “this science" for complex problem-solving. This means that this
new scientific venture unifies the theories of pattern recognition and automatic control into
one metascience. Applications include the studies on environmental systems, economical
systems, agricultural systems, and time-series evaluations. The combined Control Systems
(CCS9) group of the Institute of Cybernetics, Kiev (Ukraine) has been a pioneering leader in
many of these developments. Contributions to the field have come from many research areas
of different disciplines. This indicates a healthy breadth and depth of interest in the field
and a vigor in associated research. Developments could be more effective if we become
more attentive to one another.
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Since 1968 layered perceptron-like networks have been used in inductive learning al-
gorithms, particularly in the training mode. The algebraic and the finite-difference type of
polynomia equations which are linear in coefficients and nonlinear in parameters are used
for the process predictions. In the network, many arbitrary links of connection-weights are
obtained, several partia equations are generated, and the links are sdlected by our choice.
The approach was originally suggested by Frank Rosenblatt to choose the coefficients of
the first layer of links in a random way.

The polynomials of a discrete type of Volterra series (finite-difference and algebraic
forms) are used in the inductive approach for several purposes:

First—for the estimation of coefficients by the least-squares method using explicit or
implicit patterns of data. When the eigenvalues of characteristic equation are too small,
this method leads to very biased estimates and the quality of predictions is decreased. This
problem is avoided with the developments of objective systems analysis and cluster analysis.

Second—the polynomial equations are used for the investigation of selection character-
istic by using the consistency (Shannon's displacement) criterion of minimum according to
Shannon's second-limit theorem (analogical law is known in communication theory). The
structure of optimal model is simplified when the noise dispersion in the data is increased.
When Shannon's displacement is present, selection of two-dimensional model structures is
used. When the displacement is absent, the selection of two one-dimensional model struc-
tures are used—first, the optimal st of variables, then the optimal structure of the model
are found. The use of objective criteria in canonical form simplifies this procedure further.

Third—the use of polynomial equations are organized "by groups' in the selection proce-
dure to get a smooth characteristic with single minimum. Selection "by groups' allows one
to apply the simple stopping rule "by minimum" or "by the left corner rule." In multilevel
algorithms, for example, each group includes a model candidate of similar structure of an
equal number of members; and

Fourth—the equations are used to prove the convergence of iteration processes in multi-
layered algorithms. The convergence exists for some criteria in a mean-square sense called
internal convergence; for others it is called externa convergence. In the latter case, there
is a necessity for certain “regularization” means.

This book covers amost last twenty years of research—from basic concepts to the recent
developments in inductive learning algorithms conducted by the CCS group.

Chapter 1 is concerned with the basic approach of induction and the principle of self-
organization. We also describe the selection criteria and general features of the algorithms.

Chapter 2 considers various inductive learning algorithms. multilayer, single-layered
combinatorial, multi-layered aspects of combinatorial, multi-layered with propagating resid-
uals, harmonical algorithms, and some new algorithms like correlational and orthogonalized
partial descriptions. We also describe the scope of long-range quantitative predictions and
levels of dialogue language generalization with subjective versus multilevel objective anal-
ysis.

Chapter 3 covers noise immunity of algorithms in analogy with the information theory.
We also describe various selection criteria, their classification and analysis, the aspects of
the asymptotic properties of external criteria, and the convergence of agorithms.

Chapter 4 concentrates on the description of physical fields and their representation in
the finite-difference schemes, as these are important in complex systems modeling. We aso
explain the model formulations of cyclic processes.

Chapter 5 coverage is on how unsupervised learning or clustering might be carried out
with the inductive type of learning technique. The development of new algorithms like
objective computerized clustering (OCC) is presented in detail.
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Chapter 6 takes up some of the applications related to complex systems modeling such
as weather modeling, ecological, economical, agricultural system studies, and modeling of
solar activity. The main emphasis of the chapter is on how to use specific inductive learning
algorithms in a practical situation.

Chapter 7 addresses application of inductive learning networks in comparison with the
artificial neural networks that work on the basis of averaged output error. The least mean-
square (LMS) algorithm (adaline), backpropagation, and self-organization boolean-logic
techniques are considered. Various simulation results are presented. One notes that the
backpropagation technique which is encouraged by many scientists, is only one of severa
possible ways to solve the systems of equations to estimate the connection coefficients of a
feed-forward network.

Chapter 8 presents the computational aspects of basic inductive learning algorithms.
Although an interactive software package for inductive learning algorithms which includes
multilayer and combinatorial algorithms was recently released as a commercial package (see
Soviet Journal of Automation and Information Sciences N6, 1991), the basic source of these
algorithms along with the harmonical algorithm are given in chapter 8.

The book should be useful to scientists and engineers who have experience in the scientific
aspects of information processing and who wish to be introduced to the field of inductive
learning algorithms for complex systems modeling and predictions, clustering, and neural-
net computing, especially these applications.

This book should be of interest to researchers in environmental sciences, macro-economi-
cal studies, system sciences, and cybernetics in behavioural and biological sciences because
it shows how existing knowledge in severa interrelated computer science areas intermesh
to provide a base for practice and further progress in matters germane to their research.

This book can serve as a text for senior undergraduate or for students in their first year
of a graduate course on complex systems modeling. It approaches the matter of information
processing with a broad perspective, so the student should learn to understand and follow
important developments in several research areas that affect the advanced dynamical systems
modeling. Finally, this book can aso be used by applied statisticians and computer scientists
who are seeking new approaches.

The scope of these algorithms is quite wide. There is a wide perspective in which to
use these algorithms; for example, multilayered theory of statistical decisions (particularly
in case of short-data samples) and algorithm of rebinarization (continued values recovery
of input data). The "neuronet,” that is realized as a set of more developed component-
perceptrons in the near future, will be similar to the House of Commons, in which decisions
are accepted by the voting procedure. Such voting networks solve problems related to
pattern recognition, clustering, and automatic control. There are other ideas of binary
features applied in the application of "neuronets," especially when every neuron unit is
realized by two-layered Rosenblatt's perceptron.

The authors hope that these new ideas will be accepted as tools of investigation and
practical use - the start of which took place twenty years ago for original multilayered al-
gorithms. We invite readers to join us in beginning "this science" which has fascinating
perspectives.

H. R. Madalaand A. G. lvakhnenko
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Chapter 1
Introduction

1 SYSTEMS AND CYBERNETICS

Civilization is rapidly becoming very dependent on large-scale systems of men, machines,
and environment. Because such systems are often unpredictable, we must rapidly develop a
more sophisticated understanding of them to prevent serious consequences. Very often the
ability of the system to carry out its function (or alternatively, its catastrophically failing to
function) is a property of the system as a whole and not of any particular component. The
single most important rule in the management of large scale systems is that one must account
for the entire system - the sum of all the parts. This most likely involves the discipline of
"differential games." It is reasonable to predict that cybernetic methods will be relevant to
the solution of the greatest problems that face man today.

Cybernetics is the science of communication and control in machines and living creatures
[133]. Nature employs the best cybernetic systems that can be conceived. In the neurolog-
ical domain of living beings, the ecological balance involving environmental feedback, the
control of planetary movements, or the regulation of the temparature of the human body,
the cybernetic systems of nature are fascinating in their accuracy and efficiency. They are
cohesive, self-regulating and stable systems; yet they do have the remarkable adaptability to
change and the inherent capacity to use experience of feedback to aid the learning process.

Sustained performance of any system requires regulation and control. In complicated ma-
chinery the principles of servomechanism and feedback control have long been in effective
use. The control principles in cybernetics are the error-actuated feedback and homeostasis.
Take the case of a person driving a car. He keeps to the desired position on the road by
constantly checking the deviation through visual comparison. He then corrects the error by
making compensating movements of the steering wheel. Error sensing and feedback are
both achieved by the driver's brain which coordinates his sight and muscular action. Home-
ostasis is the self-adjusting property that al living organisms possess and that makes use of
feedback from the environment to adjust metabolism to changing environmental conditions.
Keeping the temperature of the human body constant is a good example of homeostasia.

The application of cybernetics to an environmental situation is much more involved than
the servomechanism actuating "feedback correction." The number of variables activating in
the system are plentiful. The variables behave in stochastic manner and interactive relation-
ships among them are very complex. Examples of such systems in nature are meteorological
and environmental systems, agricultural crops, river flows, demographic systems, pollution,
and so on. According to complexity of interactions with various influences in nature, these
are called cybernetical systems. Changes take place in a slow and steady manner, and any



2 INTRODUCTION

suddenness of change cannot be easily perceived. If these systems are not studied contin-
uously by using sophisticated techniques and if predictions of changes are not allowed to
accumulate, sooner or later the situation is bound to get out of hand.

The tasks of engineering cybernetics (self-organization modeling, identification, optimal
control, pattern recognition, etc.) require development of specia theories which, although
look different, have many things in common. The commonality among theories that form
the basis of complex problem-solving has increased, indicating the maturity of cybernetics
as a branch of science [37]. This leads to a common theory of self-organization model-
ing that is a combination of the deductive and inductive methods and allows one to solve
complex problems. The mathematical foundations of such a common theory might be
the approach that utilizes the black box concept as a study of input and output, the neu-
ral approach that utilizes the concept of threshold logic and connectionism, the inductive
approach that utilizes the concept of inductive mechanism for maintaining the composite
control of the system, the probabilistic approach that utilizes multiplicative functions of
the hierarchical theory of statistical decisions, and Godel's mathematical logic approach
(incompleteness theorem) that utilizes the principle of "external complement” as a selection
criterion.

The following are definitions of terms that are commonly used in cybernetic literature
and the concept of black box.

1.1 Definitions

1. A systemis acollection of interacting, diverse elements that function (communicate)
within a specified environment to process information to achieve one or more desired
objectives. Feedback is essential, some of its inputs may be stochastic and a part of
its environment may be competitive.

2. The environment is the set of variables that affects the system but is not controlled
by it.

3. A complex system has five or more internal and nonlinear feedback loops.

4. In a dynamic system the variables or their interactions are functions of time.

5. An adaptive system continues to achieve its objectives in the face of a changing
environment or deterioration in the performance of its elements.

6. The rules of behavior of a self-organizing system are determined internally but mod-
ified by environmental inputs.

7. Dynamic stability means that all time derivatives are controlled.

8. A cybernetic system is complex, dynamic, and adaptive. Compromise (optimal) con-
trol achieves dynamic stability.

9. A real culture is a complex, dynamic, adaptive, self-organizing system with human
elements and compromise control. Man is in the feedback loop.

10. A cybernetic culture is a cybernetic system with internal rules, human elements, man
in the feedback loop, and varying, competing values.

11. Utopia is a system with human elements and man in the feedback loop.

The characteristics of various systems are summarized in Table 1.1, where 1 represents
"aways present" and a blank space represents "generally absent." The differences among
the characteristics of Utopia and cybernetic culture are given in Table 1.2,
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Table 1.2. Differences among Utopia and cybernetic culture

Characteristic Utopia Cybernetic culture
Size Small Large

Complex No Yes

Environment Static, imaginery | Changing, rea
Elements deteriorate | No Yes

Rules of behavior External Internal

Control Suboptimized Compromised

Stability Static Dynamic

Values Fixed Varying, Competing
Experimentation None Evolutionary operation

1.2 Model and simulation

Let us clarify the meaning of the words model and simulation. At some stage a model
may have been some sort of small physical system that paraleled the action of a large
system; at some later stage, it may have been a verba description of that system, and at
a dtill later - and hopefully more advanced - stage, it may have consisted of mathematical
equations that somehow described the behavior of the system.

A model enables us to study the various functions and the behavioral characteristics of
a system and its subsystems as well as how the system responds to given changes in inputs
or reacts to changes in parameters or component characteristics. It enables us to study the
extent to which outputs are directly related to changes in inputs - whether the system tends
to return to the initial conditions of a steady state after it has been disturbed in some way,
or whether it continues to oscillate between the control limits. A cybernetic model can help
us to understand which behavior is relevant to or to what extent the system is responsible
for changes in environmental factors.

Smulation is a numerical technique for conducting experiments with mathematical and
logical models that describe the behavior of a system on a computer over extended periods of
time with the aim of long-term prediction, planning, or decision-making in systems studies.
The most convenient form of description is based on the use of the finite-difference form
of equations.

Experts in the field of simulation bear a great responsibility, since many complex prob-
lems of modern society can be properly solved only with the aid of simulation. Some of
these problems are economic in nature. Let us mention here models of inflation and of the
growing disparity between rich and poor countries, demographic models, models for in-
creased food production, and many others. Among the ecological problems, primary place
is occupied by problems of environmental pollution, agricultural crops, water reservoirs,
fishing, etc. It is well known that mathematical models, with the connected quantities that
are amenable to measurement and formalization, play very important roles in describing
any process or system. The questions solved and the difficulties encountered during the
simulation complex systems modeling are clearly dealt with in this book.

It is possible to distinguish three principal stages of the development of simulation:

Experts without } Man-machine _, [ Computer without
computers Dialogue systems experts

We are still at the first stage; man-machine dialogue systems are hardly used at this time.
Predictions are realized in the form of two or three volumes of data tables compiled on the
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basis of the reasoning of "working teams of experts' who basically follow certain rules of
thumb. Such an approach can be taken as "something is better than nothing." However,
we cannot stay at this stage any longer.

The second stage, involving the use of both experts and computers, is at present the most
advanced. The participation of an expert is limited to the supplying of proper algorithms in
building up the models and the criteriafor choosing the best models with optimal complexity.
The decisions for contradictory problems are solved according to the multi-objective criteria.

The third stage, "computers without experts,” is aso caled "artificial intelligence sys-
tems" The man-machine dialogue system based on the methods of inductive learning
algorithms is the most advanced method of prediction and control. It is important that the
artificial intelligence systems operate better than the brain by using these computer-aided
algorithms. In contrast to the dialogue systems, the decisions in artificial intelligence sys-
tems are made on the basis of general requests (criteria) of the human user expressed in a
highly abstract metalanguage. The dialogue is transferred to a level at which contradictions
between humans are impossible, and, therefore, the decisions are objective and convincing.
For example, man can make the requirement that "the environment be clean as possible”
"the prediction very accurate," "the dynamic equation most unbiased,” and so on. Nobody
would object to such genera criteria, and man can almost be eliminated from the dialogue
of scientific disputes.

In the dialogue systems, the decisions are made at the level of selection of a point in
the "Pareto region" where the contradiction occurs. This is solved by using multi-criterion
analysis. Inartificial intelligence systems, the discrete points of Pareto region are only inputs
for dynamic models constructed on the basis of inductive learning algorithms. Ultimately,
the computer will become the arbiter who resolves the controversies between users and will
play avery important role in simulations.

1.3 Concept of black box

The black box concept is a useful principle of cybernetics. A black box is a system that is
too complex to be easily understood. It would not be worthwhile to probe into the nature of
interrelations inside the black box to initiate feedback controls. The cybernetic principle of
black box, therefore, ignores the internal mechanics of the system but concentrates on the
study of the relationship between input and ouput. In other words, the relationship between
input and output is used to learn what input changes are needed to achieve a given change
in output, thereby finding a method to control the system.

For example, the human being is virtually a black box. His internal mechanism is be-
yond comprehension. Yet neurologists have achieved considerable success in the treatment
of brain disorders on the basis of observations of a patient's responses to stimuli. Typical
cybernetic black box control action is clearly discernible in this example. Several complex
situations are tackled using the cybernetic principles. Take the case for instance, of predic-
tions of agricultural crop productions. It would involve considerable time and effort to study
the various variables and their effect on each other and to apply quantitative techniques of
evaluation. Inputs like meteorological conditions, inflow of fertilizers and so on influence
crop production. It would be possible to control the scheduling and quantities of various
controllable inputs to optimise output. It is helpful to think of the determinants of any "red
culture” as it would be the solution of a set of independent simultaneous equations with
many unknowns.

Mathematics can be an extremely good tool in exhausting all the possibilities in that
it can get a complete solution of the set of equations (or whatever the case may be).
Many mathematicians have predicted that entirely new branches of mathematics would
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someday have to be invented to help solve problems of society - just as a new mathematics
was necessary before significant progress could be made in physics. Scientists have been
thinking more and more about interactive algorithms to provide the man-machine diaogue,
the intuition, the value judgement, and the decision on how to proceed. Computer-aided
self-organization algorithms have given us the scope to the present developments and appear
to provide the only means for creating even greater cooperative efforts.

2 SELF-ORGANIZATION MODELING
2.1 Neural approach

Rosenblatt [105], [106] gives us the theoretical concept of "perceptron” based on neural
functioning. It is known that single-layered networks are simple and are not capable of
solving some problems of pattern recognition (for example, XOR problem) [95]. At least
two stages are required: X —> H transformation, and H —» Y transformation. Although
Rosenblatt insists that X —> H transformation be realized by random links, H —> Y transfor-
mation is more deterministically only realized by |learned links where X, H, and Y are input,
hidden, and output vectors. This corresponds to an a priori and conditional probabilistic
links in Bayes' formulae:

N

o= [po 11 p(y,—/x,-)}; j=1,2,.n, (L.1)
i=1

1

where po is an a priori link corresponding to the X —> H transformation, p(yj/xi) are
conditional links corresponding to the H —> Y transformation, N is the sample size, m and n
are the number of vector components in X and Y, respectively. Consequently, the perceptron
structures have two types of versions. probabilistic or nonparametric and parametric. Here
our concern is parametric network structures. Connection weights among the H —> Y links
are established using some adaptive techniques. Our main emphasis is on an optimum
adjustment of the weights in the links to achieve desired output. Eventually neural nets
have become multilayered feedforward network structures of information processing as an
approach to various problem-solving.

We understand that information is passed on to the layered network through the input
layer, and the result of the network's computation is read out at the output layer. The
task of the network is to make a set of associations of the input patterns x with the output
patterns y. When a new input pattern is put in the configuration, its output pattern must be
identifiable by its association.

An important characteristic of any neural network like "adaline" or "backpropagation" is
that output of each unit passes through a threshold logic unit (TLU). A standard TLU is a
threshold linear function that is used for binary categorization of feature patterns. Nonlinear
transfer functions such as sigmoid functions are used as a special case for continuous out-
put. When the output of a unit is activated through the TLU, it mimics a biological neuron
turning "on" or "off." A state or summation function is used to compute the capacity of the
unit. Each unit is analyzed independently of the others. The next level of interaction comes
from mutual connections between the units; the collective phenomenon is considered from
loops of the network. Due to such connections, each unit depends on the state of many other
units. Such an unbounded network structure can be switched over to a self-organizing mode
by using a certain statistical learning law that connects specific forms of acquired change
through the synaptic weights, one that connects present to past behavior in an adaptive
fashion so positive or negative outcomes of events serve as signals for something else. This
law could be amathematical function - either as an energy function which dissipates energy
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into the network or an error function which measures the output residual error. A learning
method follows a procedure that evaluates this function to make pseudo-random changes in
the weight values, retaining those changes that result in improvements to obtain optimum
output response. The statistical mechanism helps in evaluating the units until the network
performs a desired computation to obtain certain accuracy in response to the input signals.
It enables the network to adapt itself to the examples of what it should be doing and to
organize information within itself and thereby learn.

Connectionist models

Connectionist models describe input-output processes in terms of activation patterns defined
over nodes in a highly interconnected network [24], [107]. The nodes themselves are
elementary units that do not directly map onto meaningful concepts. Information is passed
through the units and an individual unit typically will play a role in the representation
of multiple pieces of knowledge. The representation of knowledge is thus parallel and
distributed over multiple units. In a Connectionist model the role of aunit in the processing
is defined by the strength of its connections - both excitatory and inhibitory - to other units.
In this sense "the knowledge is in the connections,” as Connectionist theorists like to put it,
rather than in static and monolithic representations of concepts. Learning, viewed within this
framework, consists of the revision of connection strengths between units. Back propagation
is the technique used in the Connectionist networks - revision of strength parameters on the
basis of feedback derived from performance and emergence of higher order structures from
more elementary components.

2.2 Inductive approach

Inductive approach is similar to neural approach, but it is bounded in nature. Research on
induction has been done extensively in philosophy and psychology. There has been much
work published on heuristic problem-solving using this approach. Artificial intelligence
is the youngest of the fields concerned with this topic. Though there are controversial
discussions on the topic, here the scope of induction is limited to the approach of problem-
solving which is almost consistent with the systems theory established by various scientists.

Pioneering work was done by Newell and Simon [96] on the computer simulation of
human thinking. They devised a computer program called the General Problem Solver
(GPS) to simulate human problem-solving behavior. This applies operators to objects to
attain targetted goals; its processes are geared toward the types of goals. A number of
similarities and differences among the objective steps taken by computer and subjective
ways of a human-operator in solving the problem are shown. Newell and Simon [97] and
Simon [113] went on to develop the concepts on rule-based objective systems analysis.
They discussed computer programs that not only play games but which also prove theorems
in geometry, and proposed the detailed and powerful variable iteration technique for solving
test problems by computer.

In recent years, Holland, Holyoak, Nisbett and Thagard [25] considered, on similar
grounds, the global view of problem-solving as a process of search through a state space;
a problem is defined by an initial state, one or more goal states to be reached, a set of
operators that can transform one state into another, and constraints that an acceptable solution
must meet. Problem-solving techniques are used for selecting an appropriate sequence of
operators that will succeed in transforming the initial state into a goal state through a series
of steps. A selection approach is taken on classifying the systems. This is based on an
attempt to impose rules of "survival of the fittest" on an ensemble of simple productions.
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Figure 1.1. Multilayered induction for gradual increase of complexity in functions

This ensemble is further enhanced by criterion rules which implement processes of genetic
cross-over and mutation on the productions in the population. Thus, productions that survive
a process of selection are not only applied but also used as "parents' in the synthesis of
new productions. Here an "external agent" is required to play a role in laying out the
basic architecture of those productions upon which both selective and genetic operations
are performed. These classification systems do not require any a priori knowledge of the
categories to be identified; the knowledge is very much implicit in the structure of the
productions; i.e., it is assumed as the a priori categorical knowledge is embedded in the
classifying systems. The concepts of "natural selection” and "genetic evolutions" are viewed
as a possible approach to normal levels of implementation of rules and representations in
information processing models.

In systems environment there are dependent (y1,y2,...y,) and independent variables
(x1,x2,... xm). Our task is to know which of the independent variables activate on a
particular dependent variable. A sufficient number of general methods are available in
mathematical literature. Popular among them is the field of applied regression analysis.
However, general methods such as regression analysis are insufficient to account for complex
problem-solving skills, but those are backbone for the present day advanced methods. Based
on the assumption that composite (control) systems must be based on the use of signals that
control the totality of elements of the systems, one can use the principle of induction; this
is in the sense that the independent variables are sifted in a random fashion and activated
them so that we could ultimately select the best match to the dependent variable.

Figure 1.1 shows a random sifting of formulations that might be related to a specific
dependent variable, where f( ) is amathematical formulation which represents a relationship
among them. This sort of induction leads to a gradual increase of complexity and determines
the structure of the model of optimal complexity. Figure 1.2 shows another type of induction
that gives formulations with all combinations of input variables; in this approach, model of
optimal complexity is never missed. Here the problem must be fully defined. The initial
state, goa state, and allowable operators (associated with the differences among current
state and goa state) must be fully specified. The search takes place step by step at all the
units through alternative categorizations of the entities involved in the set up. This type
of processing depends on the parallel activity of multiple pieces of emperical knowledge
that compete with and complement each other based on an external knowledge in revising
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Figure 1.2. Induction of functions for al combinations of input variables

the problem. Such interactive paralelism is a halmark of the theoretical framework for
induction given here.

Simplification of self-organization is regarded as its fundamental problem from the very
beginning of its development. The modeling methods created for the last two decades based
on the concepts of neural and inductive computing ensure the solution of comprehensive
problems of complex systems modeling as applied to cybernetical systems. They constitute
an arsenal of means by which—either on the basis of notions concerning system structures
and the processes occurring in them, or on the basis of observations of the parameters of
these systems—one can construct system models that are accessible for direct analysis and
are intended for practical use.

3 INDUCTIVE LEARNING METHODS

Inductive learning methods are also called Group Method of Data Handling (GMDH), Self-
organization, sorting out, and heuristic methods. The framework of these methods differs
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slightly in some important respects. As seen in Chapter 2, the inductive learning algorithms
(ILA) have two fundamental processes at their disposal: bounded network connections for
generating partial functions and threshold objective functions for establishing competitive
learning. The principal result of investigations on inductive learning algorithms (not so much
of the examples of computer-designed models presented here), is of a change in view about
cybernetics as a science of model construction, in general, and of the role of modern applied
mathematics. The deductive approach is based on the analysis of cause-effect relationships.
The common opinion is that in the man-machine dialogue, the predominant role is played by
the human operator; whereas, the computer has the role of "large calculator." In contrast, in
a self-organization algorithm, the role of human operator is passive - he is no longer required
to have a profound knowledge of the system under study. He merely gives orders and needs
to possess only a minimal amount of a priori information such as (i) how to convey to the
computer a criterion of model selection that is very general, (ii) how to specify the list of
feasible "reference functions"' like polynomials or rational functions and harmonic series,
and (iii) how to specify the simulation environment; that is, alist of possible variables. The
objective character of the models obtained by self-organization is very important for the
resolution of many scientific controversies [22]. The man-machine dialogue is raised to the
level of ahighly abstract language. Man communicates with the machine, not in the difficult
language of details, but in a generalized language of integrated signals (selection criteria
or objective function). Self-organization restores the belief that a "cybernetic paradise" on
earth, governed by a symbiosis between man (the giver of instructions) and machine (an
intelligent executer of the instructions) is just around the corner. The self-organization of
models can be regarded as a specific algorithm of computer artificial intelligence. Issues
like "what features are lacking in traditional techniques" and "how is it compensated in the
present theory" are discussed before delving into the basic technique and important features
of these methods.

3.1 Principal shortcoming in model development

First of all, let us recollect the important invention of Heisenberg's uncertainty principle
from the field of quantum theory which has a direct or indirect influence on later scientific
developments. Heisenberg's works became popular between 1925 and 1935 [23], [102].
According to his principle, a simultaneous direct measurement between the coordinate and
momentum of a particle with an exactitude surpassing the limits is impossible; furthermore,
a similar relationship exists between time and energy. Since his results were published,
various scientists have independently worked on Heisenberg's uncertainty principle.

In 1931, Godel published his works on mathematical logic showing that the axiomatic
method itself had inherent limitations and that the principal shortcoming was the so-called
inappropriate choice of "external complement." According to his well-known incomplete-
ness theorem [126], it is in principle impossible to find a unique model of an object on
the basis of empirical data without using an "external complement" [10]. The regulariza-
tion method used in solving ill-conditioned problems is also based on this theorem. Hence
"external complement” and "regularization” are synonyms expressing the same concept.

In regression analysis, the root mean square (RMS) or least square error determined on
the basis of all experimental points monotonically decreases when the model complexity
gradually increases. This drops to zero when the number of coefficients n of the model
becomes equal to the number of empirical points N. Every equation that possesses n
coefficients can be regarded as an absolutely accurate model. It is not possible, in principle,
to find a unique model in such a situation. Usually experienced modellers use trial and error
techniques to find a unique model without stating that they consciously or unconsciously
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Figure 1.3. Variation in least square error (A + B) and error measure of an "external complement”
A(B) for a regression equation of increasing complexity S; O, is the model of optimal complexity

use an "external complement," necessary in principle for obtaining a unique model. Hence,
none of the investigators appropriately selects the "external complement”—the risk involved
in using the trial and error methods.

3.2 Principle of self-organization

In complex systems modeling we cannot use statistical probability distributions, like normal
distribution, if we possess only a few empirical points. The important way is to use
the inductive approach for sifting various sets of models whose complexity is gradually
increased and to test them for their accuracy.

The principle of self-organization can be formulated as follows: When the model com-
plexity gradually increases, certain criteria, which are called selection criteria or objective
functions and which have the property of "externa complement,” pass through a mini-
mum. Achievement of a global minimum indicates the existence of a mode of optimum
complexity (Figure 1.3).

The notion that there exists a unique model of optimum complexity, determinable by
the self-organization principle, forms the basis of the inductive approach. The optimum
complexity of the mathematical model of a complex object is found by the minimum of a
chosen objective function which possesses properties of external supplementation (by the
terminology of Godel’s incompleteness theorem from mathematical logic). The theory of
self-organization modeling is based on the methods of complete, incomplete and mathemat-
ical induction [4]. This has widened the capabilities of system identification, forecasting,
pattern recognition and multicriterial control problems.

3.3 Basic technique

The following are the fundamental steps used in self-organization modeling of inductive
algorithms:

1. Data sample of N observations corresponding to the system under study is required;
Split them into training set A and testing set B (N = N4 + Nj).
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2. Build up a "reference function" as a genera relationship between dependent (output)
and independent (input) variables.

3. Identify problem objectives like regularization or prediction. Choose the objective rule
from the standard selection criteria list which is developed as "external complements."

4. Sort out various partial functions based on the "reference function.”

5. Estimate the weights of al partial functions by a parameter estimation technique using
the training data set A.

6. Compute quality measures of these functions according to the objective rule chosen
using the testing data set B.

7. Choose the best measured function as an optimal model. If you are not satisfied,
choose F number of partial functions which are better than all (this is called "freedom-
of-choice") and do further analysis.

Various algorithms differ in how they sift partial functions. They are grouped into two
types: single-layer and multi-layer algorithms. Combinatorial is the main single-layer algo-
rithm. Multi-layer algorithm is the layered feedforward algorithm. Harmonic algorithm uses
harmonics with nonmultiple frequencies and at each level the output errors are fed forward
to the next level. Other algorithms like multilevel algorithm are comprised of objective
system analysis and two-level, multiplicative-additive, and multilayer agorithms with er-
ror propagations. We go through them in detail in the second chapter. Modified variants
of multilayer algorithms were published by Japanese researchers (usually with suggestions
regarding their modifications) [78], [122], [108]. Shankar [110] compared the inductive
approach with the regression analysis with respect to accuracy of modeling for a small
sample of input data. There were other researchers [6], [7], [12], [84], [94], [109] who
solved various identification problems using this approach. Farlow [16] compiled various
works of US and Japanese researchers in a compendium form. There are a number of
investigators who have contributed to the development of the theory and to applications of
this self-organization modeling. The mathematical theory of this approach has shown that
regression analysis is a particular case of this method; however, comparison of inductive
learning algorithms and regression analysis is meaningless.

3.4 Selection criteria or objective functions

Self-organization modeling embraces both the problems of parameter estimation and the
selection of model structure. One type of algorithm generates models of different complex-
ities, estimates their coefficients and selects a model of optimal complexity. The global
minimum of the selection criterion, reached by inducting al the feasible models, is a mea-
sure of model accuracy. If the global minimum is not satisfied, then the model has not been
found. This happens in the following cases. (a) the data are too noisy, (b) there are no
essential variables among them, (c¢) the selection criterion is not suitable for the given task
of investigation, and (d) time delays are not sufficiently taken into account. In these cases,
it is necessary to extend the domain of sifting until we obtain a minimum. Each algorithm
uses at least two criteria: an internal criterion for estimating the parameters and an external
one for selecting the optimal structure. The external criterion is the quantitative measure of
the degree of correspondence of a specific model to some requirement imposed on it. Since
the requirements can be different, in modeling one often uses not one but several external
criteria; that is, a multicriterion selection. Successive application of the criteria is used
primarily in algorithms of objective systems analysis and multilevel long-range forecasting.
Furthermore, severa criteria are necessary for increasing the noise immunity of the model-
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ing. Selection criteria are aso called objective functions or objective rules as they verify
and lead to the obtaining of optimal functions according to specified requirements. We can
also say that these functions are used to evaluate the threshold capacity of each unit by the
quantitative comparison of models of varying complexity necessary for selecting a subset
of the best models from the entire set of model candidates generated in the self-organization
process. If one imposes the requirement of uniqueness of choice with respect to one or
several criteria, then the application of such a criterion or group of criteria yields a unique
model of optimal complexity. We give here the typical criteria, historically the first external
criteria and their different forms.

Suppose that the entire set (sample) of the original data points N is partitioned into three
disjoint subsets A, B and C (parts of the sample) and denotes the union AU B = W. All
the criteria used in the algorithms can be expressed in terms of the estimates of the model
coefficients obtained on A, B and W and in terms of the estimates of the output variables of
the models on A, B, C and W.

We assume that the initial data (N points) are given in the form of matrices below:

Ya Xa yIN x 1],
y=| ys |, X=| X8 |, X[N x m], (1.2)
Yc Xc Njo +Np+Nc=N.

The optimal dependence of the output y on the m input variables x is sought by the group
of data handling in inductive fashion the class of functions that are linear in the coefficients
of y = Xa. The submatrices of matrices X4 and Xp corresponding to any particular model
of complexity s (includes s of the m arguments, s < m), which is tested in the selection
process, are of complete rank.

It is convenient to define criteria by some “elementary” quantities. For example, when
partitioning a sample into different parts, we introduce the quantities:

ic = (XIXe)'XLys: G = A, B, and W (1.3)

e& = llye — Xcaql*, (1.4)

where ¢ is the least squares error; that is, by the least squares technique the coefficients
are estimated using set G; and the error is calculated on the same set.

AXH) = A*H/G) = |lyn — Xuacl|?, (1.5)
where H = A, B; HN G = (); the notation A*(H/G) indicates that the error is calculated on
set H of the model—the coefticients of which are estimated on set G.

Regularity criterion

This consists of a squared error calculated on the basis of testing set B.

AXBYE D> =) DV (1.6)

pENg PENR

where A(B) indicates the regularity measure; y and y are the desired and estimated outputs,
respectively.
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Other forms of “regularity criterion” are:

AB 2D -9 (1.7)
pENB

NB 2 Y =95 Y= PP, (1.8)
PENp PENR

where ¥ is the average value of y. A%(B) is also renotated as A%(B/A), which denotes the
error of the model calculated on set B using the coefficients obtained on set A. The criterion
is given in matrix notation using the Eucledean norm below:

AYB) = AXB/A) = |lys — §5(A)|
= (yp — Xpaa)" (yp — Xpaa)
= |lys — Xzaa|*, (1.9)

where 44 = (X;X4) "X ya, and §5(A) = Xpa,.

Minimum bias or consistent criterion

This consists of a squared error of difference between the outputs of two models developed
on the basis of two distinct sets A and B.

M2 > G =3 R (1.10)

peW peEW

where jf‘ is the estimated output of the function, obtained on the basis of set A, and 373 is
the estimated output of the function based on set B. Usually the data with higher values
of variance are included into set A, while those with the smaller variance are put in set B.
When the model is consistent with exact weights on both sets of the data, then the outputs
are equal, 3 = 9% and 7, = 0. Therefore, the comparison of the model equations using this
criterion 75; — 0 enables us to obtain consistent models, it is possible to recover an optimal
response which represents a physical law of the system hidden in the noisy experimental
data. Similar forms in regularity case can be expressed also as

my 2 Y G ) (1.11)
pEW
Mo 2 D _O0F =50/ D 0p = 9 (1.12)
peW peW
ms 2 19 = %1%
= || Xwaa — Xwag|®
= (44 — 4p) Xy Xw(aa — 4p). (1.13)

Another form of this criterion expresses somewhat a different requirement.
m 2 llaa — asl?, (1.14)

where a4 and ap are the coefficient vectors estimated on the basis of sets A and B, respec-
tively. The criteria in this group do not take into account the error of the model in explicit
form; the criterion of minimum coefficient bias reflects the requirement that the coefficient
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estimates in the optimal model, calculated on sets A and B, differ only minimally so that
they appear to agree. The well-known absolute noise immune criterion is defined as

V2 2 (Xwas — Xwaw) Xwhw — Xwég)
= (a4 — ) X, Xiw(dw — 4p)
S SWAT (oW _ oB
=@ — WG 5w, (1.15)
where aw is the coefficient vector obtained on the basis of whole set W. It is possible to
select a model that is not sensitive to the data on which it is based. The minimum bias
criterion requires the model to yield the same results at successive experimental points of

Ny and Np. It is possible to recover a hidden physical law using this criterion from the
noisy data.

Prediction criterion

This consists of a squared error calculated on the basis of a separate examin set C, which
is not used in estimating the coefficients:

AC/WY 2 Y =92 D v (1.16)

PENC PENC

In case of finite difference equations, the criterion is also evaluated as

P e Y -9/ > v (1.17)

PENW PENY

where the estimate  is obtained through step by step integration of a difference equation
from the given initial conditions. The autoregression form of such model is

yp=a0+alj}pﬂl +a25’p72+"‘+a'rj)p~-r- (1.18)

This criterion can be also calculated on other parts of the sets i?(4), and *(B).

Combined criteria

Sometimes we choose not only the minimum bias models but also the models with other
characteristics. Combined criteria are used as two or more participating criteria in one
function. In solving practical problems, it is often necessary to obtain a model that satisfies
several requirements simultaneously. Using an objective rule, we then arrive at the familiar
problem of multi-criterion selection when some or all of the criteria are contradictory. For
example, even the simple problem of selecting a model that will simultaneously be the most
regular (“exact”) and have the least bias often proves contradictory. Under these conditions,
one selects a unique model by using the combined criteria in the form of the sum of the
individual criteria with certain weight factors. For example, the combined criteria is given as

K 2 akd + (1 — )k, (1.19)

where k; and k; are given criteria and « is the weight factor. One can also use the normalized
values of the criteria:

kl2 = I_C%l + ,E%I = k%l/k%ma,\ + I‘%l/k% max: (120)
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where [ is the index of the model under consideration and the maximum values of the
criteria are determined out of all the F models that participate in the sorting.
2 2 _ 2
k] max rpea}‘kllv k%max - Tflea}(kzr (121)
The following are some of the combined criteria used in the algorithms.
One of the combined criteria is “bias plus approximation error.” Here the index of the
model concerned is not shown.

2 A =2 =2 —_ 2 2 272
cl” = Mps T € (W) - TIbs/nbs max + € /E

max?

(1.22)

where £2(W) is the normalized approximation error on the data set W(= A U B) using the
coeficients obtained on W; this is nothing but the least square error. The second form of
combined criterion is “bias plus regularity’:

c2* 2 7+ AX(B). (1.23)

Another form of combined criteria which has the best prediction properties (“bias plus error
on examination”) is

3% 2 i, + AXO). (1.24)

It provides the most unbiased, stable and accurate predicting models, where A(C) = A(C/W)
is the mean square error of predictions calculated on data set C using the coefficients obtained
on W. The criterion A(C) can also be replaced by i(W); it is appropriate in the case of step-
by-step predictions. In calculating criterion ¢3, we can usually divide data in proportions
of part A = 40 %, part B = 40 % and part C = 20 %. Sets A and B are used to calculate
the minimum bias measure and set C is used for predicting error. In case of criteria ¢l and
¢2, whole data can be divided into two parts.

There are other forms of combined criteria depending on the combination of various
criteria used.

Balance-of-variables criterion

This is used in obtaining a model for long-term predictions in the case of some known
a priori dependence between variables. For example, if v = f(x;,x2,x3) is the dependent
relation, then the balance criterion has the form

b= z(y—f(xl*,x27x3))!2)/ Z y,z,, (1.25)

PENC pENC

where N; is the set of points in the extrapolation interval and y is the desired output. In
the problems, where balance-of-variables is not known, it can be discovered with the help
of minimum-of-bias criterion.

Regularity criterion is useful in obtaining an exact approximation of a system as well as
of a short-term prediction (for one or two steps ahead) of the processes taking place in it.
In the interpolation interval all of the models yield almost the same results (we have the
principle of multiplicity of models). In the extrapolation interval the predictions diverge,
forming a so called "fan" of predictions.

The minimum-of-bias criterion yields a narrower fan, and hence a longer prediction time
than the regularity criterion. This means that prediction is possible for severa steps ahead
(medium term prediction). However, the theory of self-organization will not solve the
problems to which it is applied unless it yielded examples of exact long-term predictions.
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The balance-of-variables criterion is proposed for long-range predictions. This requires
simultaneous prediction of several interrelated variables. In many examples these variables
are constructed artificially. For example, for three variables it is possible to discover the
laws:

x1 = fulx2,x3), X2 =fa(x1,x3), x3=f3(x1,x2), (1.26)

where f11, f22, and f33 are the functional relations among the variables. The balance-of-
variables criterion requires that these relations between pairs of variables be satisfied not
only in the interpolation interval, but also in the extrapolation interval. For this purpose, the
differences are constructed between “direct” and “inverse” functions. The inverse functions
X7 =fn(x2,x3), x5 = f32(x1,x3) and x3 = fi3(xy, x2) are computed from the second, third and
first laws of the above “direct” equations, respectively. The “inverse” functions can also be
obtained as f31, fi2 and f>3. The first subscript is the number of equation and the second
is the number of the variable to be determined. If the “direct” and “inverse” functions are
exact, the balance criterion requires that

by =(u—fa) =0, by =(n2—f2) = 0, b3 = (fiz —fi3) — 0. (1.27)

The balance-of-variables criterion measures the unbalances b;, b,, and b3 in the extrapo-
lation interval as

B® = [, x3) — (e, x)1/ D i, x)P

Ne Nc
+Z[f22(x| ,X3) — fra(x1, x)17/ Z[fzz(xl,m)]2
Nc Nc
+Z[f33(xl,xz) —flz»(xl,xz)]z/Z[fn()ﬂ,xz)]2
N¢ Nc
= (b} + b3 + bY), (1.28)

where NC is number ef points in the prediction or examin data set.

This criterion yields reference points in the future; it requires that a law, effective up to
the present, continue into the future in the extrapolation interval; the sum of unbalances in
the extrapolation interval should be minimal. In cases where exact relations are not known
in the interpolation interval, these can be obtained by using minimum bias criterion in one
of the inductive learning algorithms.

The correctness of the prediction is checked according to the values of the criterion. By
gradually increasing the prediction time, we arrive at a prediction time for which it is no
longer possible to find an appropriate trend in the fan of a given "reference function." The
value of the minimum function begins to increase; thus appropriate action must be taken.
For example, it may be necessary to change the "reference function." For a richer choice
of models, it is also recommended that one go from algebraic to finite-difference equations,
take other system variables, estimate the coefficients and others.

3.5 Heuristics used in problem-solving

The term heuristic is derived from the Greek word eureka (to discover). It is defined as "ex-
periential, judgemental knowledge; the knowledge underlying 'expertise’; rules of thumb,
rules of good guessing, that usually achieve desired results but do not guarantee them"
[17]. Heuristics does not guarantee results as absolute as conventional agorithms do, but it
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offers efficient results that are specific and useful most of the time. Heuristic programming
provides a variety of ways of capturing human knowledge and achieving the results as
per the objectives. There is a slight controversy in using heuristics in building up expert
and complex systems studies. Knowledge-base and knowledge-inference mechanisms are
developed in expert systems. The performance of an expert system depends on the retrieval
of the appropriate information from the knowledge base and its inference mechanism in
evaluating its importance for a given problem. In other words, it depends on how effective
logic programming and the building up of heuristics is in the mechanisms representing ex-
periential knowledge. The main task of heuristics in self-organization modeling is to build
up better man-machine information systems in complex systems analysis thereby reducing
man's participation in the decision-making process (with higher degree of generalization.)

Basic modeling problems

Modeling is used for solving the problems: (i) systems analysis of the interactions of
variables in a complex object, (ii) structural and parametric identification of an object, (iii)
long-range qualitative (fuzzy) or quantitative (detailed) prediction of processes, and (iv)
decision-making and planning.

Systems analysis of the interactions of variables precedes identification of an object. It
enables us not only to find the set of characteristic variables but also to break it into two
subsets. the dependent (output) variables and the independent (input or state) variables
(arguments or factors).

In identification, the output variables are given and one will need to find the structure
and parameters of al elements. Identification leads to a physical model of the object, and
hence can be called the determination of laws governing the object. In the case of noisy
data, a physical model can only be used for determining the way the object acts and for
making short-range predictions. Quantitative prediction of the distant future using such
physical model is impossible. Nevertheless, one is often able to organize a fuzzy qualitative
long-range prediction of the overall picture of the future with the aid of so-caled loss of
scenarios according to the "if-then" scheme. There is a basic difference between the two
approaches to modeling. The only way to construct a better mathematical model is to use
one's experience ("heuristics or rules of thumb"). Experience, however, can be in the form
of the author's combined representations of the model of the object or of the empirical
data - the results of an active or passive experiment. The first kind of experiment leads to
simulation modeling and the second to the experimental method of inductive learning or
self-organization modeling. The classical example of simulation modeling is the familiar
model of world dynamics [20]. A weak point with simulation method is the fact that the
modeller is compelled to exhibit the laws governing all the elements, including those he is
uncertain about or which he thinks are simply less susceptible to simulation. In contrast to
simulation modeling, the inductive approach chooses the structure of the model of optimal
complexity by testing many candidate models according to an objective function.

In mathematical modeling, certain statistical rules are followed to obtain solutions. These
rules, based on certain hypothesis, help us in achieving the solutions. If we take the problem
of pattern classification, a discriminant function in the form of a mathematical equation is
estimated using some empirical data belonging to two or more classes. The mathematical
equation is trained up using a training data set and is selected by one of the statistical
criterion, like minimum distance rule. The second part of data of discriminant function is
tested for its validation. Here our objective is to obtain optimal weights of the function
suited for the best classification; this is mainly based on the criterion used in the procedure,
the data used for training and testing the function, and the parameter estimation technique
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used for this purpose. Obtaining a better function depends on all these factors and how
these are handled by an experienced modeller. This depends on the experience and on the
building up of these features as heuristics into the algorithm. This shows the role of the
human element in the feedback loop of systems analysis.

Developing a mathematical description according to the input-output characteristics of a
system, and generating partial functions by linear combinations of the input arguments from
the description, splitting of data into number of sets and design of "external complement”
as a threshold objective function are noted as common features established in learning
mechanism of the inductive algorithms. The output response of the network modeling
depends highly on how these features are formed in solving a specific problem. Depending
on the researcher's experience and knowledge about the system, these features are treated
as heuristics in these algorithms.

Mathematical description of the system

A genera relationship between output and input variables is built up in the form of a
mathematical description which is an overall form of relationship refering to the complex
system under study. This is also called "reference function." Usually the description is
considered a discrete form of the Volterrafunctional series which is also called Kolmogorov-
Gabor polynomial:

m m m
= a0+Zax, +ZZaux,xj +ZZZa,jkx,xjn +- (1.29)
=1 j=1 =l j=1 k=1

where the output is designated as y, the external input vector as X = (xy,x3,---), and a
the vector of coefficients or weights. This is linear in parameters a and nonlinear in x.
Components of the input vector x could be independent variables, functional terms, or finite
difference terms. This means that the function could be either an algebraic equation, a finite
difference equation, or an equation with mixed terms. This polynomial represents the full
form of mathematical description. This can be replaced with a system of partial polynomials
of the form

yYi =ap +ax; +axx; + azxix; + a4x,-2 + 615)61-27 (130)

where i,j=1,2,---,m; i #j.

Mathematical descriptions can be grouped into three forms as single input-single out-
put forms (trend equations), multi-input-single output forms (multivariate equations), and
multi-input-multi-output forms (system of equations). Specific terms like moving averages,
logarithmic terms, time function, time, harmonic trends, and so on, can be considered under
these descriptions.

(1) When we think about rationalized descriptions according to our understanding of the
system, we have to consider interaction of independent variables in the “reference functions.”
There are various hypotheses regarding the interaction of these variables. For example, there
are four variables (x|, X7, X3, X4).

The first hypothesis is that these variables do not interact with each other; then the
description is considered as

y = ap +f1(x1) + f2(x2) + f3(x3) + fa(x4). (1.31)

The second hypothesis is that the first variable x; does not interact with the others, but that
the others interact among themselves.

v =ap +fs(xy) + fe(xa, x3, x4). (1.32)
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The third hypothesis is that the first variable interacts with the second, and the third interacts
with the fourth.

¥y =ap +fr(x1, x2) + fa(x3,x4); etc., (1.33)

where fi,f>,f3.f4, and fs are first-degree polynomials; f; and fg are second-degree polyno-
mials; and fg is a third-degree polynomial.

The examples are easily continued. Also it is clear from physical considerations that
one of the hypotheses is true and that the number of hypotheses is small. Thus, the
purpose of optimization of the mathematical form is achieved. Possible combinations of
all variables can also be regarded as a sorting of a number of hypotheses—one of which
is true. Realization of such combinations cannot lose the optimal model because it ensures
complete sorting of all possible models for a given support function.

(i1) One needs to investigate the convergence to trends of the process using multilayered
inductive approach. The level of trends can be done using algebraic equations or finite
difference analogues of differential equations. The most general systems analysis is based
on equations of the form:

Y =AW +H0 7Y T YT, (1.34)

where f] is a source function as a linear trend with variables, time ¢, and a control vartiable
u. To simplify the overall investigation, the analysis is broken into two parts:

1. First analysis is of the trends, y| = fi(u, 1); for example, fi(u4,1) = ap + a\t + a;u; and

2. Second analysis is of the dynamics, y5 = ("', y2,y 73, - y™7).

Although y' # ¥} + )%, to obtain ¥ = y} +y} it is necessary to use points of deviations from
the first analysis of trends for the second analysis of dynamics.

(iii) If the physical law of the system is considered a “reference function,” this would
mean that the scope of search for an optimal model in the self-organization modeling is
reduced. If there is noise in the empirical data, the physical models cannot guarantee
long-range predictions. Our studies show that physical models cannot be used for long-
range predictions because of noise in the data. The physical models are suitable only for
identification and short-range predictions.

(iv) Sometimes the modeller cannot ascertain which are the output variables in the system.
It is very important to find the “leading” variable in the set of output variables of the complex
object. The “leading” variable is the variable that is predicted better on-more accurately than
the other variables. To identify the “leading” variables certain algorithms are recommended.

(v) Mathematical descriptions with variable coefficients have been used widely as “ref-
erence functions” in case of ecological modeling. For example, if we have three control
variables (uy,u2, and u3), and four other variables (y;,y2,ys, and ys), we can write the
complete polynomial as an algebraic equation.

y1 = (ap + aju; + apus + aszuz) + (bo +bruy + bruy + b3u3)y2
+(C() +ciuy +crup + C3u3)y3 +(dy +dyu; + dzuz + d3u3)y4. (]35)

One can include time as a variable along with the control variables in the above form. In
the same way, complete polynomials for y,,ys, and y; can be written. Finite difference
form with two delayed arguments is written as

YU = (ag + ajuy + aauz + asus) + (b + byuy + bouy + b3uz)y!

+ (C() +ciuy + crup + C3u3)y§—1 + (d() + d1u| + d2M2 + d3u3)y:._2 (136)
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fori = 1,2, 3,4. These types of polynomials are also used in studies of inflation stability.

(vi) One must take necessary care when the mathematical description is described. The
following are four features to improve, in a decisive manner, the existing models of complex
objects and to give them an objective character.

1. Descriptions that are limited to a certain class of equations and to a certain form of

support functions lead to poor informative models with respect to their performance
on predictions. For example, a difference equation with a single delayed argument
with constant coefficients is considered a "reference function”:

X = ag+aixi” + agt + asr’. (137)

The continuous analogous of such equation is first-order differential equation; the
solution of such equation is an exponential function. If many variants are included in
the description, the algorithm sorts out the class of equations and support functions
according to the choice criteria.

If the descriptions are designed with arbitrary output or dependent variables, then
output variables are unknown. Those types of descriptions lead to biased equations.
Inductive learning algorithms with special features are used to choose the leading
variables.

. There is a wrong notion that physical models are better for long-range predictions.

The third feature of the algorithms is that nonphysical models are better for long-range
predictions of complex systems. Physical models (that is, models isomorphic to an
object which carry over the mechanism of its action), in the case of inexact data are
unsuitable for quantitative long-range prediction.

The variables which hinder the object of the problem must be recognized. The fourth
feature of the algorithms is that predictions of al variables of interest are found as
functions of "leading" variables.

Splitting data into training and testing sets

Most of the selection criteria require the division of the data into two or more sets. In
inductive learning algorithms, it is important to efficiently partition the data into parts
(the efficiency of the selection criteria depends to a large extent on this). This is called
"purposeful regularization." Various ways of "purposeful regularization" are as below:

1. The data points are grouped into a training and a checking sequence. The last point

2.

of the data belongs to the checking sequence.

The data point are grouped into training and checking sequences. The last point
belongs to the training sequence.

The data points are arranged according to the variance and are grouped into training
and testing parts. This is the usual method of splitting data. Half of the data with the
higher values is used as the training set and another half is used as the testing set.
The data points represent the last year. Points correspond to the past data for all years
that differ from the last by a multiple of prediction interval Tye For example, the
last year in the data table corresponds to the year 1990; prediction interval is made
for the year 1994 (ie., Tye = 4 years). The checking sequence comprises the data
for the years 1990, 1986, 1982, 1978, etc. and the other data belong to the training
sequence.
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5. The checking sequence consists of only one data point. For example, if we have data
of N years and the prediction interval is Ty, then the points from 1 to N—Tpe — 1
belong to the training sequence and Nth point belongs to the checking sequence. This
is used in the algorithm for the first prediction.

The second prediction is obtained based on the same algorithm, with another
checking point which consists of N— 1 point; the training sequence contains from 1
to N— Tye —2 points.

The third prediction is based on the (N- 2)nd point for checking sequence and 1
to N — Tye — 3 points for training sequence.

The predictions are repeated ten to twenty times and one obtains prediction polyno-
mials. All the polynomials are summed up and taken average of it. Each prediction is
made for an interval length of Ty, and the series of prediction equations is averaged.

6. The data points are grouped into two sequences: the last points in time form the
training sequence; and the checking sequence is moved backward | years, where |/
depends on the prediction time and on the number of years for which the prediction
is calculated; i.e, it indicates the length of the checking sequence.

Although each method has its unique characteristics of obtaining the model in optimal
complexity, only under specia conditions are they used. The most usual method is the third
method which has to do with the variance and helps minimize the selection layers in case
of multi-layer inductive approach.

The following are some examples to show the effect of partitioning of data.

1. It is the method of optimization of alocation of data sample to training and testing
sets. There were 14 points in the data sample. Experiments were conducted with
different proportions of training and testing sets to obtain the optimal model using
the regularity criterion. Figure 1.4 illustrates that a choice of proportionality 9:5 is
optimal from the point of view of the number of selection layers in the multilayer
iterative algorithm. The simplest and most adequate model was obtained with such
an allocation of points. It was noted that the regularity criterion could be taken as the
reciprocal of the mean sguare error in the testing st.

2. Here is another example of the effect of partitions on the global minimum achieved
by using the combined criterion ¢3 that is defined as

3 2a g+ (1 —a) AXC), (1.38)

where
U AR O P
N N
ANC/WY 2 =9/ ¥
Ne Ne

A random data of 100 points is arranged as per its variance and is divided into
proportions A : B : C, as shown in the Table 1.3. The combined criterion measure at
each layer is given for different values of «. Global minimum for each experiment
is indicated with “+”. When « = 1, only minimum bias criterion is participated. As
the value of a decreases, the participation of A%(C) increases in selecting the optimal
model. From the global values of the criteria, one can note that the optimum splitting
of data is 45:45:10.

3. One of the experiments was done by finding the required partition of empirical data
points using the extremal values of the minimum bias selection criterion on the set of
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Figure1.4. Optimum allocation of datato training and testing sets, where S is the number of selection
layers, A*(B)isthe error measure using regularity criterion. 1. plot of number of selection layers
and 2. chosen optimum allocation

all possible versions of data partition in a prescribed relationship {128]. It was shown
that the different possible partitions effect the global minimum.

Objective functions

Thinking of objectives in mathematical form is one of the difficult tasks in these algorithms.
Extensive has been work done in this direction and enormous contributions have been made
to the field in recent years. Most of the objective functions are related to the standard
mathematical modeling objectives such as regularization, prediction, unbiasedness and so
on. There are standard statistical criteria used by various researchers according to statistical
importance, One can also design his own st of criteria with regard to specific objectives.
The following is a brief sketch of the development of these functions.

(i) In the beginning stages of self-organization modeling (1968 to 1971), it was applied
to pattern recognition, identification, and short-range prediction problems. These problems
were solved by regularity criterion only.

NBYE DY G- Y v (1.39)

pENp PENR



<4 INTRODUCTION |

Table 1.3. ¢3 values for different values of a with different partitions

Layer:
A:B:C 1 2 3 4 5 6 7

a=1:
45:45:10 0.152 0.053 0.073 0.007* 0.120 0.048 0.034
40:40:20 0.176 0.052* 0.146 0.099 0.126 0.158 0.149
35.35:30 0.181 0.151 0.109 0.059* 0.193 0097 0.159

a=0.75:
45:45:10 0.323 0.262* 0.360 0.362 0.440 0440 0.439
40:40:20 0.293 0.249 0.233* 0.306 0.242 0.263 0.265
35:35:30 0.307 0.300 0.313 0.281* 0.452 0374 0.368

a=20.s5:
45:45:10 0.416 0.423 0390 0.332¢ 0409 0400 0.373
40:40:20 0.376 0.351 0.346* 0.389 0407 0408 0462
35:35:30 0389  0.347* 0.362 0.405 0370 0370 0359

a=025:
45:45:10 0.489 0.420 0.384 038 0335 0369 0436
40:40:20 0.443 0.423  0.380* 0.469 0468 0467 0.428
35:35:30 0.455 0.427 0.420 0417 0471 0427 0453

wherey is the desired output variable, y is the estimated output based on the model obtained
on training set A (about 70% of data), and Ng, is the number of points in the testing set
(about 30% of data) used for computing regularity error.

Sometimes this criterion was used in the form of a correlation coefficient between y and
y variables or in the form of a correlation index (for nonlinear models).

(ii) Later, during 1972 to 1975, the ideas of multicriteria choice of models were devel oped
in pattern recognition theory, minimum bias, balance of variables, and combined criteria
Minimum bias criterion is recommended to obtain a physical model; balance-of-variables
criterion is preferred to identify a model for long-range predictions. Various criteria like
prediction criterion and criteria for probabilistic stability were also proposed during this
period. We were convinced that the wide use of the minimum bias and balance of variables
criteria, together with the solution of the noise resistance problem, were the major ways of
improving the quality of the models.

(iii) During the eighties, there was fruitful research in the direction of developing noise
immune criteria which lead to the successful development of various algorithms such as
objective system analysis and multilevel algorithms. The noise stability of self-organization
modeling algorithms and noise immune externa criteria will be discussed in Chapter 3.

There is confusion with the notations used for the selection criteria as developments
progressed through the years. Here we try to give various forms of criteria with standard
notations.

All theindividual criteria, which are of quadratic form, are divided into two basic groups:

(i) accuracy criteria, which express the error in the model being tested on various parts
of the sample (example, regularity),

(if) matching (consistent) criteria, which are a measure of the closeness of the estimates
obtained on different parts of the sample (example, minimum bias).

By adding other two groups, such as balance and dynamics (step-by-step integral) cri-
teria, all external criteria are classified into four groups, as given in the Table 1.4, where
3 is the parameter used in averaging the term and §w(yvo, aw) is the step-by-step integrated
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Table 1.4. External criteria

Criteria Group Criteria Notation Computational
group symbol old New formula
Accuracy A (i) Regularity A%(B) AB Iys — Xpay,l)?
criteria

(i) Symmetric o AD lys — Xadpg|>+

(dual) regularity lys — Xgd,|®

(iii) Stability s? AS Iyw — Xwau >+

lyw — Xwagl® |

Balance B (i) Predictions 82 BL O — @l lar)s|?
criteria balance (linear)

(ii) Variables balance B’ BV 1D — ()
Matching C (i) Consistency (mini 7, CB IXway — Xwag|?
criteria mum- bias)

(i) Unbiasedness in n2 cc A4 — ag|?

coefficients

(iii) Variability (absolute V2 Ccv (Xwly — Xyway)T

noise immune) (Xw'c"\lw - Xwﬁg)
Dynamic D (i) Integral i? DI [yw — ¥wOo, dw)|?
criteria

Table 1.5. Classification of criteria
No. Internal External

Accuracy type:

(a) Mean square error
2 - 5 32
€= ieny, =i
(b) Correlational
N

pw =| Cov o[, W
(c) Distance
d=o(x, ;)

(a) Ideal

s}
_ o 2
J= §ieNW0 y)

(b) Correlational

LN
pg =| Cov 6N, B

(c) Regularity

AB) =3 ien, 0 I

Integral type(Dynamic):
Stepwise prediction

Pl Ny —1 ~ 9
2wy=3 " G —ay)?

Stepwise prediction
: Neoo .
PO =37 Qi — @)

i

Differential type (Balance and
Matching):

(a) Balance-of-predictions

B =3 MO — §@ + a2+ a3 +40))]

(b) Minimum- bias or consistency
- 5 B2
Nps = ZIGNW()’A r

25

output value which is initialized with the first value yo using the estimated coefficients

aw. "Symmetric" and "nonsymmetric" forms of certain criteria are shown.

"Symmetric"

criterion means one in which the data information in parts A and B of the sample are used
equally; when it is not, the criterion is "nonsymmetric." These are further discussed in later

chapters. Here we have given old and new notations of these criteria; the old notation is

followed throughout the book. The new notation will be helpful in following the literature
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As it is clear that the internal criteria are the criteria that participate in the interpola-
tion region in estimating or evaluating the parameters of the models; on the other hand,
the external criteria are the criteria that use the information from the extrapolation region
(partially or fully) in evaluating the models. Table 1.5 demonstrates some of these criteria,

Wherefl is the ideal output value (without noise).

The inductive approach proposes a more satisfactory way to find optimum decisions in
self-organization models for identification and for short- and long-range predictions. This
is particularly useful with noisy data. Communication theory and inductive theory differ
from one another by the number of dimensions used in self-organization modeling, but they
have common analogy according to the principle of self-organization. The internal criteria
currently used in the traditional theories does not allow one to distinguish the model of
optimal complexity from the more complex overfitted ones.




Chapter 2
Inductive Learning Algorithms

1 SELF-ORGANIZATION METHOD

The existence of man on earth began about two million years ago. The twentieth century
is the turning point for changes, the likes of which have never before occurred in human
history. The change in the way of living, modern production processes, scientific-technical
revolution, and important changes in and rapid development of computers for information
processing and control of complex objects, including the hereditary characteristics of living
organisms, constitute but a short list of new phenomena that characterize our age. The
expanding possibilities are accompanied by growing anxieties such as how to cope with
increasing pollution problems and how to find new food and energy sources in time to feed
and warm an increasing population. These and other important problems will be solved
in the near twenty-first century—the century in which our children and grandchildren will
develop. It is clear why our eyes are turned to the future, to the twenty-first century. We
cannot say that we are completely ignorant, because this is not true. For example, we
know the fundamental trends of development of scientific-technical progress. We know that
this leads to the qualitative mathematical predictions of the future that are possible only
with the methods of quantitative mathematical modeling which answer questions about the
time periods of the predictions (when?), the forms (how, in which way, and under what
conditions?), and the place (where?). Futurology is a young mathematical science whose
purpose is to develop methods for the prediction of the future. This branch of science is
slowly coming to a mature stage when some of its unavoidable meanderings and errors can
be executed. However, we will see here some of its successes and achievements.

A long time ago scientists knew how to calculate exactly the motions of the planets,
how to predict eclipses of the moon and of the sun because these are described by exact
deterministic equations. Even these were achieved in successful prediction of variable
quantities, averaged over a long period of time. Thus, it is not difficult to predict the
average temperature of the earth for the entire twenty-first century or to calculate the amount
of precipitation which will fall on the mainland of Asia during the same long period of time.
The question is, however, how much can the averaging time intervals and area sectors be
decreased? How does one obtain predictions for each month and season or year when the
prediction interval extends over scores of years? Can scientists actually predict the distant
future in general? Such a question usually comes into our minds because of lack of success
in many detailed (nonaveraged) quantitative forecasts. The first fiasco was suffered by
the so-called probabilistic methods of long-term predictions. Probability is also a type of
averaging, and is useful in predictions of the future. Probabilistic methods have their own
drawbacks because of their lack of inductive analysis.
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Simulation modeling is another area used by Forrester [20] in studying world dynamics.
The fact is that simulation modeling does not require any test data. Equations that describe
separate parts of the object of prediction are invented by modelers on the basis of their sub-
jective ideas of the object. These models apparently do not take into account the variability
of the object characteristics. The common feature of probabilistic and simulation methods is
that “the more complex the model, the more accurate” the interval of empirical observations
used for estimating the parameters. The modeler cannot tell whether the model is accurate
or not in the interval of the object that he lacks the knowledge about. The self-organization
modeling that is described here plays an important role in such conditions.

The self-organization method uses a very general meta-language, rather than a language
of detailed instructions. The quantitative model built up from the observations should be
the same as the model built up from other observations taken at different times and places.
This is the prerequisite in obtaining a predictive model through the inductive approach. Let
us first go through the basic iterative algorithm based on the inductive approach and the
basic network structures that have been in use since the beginning of the usage of these
algorithms. Later we will study basic directions, principal characteristics of the algorithms
and advanced multilevel achievements in complex problem solving.

1.1 Basic iterative algorithm

In problem solving, the main strategy is to specify a set of proper input-output associations
and the main goal is to design an efficient learning algorithm, which is regarded as a search
procedure that correctly solves the problem. Learning in the networks takes a variety of
forms; mainly it discovers statistical features for detecting regularity. Self-organization is
considered while building the connections among the units through a learning mechanism
to represent discrete items. The self-organizing process that is established using various
heuristics in the network structure helps in obtaining the optimum output response. In the
network each unit is represented independently as a black box to generate the input-output
relationship as a state function and group of units are treated as a layer of certain thresholding
hierarchical stage. The relationships are established through the connecting weights that are
estimated by adapting a parameter estimation technique. The measure of the objective
function as an “external complement” is used as a threshold value on a competitive basis
to make the unit “on” or “off” and if the unit is “on” its output is fed forward to the
next layer as inputs. The measure is also considered as an objectivity measure of the unit.
Overall, this works as a search in the domain of solution space through a sort of competitive
learning. Relevance of local minimum depends on the complexity of the task on which the
system is trained by building up heuristics like design of objective function, design of
input-output relationships or summation functions at the units, and usage of empirical data
for training and testing the network. When one of the units in a particular layer achieves
the global minimum of the measure, the processing is stopped and information about the
optimal response is recollected from the associated units in the preceding layers. The global
minimum is guaranteed because of steepest descent in the output error with respect to the
connection weights in the solution space in which it is searched as per a specific objective
through cross-validating the weights.

Suppose we have a sample of N observations, a set of input-output pairs (Zy, 01), (I2, 02),

-, (y,on) € N, where N is a domain of observations corresponding to the empirical
data, and we have to train the network using these input-output pairs to solve two types
of problems: (1) identification problem—the given input /;(1 < j < N) of variables x
corrupted by some noise expected to reproduce the output o; and to identify the physical
laws, if any, embedded in the system; (2) prediction problem—the given input Iy, ex-
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pected to predict exactly the output oy, from a model of the domain studied during the
training.

In solving these, a general relationship between output and input variables is built in the
form of a mathematical description, which is also called a reference function. Usually the
description is considered as a discrete form of the Volterra functional series or Kolmogorov-
Gabor polynomial:
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where the output is designated as y, the input vector as x = (x, x2, - - -) and a is the vector of
coefficients or weights. This is linear in parameters a and nonlinear in x. Components of the
input vector x could be independent variables or functional terms or finite difference terms.
This means that the function could be either an algebraic equation or a finite difference
equation, or an equation with mixed terms. The partial form of this function as a state or
summation function is developed at each simulated unit and is activated in parallel to build
up the complexity.

Unit level

Each simulated unit k receives input variables—for example, (x;, x;)) C x; i # j—and
generates a function f() which is a partial form of the reference function.

S, xp) = (k) + V%k)x, + Vék)x + ng)x iXj + ng)xz +v (k) 12 2.2)

where v® are the connecting weights. If we denote o as the desired values and y as the
estimated values of the outputs for the function being considered, the output errors would
be given by

€y =Yp — 0p; P E Ny. 2.3)

The total squared error for that input vector is

E= z el (2.4)

PENA

This corresponds to the minimization of the average error E in estimating the weights v®;
this is the least squares technique. The weights are computed using a specific training
sample N4 which is a part of the whole data points N specified for this purpose.

Layer tevel

Each layer contains a group of units that are interconnected to the units in the next layer. The
weights at each unit are estimated by minimizing the error E. The measure of an objective
function is used as the threshold value to make the unit “on” or “off” in comparison with the
testing data Np which is another part of N and, at the same time, it is considered to obtain
the optimum output response; i.e., this is used as threshold as well as objectivity measures
simultaneously. The outputs of the units which are “on” as per the threshold values are
connected as inputs to the units in the next layer; that means that the output of kth unit, if it
is in the domain of local threshold measure, would become input to some other units in the
next level. The process continues layer after layer. The estimated weights of the connected
units are memorized in the local memory.
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Functional flow of the algorithm

The flow of the algorithm can be described as follows. We feed the input data of m input
variables of x randomly; for example, if they are fed in pairs at each unit, then a total of
C2 (= m(m — 1)/2) partial functions of the form below are generated at the first layer:

y=f(x;, x])’ i’j: 152a"'1m; l_TJJs (2'5)

where f() is the partial function as in Equation 2.2 and y is its estimated output. Then outputs
of Fy (< C?) functions (“freedom-of-choice”) are selected as per the threshold measure to
pass on to the second layer as inputs in pairs. In the second layer we check the functions
of the form

Z=f(yi>)’j); i7j=1727"'aF1; l#]: (26)

where f() is the same form of the partial function as in Equation 2.2 and z is its estimated
output. The number of such functions is C%l. Outputs of F, functions are selected to pass
on to the third layer. In the third layer we estimate the functions of the form:

V=f(Zi, Zj), iaj=152,"'aF2; l#], (27)

where v is the estimated output of the type of function as in Equation 2.2. The number
of such functions is C%z. The process continues and is stopped when the threshold value
begins to increase. The parameters of the optimal function are retrieved through the path
of the connecting units from the preceding layers.

2 NETWORK STRUCTURES

The network structures differ as per the interconnections among the units and their hierar-
chical levels. There are three main inductive learning networks: multilayer, combinatorial,
and harmonic. There are other networks based on these three using the concept of self-
organization modeling. Multilayer algorithm uses a multilayered network structure with
linearized input arguments and generates simple partial functionals. Combinatorial algo-
rithm uses a single-layered structure with all combinations of input arguments including
the full description. This could be realized in different ways at each layer of multilayer
structure by restricting the number of selected nodes at each layer. Harmonic algorithm
follows the multilayered structure in obtaining the optimal harmonic trend with nonmultiple
frequencies for oscillatory processes.

2.1 Multilayer algorithm

Multilayer network is a parallel bounded structure that is built up based on the connec-
tionistic approach given in the basic iterative algorithm with linearized input variables and
information in the network flows forward only. Each layer has a number of simulated units
depending upon the number of input variables. Two input variables are passed on through
each unit. For example, x; and x; are passed on through kth unit and build a summation
function. Weights are estimated using the training set A. At the threshold level, error cri-
terion is used to evaluate this function using the test set B. If there are m input variables,
the first layer generates M, (= C,z,,) functions. F1(< M,) units as per the threshold values
are made “on” to the next layer. Outputs of these functions become inputs to the second
layer and the same procedure takes place in the second layer. It is further repeated in
successive layers until a global minimum on the error criterion is achieved. If it is not
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achieved, it means the heuristic specifications must be considered for alteration. The partial
function that achieves the global minimum is treated as an optimal model under the given
specifications.

The mathematical description of a system can be considered as a nonlinear function in
its arguments which may include higher ordered terms and delayed values of the input
variables.

2
Yy =f(x1a X2yt ,x%, Xyt 3 X1 X2, X1X3, 0 5, X)(—1)y " " " 3 X1(=2)y ° ° ')7 (2'8)

where f() is a function of higher degree and y is its estimated output. This can be renotated
as a linearized function by calculating all arguments of x in the following form of full
description.

y =f(u17 u27'”aum)
=qg+aiuy +axuz +: -+ anly, (29)
where u;, i = 1,2, -+, m are the renotated terms of x; a, k=0, 1,- -, m are the coefficients

and m is total number of arguments. These m input variables become inputs to the first
layer. The partial functions generated at this layer are

(1) (1) (1)

1
Yi = Yy Ty VU,
2) (2) 2)
y2 = I/(()l +l/“ U +V§1 us,
M, M M
yu, = V8 4 Uy + P, (2.10)

where M, (= C2) is the number of partial functions generated at the first layer, y; and
vi({), j=1,2,---,My; i=0,1,2 are the estimated outputs and corresponding weights of the
functions. Let us assume that F; functions are selected for the second layer and that there
are M, (= C%l) partial functions generated at the second layer.

3} (1) 1
= Vc()z + ViR + vy,
2 2 2
2= V(()z) + ng)}’l + Véz)J’Ba
M. M, M;
M, = V(()22)+V52 ))’FI—I+V§22))’F1, (2.11)
where z; and u}?, j=1,2,---,M>; i =0,1,2 are the estimated outputs and corresponding

coefficients of the functions. In the same way, assume that F, functions are passed on to
the third layer; this means that there are M3 (= C%-z) partial functions generated in this layer.

(1) (1) (1)

Vi = Yy + V32 + V22,
2 2 2
v, = l/(()3) + u§3)zl + u§3)z3,
M M M
VM, = 1/((,33) + V§33)zp2_1 + 1/53 3)zp2, (2.12)
where v; and ug?, j=1,2,---,M3; i=0,1,2 are the estimated outputs and corresponding

coefficients of the functions. The process is repeated by imposing threshold levels of
m > F, > F, > F3 > --- > Fjso that finally an unique function is selected at one of the
layers. The multilayer network structure with five input arguments and five selected nodes



32 INDUCTIVE LEARNING ALGORITHMS

input
layer layer 1 layer 2 layer 3
(m=3) (Fy=5) (F,=5) (F;=5)
- m 21 0
m O m"2
" 0 .ZS m 141
] 0 O
U 0 nZ 0
Z Va —_—
s O n ]
n O m"3
Uy H O ad
s O m m’s
O O O

Figure 2,1. Multilayer network structure with five input arguments and selected nodes

at each layer is exhibited in Figure 2.1. For example, if the function v, = vy +1\3z1+132;

in Equation 2.12 achieves the global minimum, then it traces back to the preceding layers to
recollect the functional values of all connecting weights from the associated units. Finally,
we get the optimal function in terms of the input arguments as shown below:

va = f(z1, z3)
Ef(f(yla YZ),f()’Iy y4) )
= f(uy, uz, us, us) = f(X). (2.13)

This is demonstrated in Figure 2.2. One could obtain more functions which are nearer to
global measure for further evluation.

The computational aspects that are considered as the multilayer network procedure is
more repetitive in nature. It is important to consider the algorithm in modules and facilitate
repetitive characteristics. This is given in the last chapter of the book.

2.2 Combinatorial algorithm

This uses a single-layered structure. Summation functions are generated for all combinations
of input variables; i.e., this is like “all types of regressions” in the regression analysis. Let
us describe the mathematical description of a system as shown below with three input
arguments.

y=ag+au +axuy +asus, (214)
where y is the estimated output, u,uy, and u3 are the input arguments, and a; are the

weights. The algorithm uses a single-layered structure because of its complexity in model
building. This is given below.
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input layer 1 layer 2 layer 3
layer

Figure 2.2. Schematic output flow to unit 2 of layer 3 in the multilayer structure

Layer level

1. Summation functions for all combinations of the input arguments u;, 4>, u3 (in this
case there are seven units, Figure 2.3) are generated:

1) 1
n = aﬁ, +0(1 uy,

2 2
y2 = af))+a§)u2,

3) 3) 3
y3 = ag +a(1 Uy +a(2 )uz,

4 4
Ya = af))+a(3 us,

— (5) 5
ys = a5)+al u) +ag)u3,

6 6 6
Y6 = ag)+a(2 )uz +ag )u3,

y7 = ag) + a§7)u1 + a§7)u2 + a(37)u3, 2.15)
where y; is the estimated output of kth unit, k=1,2,---,7; and af’”, i=0,1,2,3 are
their connecting weights.

2. The weights are estimated by using the least squares technique with a training set at
each unit.

3. Then the unit errors are compared as per the threshold objective function using a
testing set, and

4. Units with selected output responses are made “on” and cvaluated further.
The schematic flow of the algorithm is given in Figure 2.4.

Usage of “structure of functions.” If there is increase in the input arguments, there is
corresponding increase in the combinations of them. Suppose there are m variables, then
the total combinations are M, = (2™ — 1). This is the main difference of this single-layer
algorithm in comparison with the multilayered algorithm described in the previous section.
There is restriction on the number of input variables with which to use this algorithm as
per the capacity of the computer. Efforts are given to build up the algorithm in a more
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Figure 2.3. Single-layer layout of combinatorial structure

economical way in generating the functions with all combinations. It uses a binary matrix
structure of “0”s and “1”’s, where each row indicates a partial function with its parameters
represented by “1”, number of rows indicates total number of units in the layer, and number
of columns indicates total number of parameters in the full description. Terms in the matrix
are made equal to “0” if the parameters are not present in the function. This is called
“structure of functions” (2.16), and includes the full description and the function with all
arguments. Usually the “structure of functions” contains the constant term ag which is
present in all functions:

i ag) a(3i) a(zi) a(li)
11 0 0 1
21 010
31 01 1
41100 (2.16)
51 1 0 1
61 1 10
71 1 1 1

This is referred further in forming the normal equations for each function. Connection
weights of each unit are estimated using a training set and evaluated for its threshold
measure in comparison with a testing set. Finally it gives out the selected output responses
as per the threshold values.

Gradual increase of complexity. As we have seen above, the combinatorial algorithm is
based on an inductive approach; this is done by sorting of all possible models from a
given basis of a reference function with fixed input variables. The best of them are chosen
according to the external criteria. The complexity of the models is increased by sorting,
which is done by gradual increase of arguments in the polynomials or partial functions. The
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Figure 2.4. Schematic flow of single-layer combinatorial algorithm

important thing here is that no possible variants of the model that appears with the complete
set are missed. Let us see how this is realized with three variables of the complete quadratic
polynomial that has the form

Y = ag + aix; + axXy + a3xs + a4Xs + asxs + agx;

+axixy + agx X3 + AgXxsX3. 2.17)

There are ten terms in the full polynomial that includes the constant term ap (m = 10).
Sometimes arguments like 1/x;,1/x,, and 1/x3 and other higher order nonlinear terms are
to be included based on the global minimum attained on the external criterion. The partial
polynomials are linear in coefficients a, and the least squares technique is used to estimate
the coefficients by reindexing the nonlinear terms in linear form. Here we give the scheme
for gradual increase of complexity in the partial functions. The scheme is as follows.

In the first step, all models with single arguments are determined.

Yi=4ao, Y2=aix;, Y3=daXa,-'-, Y0 = doX2X3. (2.18)

That means there are Cl, = 10 partial models. Then in the second step, all models with
two arguments are determined.

yun = ap+ayxy, Yip=4ag+taxxy,---,Yy;=do+agxX3

Y = a1xy +axxz, Y =aix +a3x3, -, Y45 = AgX1X3 + AgX2X3. (2.19)

There are C3, = 45 partial models. Similarly, in the third step models with three arguments
are built up, in the fourth step with four arguments, and so on until C}3 = 1 model, which
is the complete polynomial. The total number of all possible models constructed for m
arguments is

M=) C,=2"—1. (2.20)
s=1

The value of M, increases with the increase of m; for example, if m = 10, then M; = 1,023
and if m = 15, then M, = 32,767. This algorithm with the given program at the end, where
the complexity of the partial models is not changed sequentially but rather according to the
binary matrix of m-digit counter, sorts all possible models for m < 18 in an acceptable time.
However, the inclusion of an additional argument in the input set doubles the computational
time. We give here one of the optimal sorting schemes [115] that enables us to increase the
input set to m = 23.

2.3 Recursive scheme for faster combinatorial sorting

Suppose we are given N measurement points of output y and input variables x of a system.
For the given output y we set up the measurement function

y=Xa, where y[N x 1], X[N xm]. and a[m x 1]. (2.21)
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The coefficients of the model are determined by the least-squares method
a=x"x)"x7y. (2.22)

Let us consider the question of obtaining inverse matrices of the type (X'X)~! for each
partial polynomial in the combinatorial algorithm. First of all we consider for one individual
output; this means that at a certain stage of the algorithm we have obtained the estimates

of the parameters of a partial model containing & arguments x;,xy, - - -, x;. Then we know
that
a =H 'g, (2.23)
where
H,=X{X;, and g =XIy (2.24)

denote the elements of the matrix of the normal system

He |gd 2 XTx | XTy). (2.25)

In estimating the coefficients ay, the inverse of the matrix H; is computed by using the
Gauss method. As a further step, for example, the system considers another partial model
with an additional argument x,,;, and the matrix of the normal system takes the form

[Hi1 | el = |- —=|— - = |— — — , (2.26)
hly | Ok | s

where hg, [k x 1] is a k dimensional vector; ¥4, and <y, are scalars whose values are
computed using the measurements of the (k+ 1)st argument. In the combinatorial algorithm,
the estimate of the vector &;,; is found by the least squares method; that means that
one performs operations analogous to a new inversion of the matrix Hy,; for finding the
parameter estimates 8, = H;llgk+1. This estimate can be obtained in terms of the known
H ! and other elements h;,: and 94, as below.

A -1
a; Hy | hy 8k
= |- ——| = [-——|-—— N 2.27)
G hl, | Yk Yeel

Specifically, if we write the inverse of the matrix as

1>

H}) = Byy=|--—-|--- (2.28)

and solve the equation By Hie1 = Ixe1, where It is the identity matrix, we obtain the
following formulae by inverting the above block matrices.

N A
Bie1 = 1/(Ore1 — WL, €41), k1 = Hj "his, Hy'=

bii1 = —frei€ie1, Bi = Hk_] + Bra1Cke1€hy g - (2.29)

Substituting the results above, we get

ay = H'ge + BesrCrer (€L, 8 — Yaa1)
Qi1 = B (€L Bk — Tee1)- (2.30)
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Thus, the new estimate 4;,; can be expressed explicitly in terms of the estimate already
calculated.

0. 2.31)
Gpat a1

It is obvious that the above operation considerably decreases the number of computations
needed for estimating ag,; in comparison with the direct determination of the matrix H,;',.
If the next term x;,, is adjoined to the model as another partial polynomial, then the new
inverse matrix is obtained directly as

1 H;:l + Bre1Cin1Cpyg —Brs1€k41
Hol=|-o T : 2.32)

= Bia1 c;{.,.] B+

The above recursive technique is convenient to use in constructing models of the partial
polynomials of gradually increasing complexity that begin with a single argument. This
type of approach is called “method of bordering.”

The above table of “structure of functions” (Equation 2.16) shows the sequential change
in the states of the binary counter that corresponds to the changes in structures of partial
polynomials. In the shiftfrom1 — 3 or2 — 3,4 — 5and 6, and 5 — 7 or 6 — 7 models,
one can notice that a new term is added; the inverse matrices in these cases can simply
be computed using the above recursive algorithm. This type of combinatorial scanning of
models accelerates the calculation of the model coefficients and reduces the computational
time; one has to think about the optimum way of utilizing the computer memory to store
these inverse matrices as the number of arguments increases. The solution is to have an
optimum way of sequencing the rows of binary matrix in a specific way. For example, let
us consider the sequencing as follows:

@ @ @) @

I ay a3 ay aj
11 0 0 1
21 0 1 1
31 01 0
41 1 10 (2.33)
51 1 11
61 1 0 1
71 1 0 0

In this sequencing, one can notice that from 1 — 2 one argument is added, from 2 — 3 one
argument is eliminated, and so on. When an argument is added, the above recursive proce-
dure can be used for obtaining the new inverse matrix. When an argument is eliminated, a
new procedure which works in reverse is needed; one can introduce the inverse operation
of it to calculate H ! and a, from the known Hk:ll and 4, as

] By | b a;
H[H.] i D y Al = | T |, (2.34)
T ~
bk+1 Brs1 Qi

and eliminate the (k + 1)st argument by
_ 1
H' =B~ —g—bknb;a],
Pk+1

A ax O
4 = a — Ei‘*—:bm. (2.35)
+
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This type of refinement of the recursive algorithm yields maximum decrease in the time
of total scanning of the models at the cost of increased memory utilization. In the above
“structure of functions” (Equation 2.33), one argument is added to the models in the shift
from1 — 2,3 — 4, and 4 — 5; and in the shift from 2 — 3,5 — 6, and 6 — 7, one
argument is eliminated. The above procedure with the alternate use of recursive and inverse
recursive routines can be used as required for computing H,~ ! and H,;ll matrices alternately
from an initial matrix H; '. The least square error €2 can be calculated after estimating the
coefficients 4.

e =0a — I (a — §4) = yiva — g, (2.36)
where g4 = X1iya; here the subscript A corresponds to the training set. The recurrent

algorithm enables us to compute the least squares error €2, , recursively when a new argument
is added.

22
2 2, A T — 2, Yy
€kal = €k + Qher1 (Vi1 — Cpyy 8k) = € + —. 2.37)

5k+ 1

2.4 Multilayered structures using combinatorial setup

One version of a multilayered structure is that the combinatorial algorithm could be realized
at each layer of the multilayer network structure by keeping the limit on the “freedom of
choice” at each layer. The unit outputs are fed forward layer by layer as per the threshold
measure to obtain the global output response for optimal complexity. This structure is
exhibited in Figure 2.5 with three input arguments and three selected nodes at each layer.

2.5 Selectional-combinatorial multilayer algorithm

Here is another version of a multilayered structure that is called a selectional-combinatorial
algorithm that realizes the above recursive procedure [116] [49]. The general outline of the
algorithm is as follows.

In the first layer, all models containing single arguments are estimated, and some of the
best are selected as per certain external criteria and passed on to the next layer. In the
second layer, different arguments are selected and added to these models, which improved
the response as per the external criteria. This continues until it deteriorates. In contrast to the
original multilayer set up, it does not pass on the outputs of the units. The multilayer error
is not passed on because of its retainment of the original basis functions; their number of
arguments coincides with the layer number, and the total number of layers cannot exceed m.

The important aspect of this algorithm is its realization of the recursive procedure for
successive estimation of coefficients of the partial models according to the least squares
method. The matrix of normal equations for a model is represented with [+ 1 arguments
that is obtained from the complete normal matrix [m X (m+1)] matrix [H | g] = XTx | XTy]
using the form

Hy=|—-——|——- y 81 = | —— — |- (2.38)

The coefficients 4,,, are estimated using the following:

Br1 = 1/01 — hi en), ey = Hy Ty,
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Figure 2.5. Multilayer structure with restricted combinatorial set up at each layer

a & — Qi1
= |-——|=| ————— . (2.39)
a1 Br1(Vie1 — 8i€141)

Let us explain the sequence of calculations of the (I + 1)st layer from the /th layer.

1. For each ith model (i = 1,---,M;) of the first layer (! = 1), the inverse matrices
H 1(i) are calculated. These matrices will be updated at all the consecutive layers
using the recursive procedure. Let us assume that H, (1) are the inverse matrices at
the /th layer and F; models are selected as per the external criteria.

2. Partial models of the (I + 1)st layer are generated by an ordered addition to each
selected ith model of one of the arguments absent from it that correspond to the
zeroth elements of the binary structure of the vector for ith model. Here the partial
models M,,, are generated with the complexity /+ 1 arguments. Each new model
is uniquely defined from the preceding F; models of /th layer, and the x; is the new
added argument.

3. Estimates 4;,(i,j) are calculated for all M,,; models using the recursive procedure
for each i on the basis of the matrix H,‘l(i). From the denominator terms, one can
easily sort out even the ill-conditioned normal matrix.

4. The values of the external criteria are computed for each model.

5. The best Fi,; models are chosen for the next (! + 2)nd layer from the condition of
improvement of the minimal value of the external criterion; for example, A(B) is
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Figure 2.6. Multilayered version of selectional-combinatorial algorithm; the inverse matrices Hf'(i)
are updated layer after layer using the recursive technique

obtained at the preceding layer /.

Ml+1 .
_ 1 ifAB) <6
Fu=Xn 6={0 oG @)
p:

where 6, = min A;(B).
iEFI

This procedure is applicable in a strict sense when the external criterion actually
behaves like an ideal one in selecting a unimodel.

In general, one can choose selection of models on a competitive basis as in the
usual multilayer algorithm.

To overcome the possible local minimum when I+ 1 < m and F,; =0, it is better
to fix the lower boundary (for example, Fi; ., =m — (I+1)) and an upper boundary

mi
Fpax. The freedom of choice at the (/ + 1)st layer is determined with the constraint

Fl+lmm S Fl+1 S Fmax- (241)

6. When Fi,; = 0, the procedure is stopped automatically which would indicate the
minimum is achieved at the previous layer.

The schematic diagram of this algorithm is shown in Figure 2.6 with the passage of
inverse matrix A and an additional term from layer to layer.
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y =0

Figure 2.7.  Schematic illustration of front propagation algorithm with the calculation of ocutput error
residuals, where Mo, M1, - - - denote the total partial models; Fy, Fy,-- -, F, are the number of best
models (freedom of choice) at zeroth, first and last layers correspondingly

2.6 Multilayer algorithm with propagating residuals

(front propagation algorithm)

This algorithm is built up based on forwarding the output errors to the next layers as
outputs and using the combinatorial induction on original input variables at each layer. The
schematic flow of such algorithm is given in Figure 2.7.

Each block of the figure is explained below.

L.
2.

Table of initial empirical data points of N, m input variables of x; and output variable y.

The initial layer which is called the zeroth layer uses the combinatorial algorithm in
choosing the best Fy models.

. The first differences (error residuals for each model) which are denoted as AE”,[ =

1,---,Fy are computed. Each vector, A{" is of [N x 1]; AP =y — §,, where § is
the vector of estimated output corresponding to ith model.

This is the first selection layer in which the Fyy vectors of first differences are used as
output variables independently at each combinatorial sorting procedure. The best F
models are chosen.

The second differences A}z), j=1,--- F; are computed; AJ(.Z) = AD — AD | where
AW s the vector of actual values of first differences from the first layer and A is
the vector of estimated output corresponding to each jth model.

This block denotes the similar follow-up of layers and calculation of further residuals.
Last layer with the model of optimal complexity.

Some features of the algorithm

One can see below the overall effect of the forward propagation of residuals.
First-differences (residuals) at layer “0” are computed as

AV = y-3
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= y—Xxa?, (2.42)

where y, § and AW are the actual, estimated and first difference vectors with the dimension
of [N x 1], a4© is the vector of least squares estimates of coefficients with the dimension
[m x 1], and matrix X is the initial data of [N x m].

Second-differences (residuals) at layer “1” are computed as

AD = A _ AMD
=y— Xxa©® — xa®
= y — X@? +ah), (2.43)

where a!) is the vector of estimated coefficients at the first layer.

The propagating residuals help in the finer adjustment of the coefficients as the process
proceeds layer by layer and ultimately an optimal model is obtained.

The external criterion ¢3? 272 + A%(C) decreases monotonically with the prolifeiration
of the selection layers and a relatively small decrease in it serves as a signal to stop the
procedure. In comparison with the original multilayer algorithm, the objective nature of the
choice of model is not fully conserved because the error decreases monotonically.

This algorithm is worked out for finite-difference reference functions [54]. In the absence
of constraints on the coefficients, this algorithm with forward error propagations resembles
the exponential-harmonic algorithm.

2.7 Harmonic Algorithm

The principal aim of this algorithm is to extend the use of the inductive self-organization
principle to identify the oscillatory processes. It is assumed that the effective reference
functions of such processes are in the form of the sum of harmonics with nonmultiple
frequencies. The harmonic function is composed of several sinusoids with arbitrary fre-
quencies which are not necessarily related. This type of function produces a multifrequency
resultant and exhibits similar spectral characteristics. A balance relation plays an important
role in obtaining the frequencies of the process and as an objective function in selecting
the optimal trend in the multilayered structure. The algorithm is explained below with the
derivation of the balance relation.

Suppose a function f(t) is a process having the sum of m harmonic components with
pairwise discrete frequencies wy, wy, - - -, wy,.

f@) = " [Apsin (wit) + By cos (wit)]

k=1

> ewi, 1), (2.44)
k=1

where A; and B, are the coefficients; and w; #w;, i #j, 0 <w; <m, i=1,2,---,m. The
process has a total interval length of N (1 < ¢ < N) and points at discrete intervals of time
6}.

For a fixed point i and any p of Equation 2.44, one can obtain the formula:

Ji+p)+f(i—p)=2 Z cos (pwy) @(wy, i). (2.45)

k=1
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Summing Equation 2.45 for p from 0 to m — 1, with weighing coefficients pg, p£1, - -, thm—1,
we derive a relation:

m—1 m m—1

Y mplf+p)+fG—p) =2 @i, Do+ Y ppcos (pw))

p=0 k=1 p=1

=2 Z D(wy, i) cos (mwy)
k=1
= fli+m)+f(i —m). (2.46)

This is considered as a balance relation of the process.

m—1

bi = [fG+m) +f(i —m)] = Y wplf i +p) +fi — p)). (247)

p=0

If the process is expressed exactly in terms of a given sum of harmonic components,

then b; = 0; i.e., the discrete values of f(f), which are symmetric with respect to a point

i(m+1 <i < N—m), satisfy the balance relation. The coefficients y, are independent of i.
The trigonometric relation used in the calculations of Equation 2.46 is:

m—1

o + Z Hp cos (pwy) = cos (mwy,). (2.48)
k=1

This could be formed as mth degree algebraic equation in cosw by using the recursive
trigonometric relations

Dnlcos W)™ + Dp_1(cosw)" L+« + Dy(cosw) + Dy =0, (2.49)
where D;, i =0,1,---,m are the functions of p,.
It is possible to determine uniquely the coefficients p,, p = 0,1,---,m — 1 from the

relation (Equation 2.46) fori=m+1,--- N—m. N—m)—(m+1) > m—1;ie., N > 3m.
Substituting the values of 4, in Equation 2.49, it can be solved for m frequencies wy of
harmonics by using standard numerical techniques. These frequencies are passed through
a multilayered network to form various combinations of the harmonic components. The
parameters of the harmonic components A; and B3, are estimated at each unit by using the
least squares technique. The optimal trend is obtained at one of the units by considering
the balance relation as a threshold objective function.

Suppose y(¢) is the given discrete time series data and is to be identified for its harmonic
trend f(¢). The data are to be separated into two data sets as training set points N, and testing
set points Ng. We can allot some more points N¢ as a checking set for checking the trend,
i.e., N = Ny +Np+Nc. The maximum number of harmonics is chosen as M., (< N/3). The
coefficients y, are estimated by using the least squares technique by forming the balance
equations with the training set. The system of equations has the form:

m—1

> wply(i+p)+ ¥ — p)l

p=0

yi+m)+y(i — m);
i=m+1,--- Ny —m. 2.50)

By substituting the values of p,, the frequencies of the harmonics are determined by solving
the mth deeree Eauation 2.49. This has m roots that uniauelv determine m freauencies w:.



44 INDUCTIVE LEARNING ALGORITHMS

These frequencies are fed through the input layer of a multilayered structure as components
of the harmonic terms. The procedure of complete sifting of trends would take place by
multilayer selection of trends using the inductive principle. The linear normal equations
are constructed in the first layer for any 1 < m < My number of harmonics, and the
coefficients A, and By are estimated for all combinations of M, harmonics based on the
training set using the least squares technique. All harmonic trends are evaluated for their
threshold values in comparison with the testing set, and the output errors of the best trends
from F units are fed forward as inputs to the second layer. This procedure is repeated
in all subsequent layers. The complexity of the model increases layer by layer as long as
the value of the “imbalance” decreases on the testing set points Np. The balance criterion
B (Equation 2.51) is used as the objective function which takes into account the balance
relation, b; (Equation 2.47).

Ng—m

Bz Y b — min. (2.51)

i=m+1
This unique solution is guaranteed as it is in the multilayer algorithm; the performance of
the optimal trend can be tested further using the checking set Nc.

2.8 New algorithms

According to the form of the reference functions, the inductive learning algorithms can be
divided into several main classes that could be constructed based on the addition (additive
algorithms) or multiplication (multiplicative algorithms); they could be extended further
as additive-multiplicative and multiplicative-additive with the factors considered as unit,
integer, or noninteger powers. In addition to these, there are other algorithms like correla-
tional and orthogonalized (generalized) algorithms. Let us first give some of the types of
polynomials and later study some algorithms.
(i) Additive polynomials with unit powers of the factors:

m
y=ao+ Y am, 2.52)
=
where m is the number of independent variables; a are the coefficients; y and x are the

output and input variables correspondingly.
(ii) Multiplicative polynomials with unit powers of the factors:

y=a.]]x (2.53)
j=1
where a is the single coefficient; y and x are the output and input variables; and m is the
number of independent variables.

(iii) Multiplicative-additive polynomial with unit powers of factors: This can have dif-
ferent forms as per the complexity of the terms. One of the forms is given as

m k
y=3Y a]x¢ (2.54)
=1 =1

and another form can have factors in integer or noninteger powers

s m
y= Zwaf“ , pij €{0,Ah,---}, (2.55)
k=1 j=1
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where s denotes the complexity of the equation, and Ah is the least fractional power
(a certain minimum fractional power of the original factors is indicated; for example,
ch(-"5 and xj"o‘s ). The model of optimal complexity in this case can be represented in the
form of linear and multiplicative terms with the powers not higher than the powers specified
in advance.

Multiplicative-additive (generalized) algorithm

The algorithm described below allows one to obtain models with the multiplicative-additive
terms [51].

When the basic inductive algorithms, where the variables have integer powers, do not
lead to unbiased and accurate predictions, it is necessary to shift the solution space to
another region of functional space; for example, to the region of polynomials with other than
integer powers of generalized arguments. This is possible with the following multiplicative-
additive algorithm. First of all, one has to choose certain multiplicative models with optimal
complexity on the basis of the external criteria. An original model is represented in the
form of a product of given arguments with unknown powers;

y= aox'f‘xgzx'g’ o km (2.56)
This can be rewritten in the following form by taking logarithms on both sides:
Iny=1Inag+kInx; +kyInxy + - - - + k,, Inx,,. (2.57)

Using the original data table of the quantities y, xi, - - -, x,5, a new data table for the variables
with the logarithmic values can be set up. Data is separated into training, testing, and
examining sets. Several partial, but best, models can be chosen by using one of the inductive
learning algorithms (combinatorial or multilayer) with the combined criteria of “minimum-
bias plus prediction.” By inverting the logarithms of these optimal models one can obtain
the best multiplicative models of the given process.

At the second level, to obtain the generalized multiplicative-additive model, we combine
the selected multiplicative models into a single complete polynomial as

y=bo+bi91+ b2+ +byi+---, (2.58)
where y is the desired output of the process; $;, j=1,2,---,1,-- - are the estimated outputs

of the selected multiplicative models; and b are the coefficients.

The combinatorial algorithm enables us to obtain a unique optimal model. This model can
be rewritten in terms of the original input variables; this is in the form of the multiplicative-
additive model with the sum of covariance terms with noninteger powers of the factors and
their products which could be used for further analysis.

Sometimes, at the first level, when the conditional equations are formed, it is necessary to
take the logarithms of negative quantities. This situation can be avoided either by discarding
that particular conditional equation or by reformulating the data in advance. The constant
term is chosen in such a way that the error caused by applying the least squares technique
to the logarithms of the variables, rather than to the variables themselves, is compensated.

Algorithm for correlation mcdels

Rosenblatt [106] asserts that an infinite perceptron can execute a classification of images
according to classes without any a priori information. Analogously, one might assert that a
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model of optimal complexity can be found by sorting the points of the entire function space
without any a priori specification (or “prompting”). Actually, infinitely large sortings are
impossible either in a perceptron or by using inductive algorithms. That’s why the class
of functions that can be used to choose the complete description must be chosen on the
basis of certain a priori “prompting.” The majority of the inductive algorithms are based
on the following “prompting”: the complete description is designed as a polynomial which
is in its linear form. This means that, as per this constraint, the object is described by a
linear algebraic or finite-difference equation that remains unchanged at the interpolation or
prediction intervals; the stability condition for these types of equations is unchanged.

In the regions of other types of functional spaces (for example, in the correlational
functional space) it can be prompted by computer with the condition of correlational stability.
This condition provides a way of extending the function manifold that can be used by
applying correlation models of standard form [53], [68]. Here “prompting” is set up by a
complete set of support functions of the correlational type,

1
Ky(1) = m—— Zy,y, s 1<i<T, (2.59)

i=T

where 7 is the displacement along the axis.
The sum of the discrepancies of these equations from the values of the correlation function
forr=1,2,---,nis

AL =A 4+ A2+ 4+ A2 (2.60)

where Ay, Ay, - -+, A, are the mismatchings and A; = Ky(1) — K,(7 +)).

One can obtain a correlational model of standard structure for a fixed value of 7. The
combinatorial algorithm is used to choose the optimal number of mismatchings of the
correlation equations. For each sum of the discrepancies, a system of normal equations are
formed as

oA = 0Af

0

—= =0, —= =0, ... 2.61
o Oy2 ( )

The model of optimal complexity contains the optimal set of mismatchings. Differen-
tiating this sum with respect to the first sought prediction y,, at the point T, the inverse
transformation of the correlation function into a prediction that best minimizes the sum
of discrepancies Ay is obtained. The obtained equation yf,, + ayyr + b = 0 is the correla-
tional predicting model and the prediction is the real root of this equation. The procedure
is repeated for calculating the prediction at the point T + 1 by replacing the interval for
determination of the estimates of the correlation function.

In the case of two-dimensional models, we have

N N
K iy 1j ijYi— 3
N e ;,,;1” =
l_l __]

K+ 1,7) = 7',)(N — Z Z Vig¥iri—1i=r

t—‘r+2]—‘r+l
(I <i<N;, 1<jEN;
Ay = Ky(ri, 73) — Ky(Ti + 1,7, (2.62)
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where 7; is the displacement along the horizontal line corresponding to i; 7; is the dis-
placement along the vertical line corresponding to j; N; and N; are the number of discrete
values of the function along the horizontal and vertical lines respectively; and Ajg is the
discrepancy.

One has to compute all discrepancies for the specified pattern area of the two-dimensional
discrete field and obtain a correlational model of standard structure from the system of
normal equations. Differentiating this sum with y,,, which denotes the predicted value of
the variable, the inverse transformation of the correlation function is obtained as a cubic
model; the real root of the function represents the value of the prediction. The usage of
combinatorial algorithm is similar to the above case.

Case of multivariable (multifactor) fields. ~An advantage of the algorithm with correlational
models over the harmonic algorithm is the possibility of solving multifactor problems. For
example, if two variables (the output y and its factor x) are indicated in each cell of
the pattern in the two-dimensional field, the functions similar to the above must be formed
corresponding to two autocorrelation functions (K(yi’yj) and Ky; xj») and one cross-correlation
(K(_y,-,x,-))~ )

Differentiating the sum of squares of the discrepancies and setting g—if =0, one obtains
an estimate of the extrapolation that is averaged in the mean-square sense. A nonlinear
equation is obtained if the terms include a discrepancy of the expression for correlation
coefficient without displacement; otherwise, linear equations are obtained. The variety of
multi-dimensional autocorrelation and cross-correlation functions and the set of their ordi-
nates make it possible to obtain a corresponding variety of correlational models of standard
structure. The optimal model is selected by using the combinatorial or multilayer algorithm

with the help of external criteria. This is subjected to the sorting on the basis of the criteria.

Multilayer algorithm using the correlation models of standard structure. Let us assume
that the initial data sample of N points is supplied for the output variable y and the in-
put arguments (factors) x1,x2,---,X,; and that the number of data points N(= A U B) are
comparatively small, where A and B are the training and testing sets correspondingly.

(1) At the first layer, partial descriptions in the form of systems of equations are formed
using the output variable y with a pair of input variables x; and X3

Ky (1) = NLT Z)’kxi,k—'ra
k
Ky (1) = NLT zk: YiXj ks
Kip() = 3 > naer
Koy(1) = NI: ;xj,k)’k—-ra
K,y (1) = NIT- ;yk)’k—f- (2.63)

It is possible to make C,zn such partial descriptions for each value of the displacement 7.

(ii) The values of the functions K,,(7) and K,,(7) are found by averaging the sequence
of observations of length N, over several intervals. The values of y are taken as actual
values from the data table.
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(iii) The estimated values of the output variable $ are computed from the correlation
models. The best system of equations of the ordinates of the correlation function is chosen
by minimizing the sum of squares of the discrepancies of that system as the relation A%, =

>, A? is satisfied. The optimal vector § is obtained by solving the normal equations of the

form %jﬂ = 0. Calculation of § enables us to expand the initial data table; the number of
1

columns of the table may be increased by F;, where F) is the freedom-of-choice, (F; < C2).
The algorithm described above can be used for identification and prediction of the se-
quence of observations. This can be realized in a multilayered structure.
Correlational models provide an inverse transition from correlation functions to the orig-
inal field or process for predicting it. Success with the correlation models is based on the
following features.

1. Correlational models are to be constructed for stationary fields or processes, or for
their remainders (obtained after removing their regular trend), where the condition for
correlation stability holds.

2. The coefficients of the correlation models are to be estimated by minimizing the
condition of the sum of their squared deviations.

3. The noncontradictory correlation models are to be chosen by using an inductive learn-
ing algorithm with the minimum-bias criterion.

4. Correlational models are nonphysical; i.e., they do not easily lend themselves to inter-
pretation; that’s why, when they are sorted out, one has to consider a great variety of
candidate models so that the criterion indicated must be ensured a definite confidence
level.

Generalized algorithm with orthogonal partial descriptions

Modeling of complex systems is frequently hindered by possible selection of initial inde-
pendent variables; sometimes this might result in the loss of stability of the model structure.
When one changes either the selection criterion or the composition of the data sequences of
training and testing, the composition of the original arguments in a model and its structure
begin to change strongly. There usually appear many models of similar quality. The stabil-
ity is lost in estimating the coefficients because of the mutual dependence of the arguments,
causing a mutual dependence on the corresponding coefficients. These disadvantages are
especially evident in standard regression analysis where a single sequence of experimental
points are used; better results are obtained by using the inductive learning algorithms. The
major advantage of inductive learning algorithms is that one can avoid such biased results
in identification of the object by using the minimum-bias criterion on the specific selection
of the experimental points. However, the adaptation of coefficients and estimation of their
confidence intervals over the entire data sample become impossible if the final form of the
model contains dependent initial variables. The orthogonalized inductive algorithms allow
one to improve stability in determination of coefficients. The algorithm with orthogonal-
ized partial descriptions [102] [123] enables one to improve the stability in determining the
coefficients by facilitating and (i) to use dependent variables in the set of experimental data,
(ii) to obtain independent estimates of the coefficients, and (iii) to perform adaptation of
the optimal model coefficients by refining their estimates over the entire sequence of the
experimental points.

Let us consider that the complete polynomial of the object with dependent variables is
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in the form of a Kolmogorov-Gabor polynomial:

y=ao+ Y0 o TTe, 57,
pi=0,1,2,--; m<bL Y% pu<s, (2.64)

where y and x are the output and input variables correspondingly; s denotes the maximum
allowed degree of the polynomial; / specifies the maximum allowed terms in the model;
and k indicates the number of initial input variables.

Let us denote the vector forms of the data matrices;

YINx1L X=[x], 1<i<k, 1<j<N, (2.65)

where N is the number of experimental points.

Data is divided into training A and testing B sequences; N = A U B.

At the first layer, the actual output quantity y is projected orthogonally onto each argument
from the generalized arguments %, separately for the training and testing sequences. The
partial descriptions have the form

E(y.X1m)a
) m = aAm-:‘\:lma aA = —A.EI_,
y“lt 1 Im E(x%m)A

~B B _ E(y'-%lm)B

B A
Yim = QpXimy Ay = — ) (2.66)
Im 1m 1m (x:l)'m)B

where E is the notation for mathematical expectation.
Each element of the set of generalized arguments is estimated from the initial variables
by using the formulas

Xim = H:'(:l xm —E (Hf:] xfmi) J
Pmi=0,1,2,--; Y% p.<s. (2.67)

The partial descriptions obtained from above are compared to each other by using the
minimum-bias criterion of coefficients;

2 _ (a?m — ale)2
n, = (a?m)z " (alfm)z . (2.68)

From this analysis, the best generalized arguments, which are denoted as %,, are selected
and introduced into the model to obtain the value of a; that is refined (adapted) by using
the entire data sample. Thus, the adaptation of coefficients is combined with the selection
of variables. Then the remainder of the output quantity A; is computed and used in the
subsequent layers.

AI =y — al)?l (269)

Subsequent selection layers are analogous to the first one. The computed remainder output
quantity after the selection layer r is A,;

Ar=A ) —ak,. (2.70)

The calculations for the elements in the set of generalized arguments are also changed as
follows:

$om = T 2 = E (T 2) = 55" b,
Pmi=0,1,2,--; Zf;[pmis& 2.71)
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The coefficients b,,, are obtained from the orthogonalized condition for %, and for each of
the generalized arguments obtained during the preceding layers as

el (o)) .
)

This shows that a partial description obtained from each layer is orthogonal to all previous
descriptions. That is why the estimates of all coefficients a, are independent from one
another, which allows us to adapt them separately after each selection. One has to keep
in mind that the orthogonalization and centering of the generalized variables are performed
separately as shown above using the training and testing sets during the selection of variables,
and that the refining of the model coefficients is performed on the entire sample.

In view of the linearity of the orthogonalization transformation with respect to the initial
variables, one can use an inverse transformation on the final model obtained. Such an
inverse transformation is necessary for interpretation of the results of the modeling.

Stopping rule. The independence of the model coefficients enables one to obtain indepen-
dent estimates of their confidence intervals. The confidence interval of each coefficient is
obtained as

day =128 4 s, 2.73)
2

o(A) !
where d(a,) is the confidence interval of coefficient a,; o(X,) and o(A,) are the estimated
variances of the generalized argument and the remainder quantity, correspondingly; and

I _an-2 is the quantile of the student r-distribution for the probability (1 — «) and (n — 2)
2

degrees of freedom.

The student criterion can be used as a second external criterion in order to determine the
optimum complexity of the model. When dl(a 5 is significant with
a probability of (1 — @) and is included in the model When this condition is not satisfied,
the selection is stopped. The coefficients of the final model are statistically significant,
making the model highly reliable. Thus, the criterion used for stopping the selection could
also be the principal criterion used in the algorithm.

It is concluded that (i) the algorithm with orthogonal partial descriptions ensures stability
of the model structure and of the estimates of its coefficients for complex system model-
ing with changing dependent variables, and (ii) the criterion proposed for measuring the
significance of coefficients enables us to obtain a statistically reliable model with optimal
complexity.

The structures of inductive learning algorithms are analogous to each other for different
reference functions. The three basic forms of structures, single-layer combinatorial, mul-
tilayer, and harmonic algorithms are given here. Obtaining finite-difference models with
lagging terms using the former type of polynomial algorithms is analogous to obtaining
a harmonic model using the later type of harmonic algorithm [49]. The different forms
of multilayer structures, multilayer algorithms with forward error propagations, selectional-
combinatorial with the realization of recursive procedure and with restrictions on the freedom
of choice are covered. There is another way of looking at the algorithms according to the
types of polynomials; various recently developed algorithms are briefly presented.

However, the properties of the algorithms with different types of reference functions
depend only on the structure. Note that (a) combinatorial algorithm does not produce errors
due to multilayeredness and does not admit “loss” of optimal model; (b) multilayer algorithm
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without propagating errors has an explicitly expressed minimum which defines the model
complexity because of an external criterion; (c) multilayer algorithm with propagation of
errors has the error of monotonic nature, and the choice of model is made according to the
“left rule.”

Multilayer algorithms enable us to obtain polynomials with more terms than number of
points in the data sample and with number of harmonics exceeding the number of harmonics
of the first layer. By appropriately choosing the combined criterion (particularly choosing
the minimum bias criterion as one of them), one can arrange for all terms of the original
function to be reproduced using a very small number of data points. The results of self-
organizing models on the basis of multilayer algorithms with and without front propagation
of errors can coincide only for a rather large sample of initial data and in case of an
identification problem using the minimum-bias criterion.

Multiplicative-additive algorithms of correlation models and algorithms with orthogonal-
ized partial functions extend the region of functional space used with the inductive approach,
and thus increase the possibility of solving complex problems.

3 LONG-TERM QUANTITATIVE PREDICTIONS

The subjective character of the models and the inaccuracy of long-term predictions ob-
tained by various authors who used probabilistic and simulation methods have somewhat
undermined the authority of cybernetics. The self-organization method should be able to
change such a situation drastically. A computer can become an arbiter of controversies
between various scientists only when objective methods are placed at its disposal. This
means that we are approaching the creation of a collective man-machine superintellect that
will be capable of solving the most complicated problems in prediction and control. The
domain of activity includes the problems of nature that require more knowledge and skill
than possessed by human experts. A computer that works on the basis of inductive learning
algorithms is able 40 participate in the creative process as an equal partner with a human
being. Let us see how it is achieved considering the following facts and characteristics.

3.1 Autocorrelation functions

Statistical prediction of random processes uses empirical data of the process (its previous
history) to estimate its future values by applying the probabilistic characteristics of the
process and corresponding algorithms. From the prediction point of view, one of the most
important characteristics which indicates the statistical connection between the values of the
process separated by some interval of time 7 is the correlation function A,:

Aty 1) = Ay(r) = EY (1)) Y (11 + 7)), (2.74)

o]
where 7 =1, — ¢#1; E denotes the expected value, and ¥ (¢) = y(t) is an my-centered process
(m, is the mathematical expectation of the process).
Usually normalized correlation function is used as

Ay(T)
A0’

py(T) = (2.75)
where A,(0) is the variance of the process. One of the properties of the correlation function
is that it is an even function: A,(7) = A,(—7). In practice, when dealing with ergodic
stationary processes, averaging over the set of realizations is replaced with averaging over
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time, and in place of the correlation function its time estimate is used

T—1
NG p—— / V(O (47, (2.76)
T—1Jp
where T is the length of realization.
There is one-to-one correspondence between the correlation function and the power spec-
trum of the process; specifically, the power spectrum is the Fourier transform of the corre-
lation function.

] +1 .
Sy(w) = 5 / Ay (e M dT. (2.77)
t

In turn, the correlation function is defined in terms of the inverse Fourier transform,

+00
Ay(r) = / Sp(w)e™ dw; (2.78)
i.e., the form of the correlation function depends essentially on the frequency spectrum of
the original signal. The higher the frequency of the harmonics contained in that signal,
the faster the correlation function decreases; a narrow spectrum corresponds to a broad
correlation function and vice versa. In the limiting case, the correlation function of white
noise is adelta-functionwith its singular point at the coordinate origin. Thus, the correlation
function is a measure of the smoothness of the process being analyzed, and it can serve as
a measure of the accuracy of prediction of its future values.
A relay autocorrelation function is called the sign-changing function AL(7);

1 +T o °
Al(T) = T]im —27/ Y (DA sign [V (t + 71)]dr. (2.79)
- —0C -7

Analogously, arelay cross-correlation function is given below.
1 +7T ° o
K. ()= lim — / Y (DA sign [x (t + 7)]dr. (2.80)
o T—oo 2T T

Relay autocorrelation functions reflect only the sign and not the magnitude of x(t). They
have properties analogous to those of ordinary correlation functions, and in particular they
coincide with them in sign. The advantage of relay functions (auto- and cross-correlations)
is in the simplicity of the apparatus used for obtaining them. When the phase of the
function y(r) changes by 180°, the sign of the correlation function reverses. This means
that in extremal regulation systems the correlation functions (ordinary or relay) can be used
for determining which side of an extremum the system is on.

In practical computations associated with the random processes, one frequently estimates
the so-called correlation interval, which isthe time TV, over which the statistical connection
between sections of the process is kept—in that the correlation moment between these
sections exceeds some given level; for example, | A(7) \ > 0.05 (Figure 2.8a).

Sometimes the meaning of the correlation interval istaken as the rectangular height A(0)
with area equal to the area under the correlation function (Figure 2.8b).

l +20
Te = A—(O*)‘ [X) A(T)dT (281)

Thisis a convenient definition in case of a nonnegative correlation function.
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The correlation time or interval is aso defined as half the base of a rectangle of unit
height whose area is equa to the area under the absolute value of the correlation function
(Figure 2.8¢).

T, = = / - [A(T) | dT. (2.82)

— 00

Among these three definitions we shall use the first one because of its simplicity.

3.2 Correlation interval as a measure of predictability

Various types of mathematical details (language) of modeling can be used. The influence of
the degree of detailedness (sharpness) of the modeling language on the modeling accuracy-—
or in case of prediction, the limits of predictability of the process—is of great interest. One
of the simplest devices for changing the diffuseness of description of a time series is to
change the intervals of averaging (smoothing) of the data (for example, mean monthly, mean
seasonal, mean annual, mean 11 years, etc.). The spectrum of the process in question then
narrows down to the original and its correlation function broadens; that is, the correlation
interval increases. This in turn extends the scope of predicting the process.

The problem encountered now is how to estimate, at least approximately, the achievable
prediction time. The maximum achievable prediction time 7,,,,. of a one-step forecast is
determined by the correlation interval time called coherence time 7. of the autocorrelation
function A,. This time is equal to the shift that reduces the autocorrelation function (or its
envelope) to a value determined by the allowed prediction error 8% following this level
which it no longer exceeds.

The maximum allowed prediction time of a multiple (step-by-step) forecast is equal to
the coherence time multiplied by the number of steps; i.e, Tp,,, = n7.. The prediction
error increases with each integration step, which imposes a definite limit on the step-by-step
forecast. We give here a brief view on the maximum capabilities of multiple step-by-step
prediction, assuming that they are determined by the coherence time in the same way as
those for one-step prediction.

Because of one-to-one dependence between the correlation and spectral characteristics
of a random process, one can use some limiting correlation frequency as a measure of pro-
cess predictability instead of correlation interval. The spectrum amplitude for the limiting
correlation frequency is less than some threshold S(w) < 0. Obviously these measures of
diffuseness of the modeling language are not universal and are suitable only for evaluat-
ing certain mathematical modeling languages—primarily languages differing as regards the
interval of averaging of the variables.

Example 1. Let us look at the influence of the interval of averaging on the form of its
correlation function, its interval, and hence on the limit of its predictability; the example
given here is an analysis on outflow g(z)of a river over a period of one hundred years [44].
The autocorrelation functions for different averaging times are constructed.

N—T
1
Aq(T) = F; Z qiqdi—r, (283)
i=1

where ¢ is the mean monthly outflow, N is the number of data points, and r is the step
in computation of the correlation function. It shows that averaging of variables in time
increases the coherence time, in the same way as averaging time interval of variables over
the surface of the earth, as shown in Figure 2.10.
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Figure2.10. Qualitative variation of maximum prediction validity time Tpmaxas afunction of object
properties and averaging interval of variables, (a) axis of maximum prediction time with constant
averaging, (b) location of axis (a) in the plane of time and space averages

It is appropriate to remember that the achievable prediction time of a forecast depends
not only on the averaging interval of variables, but also on physical properties of the process
being predicted, as well as on the quality and characteristics of the mathematical prediction
apparatus. If an exact deterministic description of the process is known, then prediction is
reduced to detailed calculations.

For example, the motions of planets can be predicted exactly for long time intervals in
advance. Outputs of a generator of random numbers or the results of a "lotto" game cannot
be predicted as a matter of principle. These two examples are extreme cases corresponding
to "purely" deterministic objects and "purely” random objects with equiprobable outcomes.
In actual physical problems we are always located somewhere between these two extremes
(Figure 2.10a).

The autocorrelation function of a process with its coherence time contains some infor-
mation on its predictability (the degree of determinancy or randomness). The analysis of
autocorrelation functions indicates that by increasing the averaging interval of variables in
time or space we can, so to speak, shift the process from the region of unpredictability
into the region of exact and long-term calculability. Figures 2.1la and b demonstrate the
autocorrelation functions for one with calendar averaging and another with moving averages
on the empirical data of river outflow.

One can see that with the increase in the interval of averaging of the data, the correlation
function for a single time scale becomes ever more sloping, and the correlation interval
increases. In the moving average case, a smaller step of sampling the initial data enables
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Figure2.11. Autocorrelation functions of ariver outflow; (a) with calendar averages and (b) moving
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us to keep unchanged the number of sample data (all monthly values), which leads to a
broadening of the spectrum of the original signal and to a corresponding narrowing of its
correlation function. The correlation function obtained in the case of moving averages
occupies an intermediate position between the correlation functions of unsmoothed data and
the data of calendar smoothing. Thus, the correlation time can serve not only as a measure
of the limit of predictability of the process, but aso as a measure of detailedness of a
number of modeling languages.

Example 2. In the harmonic algorithm the trend is represented as a sum of a finite number
of harmonic components (usually the optimal number of components does not exceed m =
20).
m
Gmo(t) = Y _(A;cos wit + B; sin i), (2.84)

i=1

where g,,0(?) is the mean monthly data.
Running moving average is an approximation of the operation of integration over a given
interval of time.

W

1 /3 I om
Grun®) = 3 /0 Gmo(Ddt = ;;(A,cosw,-zw,- sinw;f), (2.85)

where ¢,,,(t) is the running average of three on the mean monthly data.

Integration does not change the number of harmonics to be added or their frequencies,
but it does decrease the amplitudes by a factor of 1/w;. As a result, the components with
comparatively high frequencies decrease more than the others, and the curve g,,,(f) becomes
much smoother than the original curve. This also explains the smoothing effect shown in
the figures above. The same reasoning holds true for the curves of correlation functions for
seasonal and yearly data.

Example 3. This is demonstrated using the same data by constructing algebraic, differen-
tial (difference) and integral type models on an interval of 20 years.

algebraic model:
q = a0+a1t+a2t2;

differential model and its difference analogue:

dq

— = a; + axt,

dt 1 2

Aq = gy — qo=bo + bt

integral model and its discrete summation analogue:

t t2 t3
/th=a01+a1§+a2-—+C,
0 -

3
“ 2 I

Zq=b0t+b,5+b2—3—+Cl. (2.86)
0

The autocorrelation functions for these three types of models over the 80-year period are
shown in Figure 2.12.
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Figure2.12. Autocorrelation functions for languages of (1) integral, (2) algebraic and (3) differential
equations

One can see that the language of differential equations is the most diffuse of the three
modeling languages; it is more suitable for long-range predictions. This explains the
widespread use of differential equations in the equivalent analogue of finite-difference equa-
tions in modeling as compared with algebraic and integral models.

Let us take the problem of weather forecasting. Weather forecasters use data gathered by
satellite in order to predict the weather quite successfully over an extended period of time,
but this prediction is only possible in terms of a very general language. They convey the
future weather picture qualitatively ("it will be warmer,” "precipitation,” "cold," etc.). More
quantitative predictions require the use of mathematical models. As per various studiesit is
indicated that the daily prediction interval cannot exceed 15 days and practical predictions
have even shown for a much shorter interval of time (not more than 3 to 4 days). The
mean monthly values of variables are less correlated than the average daily variables; the
maximum length of the prediction interval of mean monthly values does not exceed 3 to
4 months. Average yearly values of variables have an intermediate degree of correlation,
and the maximum achievable prediction interval of average yearly values is 8 to 10 years.
It is important to point out that the limit imposed on the interval of prediction, measured
in the same units of time, increases together with the interval over which the variables are
averaged. In other words, the interval span for average daily values is 15 days, the span
for average monthly values is 4 x 30 = 120 days, and the interval for average yearly values
is 10 x 365 = 3650 days, etc.

Reliable long term predictions of weather are frequently related to the idea of analogues.
This idea is simple and interesting: one must find an interval in the prehistoric measured
data whose meteorological characteristics are identical to the currently observed data. The
future of this interval (observed in the past) will be the best forecast at present. Neverthe-
less, attempts to apply the idea of analogues always produced results that were not very
convincing. The fact is that for such a large number of observed variables (and aso many
unobserved ones) it is impossible to find exact analogues in the past. Resorting to group
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analogues, introduction of weighing coefficients for each measurement, and other measures
first bring us to regression analysis and then, after further improvements, to the inductive ap-
proach algorithms. Therefore, inductive learning can be interpreted as an improved method
of group analogues in which the analogues of the present state of the atmosphere are selected
by using special criteria and summed up with specific weighing coefficients to produce the
most probable forecast. Weather forecasting is an object whose structure switches when a
new type of circulation is established randomly at the time of equilibrium. Nevertheless, it
is possible to investigate an optimum method for overcoming the predictability limit appli-
cable to some weather variables (temperature and pressure at surface layer, etc.). This will
be discussed in later chapters. Further research is needed on this subject.

It seems that insurmountable barriers have been established for quantitative predictions.
However, the self-organization method enables one to overcome these limitations and to
solve the problem of long-term predictions, because the limit of predictability depends
on the time interval of averaging. Self-organization uses two or three averaging intervals
for correcting the variable under study; for example, the daily prediction is corrected ac-
cording to a 10-day prediction, the 10-day prediction is corrected according to the mean
monthly prediction, and the mean monthly prediction is corrected in accordance with the
average yearly prediction. In this way we can achieve a breakthrough in methods of long-
term and very long-term prediction which has heretofore not been achievable by any other
method.

3.3 Principal characteristics for predictions

The principle characteristic of achieving an objective god is for detailed (sharp) predictions
in a low-level language which contain the greatest amount of detail while maintaining the
prediction lead time that is typically obtained by using the most general high-level language.
The more general the language, the longer the achievable prediction lead time (Figure 2.10).

Let us give here some examples indicating the levels of languages:

(i) Prediction of processes in economic and ecological systems.

A language which preserves probabilistic moments of the process is used at the upper
level to select quantitative predictions by using the mean annual values of variables and
the mean seasonal or monthly values. The middle-level language consists of modeling
mean annual values and the lower level (detailed) consists of modeling average seasonal or
monthly values.

(ii) Prediction of river flows,

The upper level uses the language which preserves the nature of probability of distribu-
tions, the middle level consists of predictions of average annual run-off, and the lower level
involves predictions of average seasonal or monthly values. The conversion from statistical
to quantitative predictions should be performed by taking into account the principle—that
is, by using rationalized (multilevel) scanning of quantitative predictions.

(iii) Long-term weather forecasting.

The upper level can be alanguage which preserves the weather forecast for a large region
(or along averaging time). The middle level will then consist of predictions for small parts
of the region (or medium averaging time), and finaly the lower level will give predictions
for a specific point and specific time.

The examples given above contain three levels of detailedness of the modeling language,
which is obviously not required for al problem-solving tasks.

As we know, the principle of self-organization is realized in single-layer (combinatorial)
and multilayer inductive learning algorithms. Using the basic structures of these algorithms,
multilevel prediction algorithms are operated in severa different languages simultaneously,
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within which the predictions expressed in a more general language are used for selection of
an optimum quantitative prediction in the more detailed language. Several levels are needed
to overcome the "limit of predictability” of detailed predictions, and aso to eliminate the
multivalued choice of a prediction on the basis of general criteria. Let us go through
different cases of self-organization modeling for clarity in multicriterion analysis.

Case of exact data

In case of exact data, exact computation takes place for prediction (for example, motion of
heavenly bodies, prediction of eclipses, etc.) from the solution of a system equations as
mathematical models of the cosmic system of bodies.

Under the conditions of exact empirical data, self-organization modeling can only have
as its purpose the discovery of laws hidden in the data. It is sufficient to use any one internal
or externa criterion like regularity or minimum bias criterion in sorting out the models. It
is important to note that we do not require multicriterion choice of a model. More complex
problems arise within the field of noisy data.

Case of noisy data

It is sufficient to impose on one of the variables (usually the output) a very small additive
or multiplicative noise so that the position of the variable is changed cardinally. If we try to
obtain an optimal model using only internal criteria, we always end up with a more complex
model, that will be more accurate in the least squares sense; only external criteria provide a
model with optimal complexity. Let us consider various systems of equations describing an
object; they are not equally valuable since they are connected with measurement of different
variables. The optimal system with the fewest excessively noisy variables can be sorted out
among variants of the system of equations using the system criterion of minimum bias:

1
Msipsy = 5 Ulosy + Mose + 27+ + M), (2.87)

where s, is the system criterion for the system of equations and the Mps;s E= 1, 2,---.8
are the criteria for each equation in the system of s equations.

As we know from the information theory point of view, increasing the noise stability
decreases the transmission capacity; this means that with an increase in the noise level,
a model simpler than a physical model becomes optimal. (Here physical model means a
model corresponding to the governing law hidden in the noisy data) It is expedient to
distinguish two kinds of models: (i) aphysical or identification model which is suitable for
analysis of interrelations and for short-range predictions, (ii) a nonphysical or descriptive
model for long-range predictions. One can discover a physical model with various concepts
of modeling, but detailed long-range predictions are impossible without the help of inductive
learning.

If the data are noisy, even to obtain a physical model requires one to organize rational
sorting of physical models by self-organization using several criteria which have definite
physical meanings. Usually one needs a model which is not only physical but also easy to
interpret instantaneous unaveraged values of the variables; that means the model is chosen
based on the simultaneous selection of minimum bias criterion and short-range prediction
criterion.

N Ne
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where y is the output variable, ya and yp ae the estimates of the models obtained based on
the sets A and B, respectively, y is the estimated prediction, and y is the average value of y.

In the plane of two criteria, each model corresponds to its own characteristic point; the
point corresponding to the model of optimal complexity lies closer to the coordinate origin
than do the points of other models participating in the sorting. Here we can say that one
can find a physical model using both deductive reasoning of man and self-organization of
machine with respect to choice of many criteria

In obtaining nonphysical models for long-range detailed predictions, the role of man, as
he remains the author of the model, consists of supplying the most efficient set of criteria
for sorting the models. The dialogue between man and machine is in the language of
criteria and not in the language of exact instructions. In addition, to use the minimum bias
criterion on two sets of data A and B, the step-by-step prediction criterion is to be included
for calculating the prediction error on entire interval (W = A + B) of data. The above
short-range prediction criterion A(C/W) is used as long-range prediction criterion i(W) as
per notation by replacing N¢ with Ny for the entire range of data points. This criterion is
desirable to use not only for choosing the structure of the model but also for removing the
bias of the estimates of the coefficients in the model. In addition to these criteria, in multi-
criteria choice of an optimal nonphysical model for long-range predictions, stability criteria
of moments (upper and lower) and probabilistic characteristics of correlation functions are
used; these will be explained later in the chapter. This means that multicriterion choice is
one of the basic methods of increasing noise stability of inductive learning algorithms.

The physical and nonphysical models differ not only in their purpose but also in their
informational basis because of reasoning of the objective criteria. The arguments of phys-
ical model can be all input variables and their lagged values (for dynamic models). The
arguments of nonphysical predicting models can only include different intervals of averag-
ing and the time variables which are known on the entire interval of long-range prediction.
Physical models that are obtained are usually linear and nonphysical models are nonlinear
with respect to time.

Case of time series data

If an algorithm is used for obtaining a single "optimum" prediction (according to any criteria)
using pre-history data, then such algorithm is meant for only short-range or average-term
prediction (for one to two or three to five time intervals in advance respectively). If the
algorithm envisions the use of empirical data in order to obtain a single prediction over a
large averaging interval (for example, one year), and several predictions (in accordance to
multicriteria) over a small averaging interval of variables (for example, seasonal) in order
to use the balance criterion over the interval of predictions (ten to 20 years in advance),
then the choice of seasonal models on the basis of yearly model is done on the basis of
balance-of-predictions criterion [58], [65].

Ne
2 _ E 2
B season b i
i=1

a 1 . . . R
b; = er - Z(‘]W 4o+ qsut (1/‘)1‘7 (2.89)

where N, is the number of prediction points, Qy, is the prediction based on the yearly model
(a single prediction), g, §sp,§., and gy are predictions based on different variants of the
set of seasonal models for winter, spring, summer, and fall correspondingly, and N, is at
the range of prediction interval of ten years.
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In the same fashion one can build an algorithm which envisions over a very long av-
eraging interval (for example, 11 years) and a the same time several predictions over
shorter averaging intervals (for example, one year or one season); if the algorithm uses
a two-level balance-of-predictions criterion, then that would be successful for very long-
range predictions (40 or more years in advance) [58]. The choice of the yearly models
and the model which uses the averaging interval of 11 years is based on the following
balance-of-predictions criterion:

Ne
2 _2 : 2
Bllyrs - bi
i=1

o 1 R . .
bi = Qniyrs — ﬁ(ql +qr+ g3+ +4qn)i, (2.90)

where Qum is the prediction based on the model which uses the averaging interval of 11
years (a single prediction); §i, §2, 3, - - - §11 are predictions based on various versions of the
set of yearly models.

The rules for building up such algorithms realize the principle of "freedom of choice
of decisions’ formulated by Gabor [22]. The basic long-term prediction is harmonic or
polynomial prediction of variables when the averaging interval is of maximum length.
The criterion of prediction balance "pulls up" the accuracy and the averaging time of
predictions for small averaging intervals to the accuracy and prediction time obtained when
the averaging interval is long.

Another issue where the self-organization stands firm is when a decision is to be made
in case of two or more contradictory requirements, which is called “Pareto problem.” The
“Pareto region" is the region where the solutions contradict each other and which requires
the use of experts. This is achieved by the self-organization method yielding a new problem
formulation of multicriterion control selection done heuristically on the basis of physical
properties of the system to be predicted. The lead time of prediction interval usually reaches
the time of interval used for validity of the criterion. In order to eliminate multivalued
selection, scanning of forecasts for different intervals is replaced by multilevel algorithm
development as scanning of algorithms and models, generating a variety of predictions on
the basis of their external criteria

4 DIALOGUE LANGUAGE GENERALIZATION

Complex systems analysis is based on modeling of a system with interactive elements in
order to identify the system structure and parameters, to perform various tasks like short-
and long-term predictions of processes, and to optimize the control task. Usually during
algorithm development, the computer has a passive role; that is, it is unable to participate in
creative modeling. Interpolation problems are multi-solution problems; additional data set
or a priori testing set is necessary to obtain a unique solution. Commonly used simulation
methods are based on a large volume of a priori information that is difficult to obtain.
Self-organization modeling is directed to reduce a priori information as much as possible.
The purpose of self-organization is not to eliminate human participation (it is impossible
unless a complete intelligence model is developed), but to make this participation less
laborious, reduce some specific problems, and avoid expert participation. This can be
achieved in ergatic information systems by using more generalized "man-machine" meta-
language, which uses general criteria given by man—the learning is done by the computer.
In addition to the generalized criteria, man provides the empirical data. In some cases man
may be involved in fina model corrections. Here it is shown that many things still can
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Figure 2.13. Usual (subjective) system analysis (example)

be done to reduce human involvement in the creative modeling process and make it much
easier.

4.1 Regular (subjective) system analysis

The regular (subjective) system analysis shown in Figure 2.13 is a system imitation model
for the northwest region of the Black Sea [33] (details of the model are not shown to
simplify description).

An organic substance is formed (variable x, is substance production) from biogene sub-
stances P and N that were exposed to the sun. Bacteria (biomass x;) eat the organic sub-
stance, and the phytoplankton (x3) eat the bacteria. Zooplankton (x4) eat the phytoplankton
and the fish (ichthyomass xs) eat the zooplankton. If we are interested in analyzing fish
catch, the following equations (for the surface layer of water) are used.

d
Tl_c_;tl +x = [lo+a15+(12P+03N7
dxr
™ _;_.t_“ +x = b0+b]S+b2T+b3x17
dx;
T dt_ +x3 = co+c1S+ T+ c3xa,
d.
7-4% +x4 = dU +d1S+d2T+d3-x3:
d
s ;:5 +xs = lo+ LS+ LT+ I3xs. @9

By excluding the intermediate variables, we derive a linear differential equation of the
fifth order for the output variable xs (fish catch) and analyze its solutions for given initial
conditions. If the equations are nonlinear, then we can substitute the derivatives by finite-
differences and find the results using simultaneous step-by-step integration of the system of
nonlinear equations.

This example shows the basic characteristics of imitation modeling and commonly used
system analysis: (i) this model requires in-depth knowledge of the subject; this knowledge
is based on a large volume of information that is entered in the computer by the modeler;
(ii) empirical data are not needed but may be used for scaling the coefficients by using
the least squares method. One may design and analyze this model using a calculator; (iii)
the results of such knowledge are subjective because the model is based on the author’s
subjective understanding (there may be as many different models as many modelers). The
model does not resolve scientific disputes between experts on the subject; and (iv) only
physical models can be obtained, but these are not suitable for long-term predictions.
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4.2 Multilevel (objective) analysis

The idea of sorting many variants using some set of external criteria in the form of an
objective function in order to find a mathematical model of a given complex subject seems
unreal. Self-organization method tries to rationalize such sorting so that an optimal model
is achieved. Multilevel algorithgms of inductive learning serve just this purpose. They
alow changes of large number of variables to be considered. The model structure, which is
characterized by the number of polynomial elements and its order, is found by sorting a large
number of variants and by estimating the variants according to specific first level selection
criteria (regularity, minimum bias, balance of variables and others). If the objectivity of the
model is not achieved, then the high level criteria are used.

Here we give the concept of multilevel objective analysis under various conditions of
multicriteria. The single-level analysis using one of the basic network structures like com-
binatorial, multilayer or harmonic is sometimes not sufficient for detailed analysis and we
go for multistage analysis which is described as a multilevel algorithm. These prediction
algorithms operate in separate different languages simultaneously as the predictions at a
general language are used for obtaining a more detailed model at the next detailed lan-
guage. Severa levels are very essential, as one is to overcome the limit of predictability
of detailed predictions and another is to avoid the multivalued choice of a model using the
general criteria. Thus, in the stages of these algorithms, three basic directions of dialogue
language are preserved; (i) the self-organization principle, which asserts that with gradual
increase in the complexity of model, the external criteria pass through their minima, en-
abling us to choose amodel of optimum complexity, (ii) an agorithm for multilevel detailed
long-range predictions, and (iii) an algorithm for narrowing the “Pareto region” in case of
multi-criterion choice of decisions.

4.3 Multilevel algorithm

The multilevel system is subjected to all the general laws governing the behavior of mul-
tilevel decision-making systems which realize the principle of incomplete induction. As in
multilayer algorithm, here there is possibility of losing the best predictive model; an increase
of the "freedom of choice" decreases the possibility of such loss. Various principles related
to selection and optimization of "freedom of choice® in multilayer algorithm also apply to
the multilevel system of languages having different levels of details.

If we had a computer with large capacity, then the problem of selecting detailed models
could be solved by simply scanning al versions of partial models using combinatorial
algorithm with a large ensemble of criteria. Since the capacity is limited, it is necessary to
expose the basic properties of the models step by step.

In order to reduce the volume of scanning and to achieve uniqueness of choice, the
principle discussed above is realized in several levels whose schematic structure for one
version is shown in the Figure 2.14.

Let us explain the operations performed during these levels.

Objectivesystemsanalysis

The purpose of this level is to divide the system variables into output, input variables and
variables which have no substantial effect on the outputs. Here structure of and number of
equations is to be chosen in such a way that the overall model is consistent. The structure
as well as number of equations must not be changed significantly when a new data set
is added. The estimation of coefficients should not be changed. This type of sifting for
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Figure 2.14. Schematic structure of a multilevel algorithm for longterm prediction

systems of equations is done systematically; that’s why this level is called an objective sys-
tems analysis (OSA). An objective model is identified as a set of output variables and the
connections between the system components as a result of learning. The analysis involves
testing of several hypotheses about the model structure below:

First layer: The following hypothesis is tested for a single equation using empirical data.
There are M, = n equations formed, one for each variable.

t t—1
x;=ap+ax; " +axu, (2.92)

where x;, i=1,--- n are the state variables, u is an external influence, and superscripts
t and ¢ — 1 indicate arguments with no delay and one-step delay, correspondingly. There are
two methods to determine the variables of external influences . In the first one, experts
specify the disturbances a priori before execution of the program and in the second, the
suitable control disturbances are chosen from the variables, which are already sorted out in
the program. However, the role of these variables is considered as less important.
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F best models are obtained using the minimum-bias criterion.

M= > G =i, ien, (2.93)

PEN

where N is number of observations of empirical data, % is the estimated output of the

model based on the training set A, and )“(,B is the estimated output of the model based on the

testing set B.

Second layer: The hypothesis is tested for the structure of models described by two equations

including the delayed and nondelayed arguments (one can use more delayed arguments).
X =ap+ a1x§_1 + azx} + a3x}“ + asu,

xi = bo +bixi +boxi”' + byx! ™ + by, (2.94)

where i,j = 1,2,---,n; i #j. There are C._, = n — 1 equations for each variable, and
overall there are a total of n. C,IIV1 = n(n— 1) equations. The system obtains F» best models
of optimal complexity from among all two-set models () of state variables /, j using the
system criterion of minimum-bias

1
Ms s, = 5(771»-,- + 7bs; ), (2.95)

where 7, and Tles; are minimum-bias estimates of ith and jth equations.
Third layer: The system models consisting of three equations is found at this layer.

X = ay+ax! +ayx; +a3xj’-"l +agxl +asxi” ! + agu,
X = by + b+ boxt + byx T + baxh + bsxt T + beu
;= bo+bix; 2X; + byx; 4Xy + bsx, 6U,
X, =co+ clx;(_] + cpxh + C3x;_[ + C4x} + csxj’-_l + cglt, (2.96)
where i,j,k =1,2,---,n; i #j # k. There are C>_, equations for each variable and there

are a total of n. Cﬁ_l equations. All three-set models (M3) of variables (i, /, k) are evaluated
using the system criterion of minimum-bias.

1
Msipsy = 3 (Mo + Moy + 7oy )- (2.97)

Better sets of models (F3) are obtained from this layer based on the criterion measure.

It proceeds further and tests for four-, five-set models, and so on until the system cri-
terion of minimum bias starts increasing. Ultimately, the overall process determines the
set of variables for the complex object and its linearized structure. Usually the system
consists of three to five equations. The variables in the selected set of equations are called
“characteristic” variables. Figure 2.15 shows how the minimum bias error of system cri-
terion is reduced as the number of equations increases; each column of the points in the
figure corresponds to group of models having similar structure. The approximate limit for
successful analysis of modeling is established as 7, < 1075 on the practical use of the
objective system analysis.

If one of the equations has high minimum bias value, then such an equation is considered
inconsistent and is excluded from the analysis. If none of the equations is good, then the
analysis fails. This can happen if the state variables are too noisy or if the given state
variables do not contain any characteristic variables. Noise immunity can be improved by
designing specific criteria; the noise immunity depends on the mathematical form of the
criterion and on the method of convolution of the criteria into general form. The second
level of such criteria are given below; the multicriteria analysis, symmetrical, and combined
criteria significantly improve the noise immunity of the algorithm.
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Another form of minimum-bias criterion is

Ny o A 2
(Fa — Xp)
2 _ p
=D (2.98)
p=1 P
Symmetric regularity criterion:
Ng Ny
AYAB) =) (ks — )2+ Y (s — %) = AXB/A) + AX(A/B). (2.99)
p=1 p=1

It is equal to the sum of two regularity criteria, which represent the usual case, when
N4 and Np are used as data points in training and testing sets, alternatively.

Another form of regularity criterion is

Nw Nw
AYAB) =) (i — xR+ Y (G — 0} = AXW/A) + A W/B), (2.100)
p=1 p=1

where Ny = Ny + Np.

Combined criterion:

N
AYAB) = mp +2 (R4 — x)p(Ep — X)p. (2.101)

p=l1
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Sometimes this type of convolution may lead to additional problems in selecting the final
optimal set of equations, but one must use them with care. All equations with the charac-
teristic points below a certain confidence level D are considered equivalent. The final set
of equations determines the input-output variables and connection diagram for such set of
system components as shown in Figure 2.13.

In this algorithm, the result of calculations on each consecutive layer (with increased
number of equations with increased complexity) does not cancel variables of the previous
layer, but only adds new “characteristic” variables. Overall, the total number of equations
generated are M = n. Y, C:~! in maximum of n layers; sets of models are formed in
each layer and evaluated among them. It is also possible to reduce significantly the scope
of calculations at each layer as follows: the first layer uses the computer capacity in full,
the next layer uses the set of output variables determined on the basis of first layer, and so
on. The system of equations which corresponds to the minimum of the system criterion is
chosen as the optimal system. Variables which do not appear in this system are excluded
from further consideration. The results from the OSA are passed on to the next levels
and used to solve two types of problems: (a) identification of the physical model which is
suitable for short-term predictions, (b) identification of nonphysical models for long-term
predictions (two-level analysis).

Physical model for short-term predictions

From the above objective system analysis, the set of characteristic (output) variables are
identified. Based on the set, nonlinear physical models are developed for the system and
its components. The multilayer algorithm with redenoted variables are used for obtaining
the optimal model even with very short data samples. We call this model a physical model
because of its characteristic variables and its evaluation from a single-level analysis. The
physical models obtained this way are not suitable for long-term predictions even though
the noise level is relatively low.

Another fact is that not all characteristic variables resulting from OSA can be predicted
with the same success. One can use one of the following accuracy criteria for evaluating
short-term predictions of the variables either short-range prediction criterion

INCGEDY (v — %, (2.102)

_ 2
peng i =X
or the criterion of step-by-step prediction

AHW) =) (i — &) (2.103)

peEW

The variable that has the least convolution value for these criteria is called the “leading”
variable. Considering the prediction for the “leading” variable, we find predictions for all
other variables which are not even characteristic variables.

Nonphysical model for long-term predictions (two-level analysis)

The first stage of two-level analysis is to divide the set of predictions of the average annual
values of variables (those not discarded during the objective system analysis) into “good”,
“satisfactory” and “unsatisfactory” predictions, and to select the best predictions (one for
each variable). Input variables that are not satisfactory are excluded for further cosideration.



INDUCTIVE LEARNING ALGORITHMS

Output variables are retained regardless of the quality of their annual predictions because
the ultimate goal of the entire algorithm is to predict the output quantities. Predictions of
models which are obtained because of various algorithms like multilayer, combinatorial, and
harmonic algorithms are subjected to comparison as they use different reference functions.
The choice of prediction models in all algorithms is made with reference to two criteria; the
minimum bias 7, and the prediction criterion A(C), or in the case of small number of data
points, the regularity A(B) and the prediction criterion A(C). The models which are more
predictive as per these criteria (one prediction for each algorithm) are evaluated further
with reference to two other criteria—prediction criterion A(C) and criterion of preservation
of first two moments p(m). The criterion A(C) is used on examin set C; predictions are
assumed to be “good” for 0 < A(C) < 0.5, “satisfactory” for 0.5 < A(C) < 0.8, and
“unsatisfactory” for 0.8 < A(C). Input variables whose predicted annual values are below
some threshold are excluded from further consideration.

plm) = [(Cor vz o (T Tiypy (2.104)
o;+0;

where x;,, and o; are the mean value and the variance of the variable x; according to the
test set B~—i.e., on the interpolation interval Ng—and %;,, and &; are the mean value and the
variance of estimated predictions of %; on the interpolation and prediction intervals N+ N¢.
These are computed as below:

1 1 R
i = - Z Xt 0= 5 Z (i — X )3 (2.105)

pPENB PEND

I 1 )
"‘\/'—uv = Z xip; g = Z X — jcl'av)p (2.106)
(Ng + Nc¢) PENgINE (Ng +N¢) peNGINE)

The criteria A(C) and p(m) are used in sequence. Algorithms under consideration are first
examined on the basis of A(C) and in the next scanning based on p(m) they are identified
as “good” and “satisfactory.” One or more better algorithms are selected for each variable
for small values of p(m) and for A(C) < 0.8. The reliability of annual prediction estimated
according to the criterion p(m) normally improves if the average prediction is better as
per A(C). If none of the algorithms provides satisfactory predictions, then it is necessary
to introduce one more level of detailedness—for example, the averaging interval is longer
than one year. The output variables that have performed good predictions of annual values
(A(C) £ 0.8 and p(m) < 0.01) are hereafter called the “leading”™ output variables.

The second stage is to identify the system of seasonal models using the long-term pre-
dictions of average annual and average seasonal values of variables. This means that, the
levels of detail contained in various predictions are analyzed such that the average seasonal
values of variables are corrected on the basis of average annual values, which are evaluated
as per the first stage. The main purpose of this stage is to obtain long-term predictions of
the average seasonal values of the output variables.

It was indicated that optimum seasonal (detailed) predictions are not obtained by scanning
a large number of competing random predictions, but rather by scanning a relatively small
number of models, each of which generates one prediction according to its own criteria. In
case of cyclic models, the scanning must include all sets of seasonal models which preserve
their natural sequence. Here, usually, cyclic means we consider the seasonal models in the
sequence of seasonal changes; i.e., winter, spring, summer and autumn, but in a number
of cases the cyclic behavior can be created artificially. Using harmonic algorithm we find
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Figure 2.16. Cyclic pattern for four seasons

harmonic series containing only harmonic components which approximate a given process.
We select the fundamental term of the process with the largest amplitude and we divide its
period into four seasons as shown in Figure 2.16: “summer” 45°-135°, “winter” 225°-315°,
“spring” 315°-45°, and “fall” 135°-225°. Before this, the polynomial trend is estimated
and subtracted from the data to leave only the cyclic oscillatory part.

For noncyclic processes, the balance criterion is expressed by the sum of squares of the
differences with the system of algebraic equations obtained from the previous stage.

Seasonal models are obtained using combinatorial or multilayer algorithms by scanning
through a large number of competing models using the minimum bias criterion 7, and
prediction criterion A(C). When there is only one “leading” variable, then select up to
ten models with different structures for this particular variable and select only one model
for every other variable. The scanning of the sets of seasonal models is organized to find
the optimum set. Here it is necessary to use different data bases for yearly and seasonal
data in the algorithm. The yearly predictions are performed based on the one-dimensional
pattern, and the seasonal predictions use the I'-shape pattern with two-dimensional time
count (refer chapter 4 for details). Best models are selected from both the levels. The
balance-of-predictions criterion is used to determine the optimal model.

. A ., R R
Bl = by — min; by= 0y~ @u+dy+ G+, (2.107)
pENC

where Q},, is the yearly prediction value of the leading variable x; on an examin set N¢, and
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Step-by-step integration of optimum system equations gives the desired long-term pre-
dictions simultaneously for all output variables. When there are several "leading" output
variables, the better set of models is selected on the basis of system criterion of balance of

predictions:
‘1 -
B* = —§ B, (2.108)
A
i=1

where s is the number of leading variables that have good and satisfactory annual predictions.

Some practical examples are presented in later chapters. The general scheme of the
multilevel algorithm is given in Figure 2.17: the first block indicates the supply of initial
data table, the second block denotes first-level analysis which is caled an objective system
analysis (output variables are determined here), then onwards to two-level analysis; the third
and fourth blocks show the first stage of the two-level analysis, and fifth and sixth blocks
show the second stage of the analysis. In the first stage of two-level analysis, the third
block denotes the selection of F\ systems of equations for mean annual values of the output
variables. The fourth block denotes the choice of F,(< F)) systems of equations according
to an external criterion. In the second stage of two-level analysis the fifth block denotes
the selection of F;3 systems of equations for mean quarterly or seasonal values of the output
variables. The sixth block denotes the sorting of the variants of the predictions in the space
of system structures according to the criterion of balance of predictions, and the seventh
block indicates the long-range predictions of a specific output variable.

The models used for two-level prediction with two-dimensional time count are considered
as nonphysical; for example, they include both yearly and seasonal values of the variables
simultaneously. The parameters of two-dimensional time coordinates (t and T) can aso be
considered into the systems of equations for mean annual and mean seasonal data.

The reliability of choice of a better set of models will increase when the number of
scanned predictions is increased. Let p be the number of intervals of the detailed prediction
within a year (months, seasons, etc.), let s be the number of leading output variables,
and k be the number of models selected for each leading variable in accordance with the
combinatorial algorithm. Then the number of compared model sets will be C - (k”)°.
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The freedom of choice can be increased by four to five times in the same length of
computer time by changing the averaging intervals to "season-year"; i.e., one can scan
through eight model versions for each season. The number of compared predictions (for
a single "leading” variable) will be Cseason—year = k* = 8% = 4096. Therefore seasona
prediction models are preferred over monthly prediction models whenever they are adequate.

The improvement of ergatic or man-machine systems is based on the gradual reduction of
human participation in the modeling process. The human element involves errors, instability,
and undesired decisions. One approach to this problem is to specify the objectives, or—
using technical language—determine the set of criteria. Based on such objective criteria,
inductive learning algorithms are able to learn the complexities of the complex system.
In self-organization processing the experts must agree on the set of criteria of lower level
(regularity, minimum bias, balance of variables, and prediction criteria). If for some reason
they cannot come to an agreement, then the solution is to use second-level criteria based on
improvement of noise immunity. However, the important problems of sequential decision
making, (such as the set of criteria determining their sequence, level of "free choice” and
so on), are solved during this decade. Man still participates in the process but his task
is made easier. The second area is multicriteria decision making in the domain of more
"efficient solutions,” where the criteria contradict each other. The solution is to use a
number of random process realizations for each probability characteristic like transition
graph, correlation function, probability distributions, etc. Additional a priori information is
needed in order to choose one realization. One may have to balance the realizations of two
processes that have two different averaging intervals for the variables (balance of seasonal
and yearly, etc).

We conclude this section by saying that the ergatic information systems do not have
any "bottle-neck” areas in which the participation of man, needed in principle, cannot be
reduced or practically eliminated by moving the decision-making process on the level with
a higher degree of generalization, where the solutions are obvious.



Chapter 3
Noise Immunity and Convergence

According to the principle of self-organization, the depth of the minimum of the princi-
pal selection criterion (i.e., regularity, minimum bias, balance of variables) is taken as an
indicator of the successful synthesis of a model. Suppose we have m input variables of
x and an output variable y with N observations. In the combinatorial inductive setup, we
make all possible partial structures from the reference function y = f(x). The choice of the
optimal model depends on the given external criterion and on the given partition of data
sets. An unbiased equation can be obtained with the help of the minimum bias criterion
Tps as the principal selection criterion. The same result can also be obtained, for low noisy
data, using the regularity criterion A(B). The deeper the minimum of the unbiasedness
(0 < mps < 0.05) or regularity, the more reliable the prediction of the changing character of
the process. Nevertheless, biased equations can be useful for approximating a process in the
interpolation interval. If the global minimum is not achieved according to our expectations,
it signifies that the problem is not solved. Then it is necessary to take measures like (i)
reformulating the problem, (ii) changing the list of feasible variables, (iii) introducing new
reference functions, (iv) increasing the freedom of choice for further evaluation, and so on.

Noisy data is characterized by its noise level o as a measure of noise-to-signal ratio.
Noise intensity in the data plays an important role in obtaining the deep minimum. If a
sufficiently deep minimum of the principal selection criterion is reached, it is possible to
assume that the problem is solved. The results of potential noise stability indicate the exact
limit of satisfactory modeling from the noisy data using an inductive algorithm that can be
attained by using actual external selection criteria or multicriterion analysis. The degree of
noise stability of the selection criterion can be determined by gradually increasing the noise
level of data and finding its critical value «®, above which the criterion fails. Before going
into experimental studies, we give an analogy with the well-established information theory.

1 ANALOGY WITH INFORMATION THEORY

The concept of a signal and its noise stability are well studied and established in the field
of information theory [111]. The importance of the studies in information theory exerts a
favorable influence on other branches of science and technology—in particular, with the
self-organization theory. The information theory assumes that input signal is frequency-
band limited and that an additive noise is superimposed on it (even if the noise level is
very high). According to the self-organization theory, usually only a small sample of data
represents the system. It takes into account the fact that additive noise is superimposed
on the output variable. Comparison of the properties of different systems in modulating a

75
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Figure 3.1. Schematic diagram of (a) a communication system, (b) a computational experimental
setup, and (c) a self-organization modeling system

signal, which include Shannon’s coding theory, constitutes an important part of information
theory.

We give an analogy between the basic concepts of information theory and self-organization
theory in identifying the processes. The main purpose of this analogy is to show the possibil-
ity of the exchange of basic ideas between these theories. We restrict our assumptions such
that we are dealing only with simple amplitude modulation used in the communications and
with the simplest polynomial (linear in weights) models of the form ¢ = ap+a1xi+- - -+a@mXp,
where ¢ is the dependent variable and x is the relabeled independent argument of nonlinear
nature (for example, g = 10 — 0.1£).

In systems modeling, one usually considers the identification of a model only, and not
the self-organization of predicting models, although communication theory does include a
prediction method that is used for decreasing the redundancy of a signal. This does not
restrict our study of drawing meaningful analogues between communication systems and
self-organization modeling systems.

Let us put our analogy in the form of block diagrams as shown in Figure 3.1, where
(a) is a communication system, (b) is a computational experimental setup, and (c) is a self-
organization modeling system for obtaining an objective model (omitting the functions of
specific elements).

In the communication system the information source chooses the particular form of
communication from a set of possible communications. In the computational experimental
scheme, we choose a polynomial (for example, ¢ = ap + ajx = 10 — 0.1/2). In the self-
organization system, the information source is the object of investigation (for example,
ecological system) that “transmits communication” within a period of time.

In the communication system, the transmitter maps the space of communications into
the space of non-noisy signals as ¢;(f) — ¢;. In the computational experimental scheme,
the polynomial g,(#) is represented in a data table with the columns of ¢ and g;. In the
self-organizing system, the actual data is hidden in the system itself.

The communication channel in the communication system is the link at which noise
intrudes. At its output, we obtain a copy of the signal; namely, the table of noisy data
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with ¢ and g, = g; + £&. The noisy signal is received by the receiver and is mapped into
the space of received communications g; — g2(7). In all the systems, the data table with ¢
and ¢, is transformed into a polynomial for g2(r), called the physical model. The receiver
corresponds to the algorithm in self-organization modeling. The destination is the place
where the communication (model) is expected to go.

Information theory studies the signal at the output of the communication channel; self-
organization theory studies the experimental data sample at the output of the object of
investigation. Overall, one can see that the most important parts of the systems from the
communication channel to the destination or user is the same for all three systems.,

Analogy between the approaches in information and self-organization theories. Both theo-
ries focus on the quasistatic part of the processes (known as the signal or trend) that consider
noise as a dynamic component. Both of them assume that the data being processed contain
information of true input signal that conceal the governing laws acting on the object. The
objective goals concentrate on a receiving device for restoring as accurately as possible the
original signal (governing laws); here the receiver corresponds to the modeling algorithm
of self-organization modeling.

The information theory assumes that the signal at the input of a communication channel
is frequency-band limited and that an additive noise is superimposed on it. The self-
organization theory also takes into account that additive noise is superimposed on the output.

The communication theory pragmatically defines the “true input signal” ¢,(r) and the
concept of noise £(7); for example, a portion of the output voltage permitting transmission
of communication appears in the signal. Similarly, in systems modeling, the useful part
of the data is the part that is utilized for identification or prediction depending on the
problem; everything else is noise. The noise hinders performance of modeling and lowers
the minimum of criterion for selecting a model.

Information theory assumes that noise is independent of signal and additive with normal
distribution. Self-organization theory asserts that if noise is independent, then the informa-
tion theory is directly applicable; but if noise is dependent on the signal, it is applicable
only to orthogonalized inductive algorithms.

1.1 Basic concepts of information and self-organization theories

Signal transmission time versus interval of data points.  In the information theory, the signal
at the input of a communication channel is characterized by the quantities: amplitude g,(z),
power P (¢) = qf, frequency band w;, maximum transmitter frequency wy,q., signal-to-noise
ratio as 10g2(P|/§2), and volume V; = wT) logz(Pl/gz).

The signal at the channel output is determined by the quantities: amplitude g»(7) =
q1(t) +£(1), power Py = P +&2, frequency band w;, signal-to-noise ratio as logz(Pz/éz), and
channel volume V, = w, T, logZ(Pz/éz). The signal duration 7 is analogous to the period of
observations (length of experiment) of the modeling object; i.e., the total time interval of
data observations from first observation to the last one. The divisions of data must be no
wider than 1/(2w)), where w) is the frequency band. Consequently, the signal transmission
time corresponding to the minimum length of the measurements is as follows:
when there is no noise,

when there is noise,

N
T = 2z sec; here
2(4)2
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T, <T.

N\ and N, are the algebraic minima of points required in self-organization modeling with
and without noises, respectively. For polynomial models, the number of points is equal to
the number of terms in the individual polynomials. For harmonic models, it is three times
the number of harmonic components of the model. Here N specifies the number of terms
in the polynomial. At the same time, it is also the minimum number of data points required
to estimate the coefficients using the least-squares technique.

Transmission capacity versus minimization of external criterion. The transmission capacity
C; of a communication system in the sense of Hartley is logarithmic to the base two of
the number of communications that can be transmitted per unit time with a given accuracy.
The optimal admissibility of a communication system is given in terms of its transmission
capacity (speed of transmission) as

P +£*
£
In time T, it is possible to transmit J = C,T bits of information through the communication
system. The formula shows that for equal information, that is for J = constant, signal power

Py can be traded off for bandwidth w or for transmission time 7, and so on.

In self-organization modeling, the problem is solved in a much more modest way. If we
confine ourselves to stationary models with constant coefficients, we need to transmit only
one communication; i.e., to construct a single model. The optimal system for obtaining a
self-organizing linear model in the absence of noise requires a number of measurements
equal to the algebraic minimum of the N, points.

We can treat the reciprocal of the minimum of the selection criterion as the analogue
of the transmission capacity of the communication system (C; = k/A(B);n), where k is an
arbitrary constant. As noise increases, the minimum depth of the criterion decreases; i.e.,
the transmission capacity drops (Figure 3.2).

C=uw logz( ) bits/sec. G.D

Transmission capacity versus noise stability. The noise stability of a communication system
is determined by the minimum limiting admissible value of the signal-to-noise ratio for
which it is still possible to receive the signal.

In self-organization modeling, one uses two limits. One of the limits is determined by
the confidence level of the the external criterion through a computational experiment and
the other by the polynomial structural changes.

The efficiency E of a communication system is directly proportional to the transmission
capacity C, and the maximum noise stability, and is inversely proportional to the signal
observation time 7.

The efficiency of an inductive learning algorithm is directly proportional to the ratio of
the algebraic minimum number of points necessary for constructing the model to the number
of points in the data table.

Ny Vi

E = k = k .
N max Vmax

(3.2)

The greater the ratio of the volume of the communication channel to that of the signal, the
greater the noise stability, but the lower the efficiency of use of the given communication
channel (or the efforts made to obtain the experimental data).

The efficiency of communication characterizes the possibility of transmission along chan-
nels with narrow-band with low energy expenditure. The efficiency of modeling character-
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izes the possibility of constructing a sufficiently accurate model from a small number of
points with a small expenditure of time on measurement, collection, and processing of data.

This can be applied directly to one-dimensional modeling problems, though two dimen-
sional models require the introduction of two frequency bands as in two dimensional cases
of communications [35].

1.2 Shannon’s second theorem

The theorem is formulated as follows: Let P denote the signal power—supposing that the
noise is independent—and white is the variance of £* in a frequency band w. The optimal
transmission speed attained is

P+£? w
o = oo 755 ) = 0w (525, e

The greater the signal power in comparison with the noise variance, the greater will be the
attainable transmission capacity. Thus, the theorem establishes a bound for the transmission
capacity of the communication system that is attainable for optimal choice of the coding
method and channel band w, (the signal band w, is assumed to be given) (Figure 3.3).

In self-organization modeling, the theorem enables us to choose the model with optimal
complexity N, (complexity of the modeling object Ny is given). The greater the noise, the
lesser the depth of the minimum of the selection criterion, and the simpler the model (Figure
3.2). The theorem indicates the optimal (limiting attainable) values of the signal band (and
the complexity of the models), and thus makes it clear why it is necessary, in the presence
of noise, to use nonphysical models. The physical models correspond to the point (3,0)
indicated in Figures 3.2 and 3.3.
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Figure 3.3. Decrease in the discrete values of the optimal band of the channel correspondmg 10 w»
and increase in the optimal band of transmitter wpmax with increase in the noise power £2(r) for a given
signal band of w; = 3 x 10 = constant

Shannon’s geometrical construction of the theorem

Shannon’s geometrical construction is an interpretation of Shannon’s second theorem (noisy
coding theorem) about the limiting transmission capacity of a communication system. The
input signal (like the table of input data in modeling) is at all times filled with new points
with a discrete interval step of A < ZL_, With the appearance of each new point, the
dimension of the hyperspace increases by one. However, the mean value of the signal is
stable. This is represented by a hypersphere with unit radius r; and with a center at zero.
The noise is equal to the variance of the deviations of the signal from its average value. It
is represented by a hypersphere with radius ¢, corresponding to noise and with the center

at point A on the outer hypersphere with radius r, (=1 + 6%,|) and with the center at zero.
In the absence of noise, the number of models is infinite as they lie on the inner hyper-
sphere of unit radius. With reference to the Figures 3.2 and 3.3, all of them correspond to
the point (3,0) and are often combined into a single “physical model.”
In the presence of noises, the number of models, called nonphysical, is finite and lies
on the outer hypersphere of radius r», which satisfies the relationships of Shannon’s limit
theorem. In Figures 3.2 and 3.3 they correspond to the points (1,1) and (2,0.75).

o for Figure 3.2: Ny = P+&% Ny =P; Ny — N, = €2
e for Figure 3.3: w; = P+£% wy = P; w) —wp = &2

so that

Nz P wWr P
L R 34
N TP ML T Pra G

If the noise power &2 is given and the physical model corresponding to N; is known, then
the theorem enables us to find a model of optimal complexity with N, deductively; i.e.,
without sorting the partial models. The theorems applies only to self-organization modeling
on the basis of external criteria characterizing its accuracy (regularity, prediction, etc.).
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Criterion of convolution stability

The basic purpose of geometric construction of the theorem is to find the area or chord
lengths of the surface in the hypersphere (corresponding to noise) intersecting the inner
hypershere of unit radius. Specifically, this is formulated as

Pg?
h=\epra (3.5)

where 7 is the signal duration, w is the frequency band, P is the signal power, and £ is the
noise variance.

This enables us to find a criterion for stability of convolution of chords that is convenient
for self-organization modeling and that can be used for solving various problems such as
pattern recognition and long-range predictions.

For example, in selecting the best predicting model, this is represented from analytical
formulas of form:

=, (3.6)

where o,y and o; are the variances of the prediction models and the variable features cor-
respondingly, and are calculated by averaging deviations. ¢ is the prediction model numbers
and i, the variable numbers i =1,2,---,m.

h; is computed as the mean chord length (convolution)

1
h, = \/;(h,21+h,22+---+h,2m). 3.7

For example, if there are ten prediction models, h, is computed for each model. It is
chosen so that the model for the convolution of the chords is least. If kg < by, t=1,9,
then the optimal model according to the criterion of stability of chord length of Shannon’s
construction is the tenth.

Similar formulations are used to solve problems of pattern recognition and vector opti-
mization. This criterion is also called Shannon’s displacement criterion.

1.3 Law of conservation of redundancy

The properties of a communication system are determined by the value of its redundance.
The properties are different for wide-band and narrow-band communication systems. In
wide-band systems, the redundancy exceeds zero and the channel volume exceeds the sig-
nal volume V,,, > V| or Wy > wi. In wide-band systems for self-organizing models,
the candidate models {from the very simplest models to the models whose complexity con-
siderably exceeds the complexity of the actual or physical model) arc put up for sorting
according to a set of criteria. Algebraic models can serve as the analogue of a wide-band
communication system in modeling. For them, increase or decrease of data points (with
subsequent operations with the data table) is useless.

In narrow-band communication systems, the channel volume is less than the signal vol-
ume, and there is no redundancy; V. < Vi 0f wpey < wi. The optimal relationships of
Shannon’s limit theorem (shown in Figures 3.2 and 3.3) are violated. In this case reduction
of the signal proves feasible.

In narrow-band self-organization systems, we choose models whose complexity is no
greater than the complexity of the actual model N, < N,. Finite-difference models of
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complexity lower than the optimal model can serve as an example of a narrow-band link.
Difference models are the analogues of differential equations only for small steps in the
data sample.

Here the sequence of the following operations (using seasonal and annual values of
a system)—collecting average seasonal data points of the variables, expanding the data
table with the average annual values, self-organization modeling for obtaining a model
with optimal complexity, detailed identification (seasonal data), and smoothed identification
(annual data)—can be extremely efficient. Without expanding the data table, the model
with optimal complexity cannot be attained because of the insufficient number of points of
initial data.

1.4 Model complexity versus transmission band

In self-organization modeling, one often uses the term “complexity of a model.” The
complexity of the models is gradually increased until the minimum of the selection criterion
is found. In linear polynomials, the complexity of the model is determined by the number
of terms on the right-hand side of the equations.

The complexity of models obtained from the inductive algorithms varies from zero to
Npax and passes through the value N, sought. In connection with this, in self-organization
modeling, it is convenient to look at the quantities Ny = 2w, T, (the algebraic minimum of
points necessary for obtaining the true physical model), N; = 2w, 7, (the algebraic minimum
of points necessary for obtaining the optimal model using the inductive learning algorithm),
and Npar = 2WmaxTmax (the algebraic minimum of points necessary for the most complex
model that can be obtained as a result of self-organization, or the number of data points
actually represented in the data table).

The following laws (Figure 3.2) come into effect in self-organization modeling:

1. In the absence of noise, beginning with some complexity equal to the complexity of
the actual model Ny, further increase in complexity is not required; for fz(t) =0, we
have N> = N} and Ny > N

2. In the presence of noise, the model with optimal complexity appears earlier. The
algebraic minimum of points (the complexity of the optimal model) decreases; for

£2 > 0, we have Ny < N and Nyax > No.

The analogous laws are known in information theory (Figure 3.3). Since the bandwidths
w; and wy can only be approximated, every communication channel gives distortion, just
as every data sample, even when V, = Vi:

1. For exact transmission of a communication, it is necessary for the channel volume to
be at least equal to the signal volume; for .52(1‘) =0, we have V; = V; and V,,, > V.

2. When there are noises, the optimal channel volume is somewhat less than the signal
volume; for £2 > 0, we have V; < V| and V,,, > Va.

This means that the transmission band of special receivers designed for operation under
noise conditions is narrower than wide-band receivers intended for the case of small noise.
Thus, the communication channel band is analogous to the model complexity estimated
according to the algebraic minimum of points

N
Vi = w7y log, (P, /€%) = 71 log,(P1/€%),
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N
Vo = waTslog,(Py/€%) = 7210g2(P2/§2). (3.8)

The influence of noise on the model accuracy can be overcome to some extent by increasing
the number of measurements. However, when the number of data points becomes excessive,
the accuracy and noise stability of the model decrease. Thus, there exists an optimal
number of data points for stationary and non-stationary signals. Because of the necessity
of decreasing the influence of noise, one chooses the table length about 10 times as great
as the algebraic minimum of the points 7, = 10.7; (Figure 3.3). During this interval, the

system will collect J = C,T; = w. logz(%i).l‘g bits of information.

An analogy between the optimal complexity of models for the inductive algorithm and
the transmission band for a communication system is shown in Figures 3.2 and 3.3, where
N is the complexity of the physical model, &, is the complexity of the non-physical model
of optimal complexity, Nqx is the optimal range of complexity of model candidates, w; is
the band of the true signal, w, is the optimal band of the receiver, and wy,,, is the optimal
volume of the transmitter signal.

The law of compromization. The important result of investigations arrived at through the
information theory is the establishment of a connection between transmission capacity and
noise stability. Increase in noise stability decreases transmission capacity. Here one varies
the parameters of the communication system; for example, by varying the frequency band
wsy.

An analogous law holds for self-organization modeling using the selection criterion such
as regularity; an increase in the power (amplitude) of the noise leads to the choice of simpler
noise-stable models for which the algebraic minimum of points is less than that of the model
of the object obtained under conditions of absence of noise. Here one varies the parameters
of the model; for example, by varying the algebraic minimum of points N,.

Here we conclude that the noisy coding theorem (Shannon’s second theorem) plays a
central role in this analogy between information theory and self-organization theory. In fact,
the theorem states that it is possible to transmit information through the channel with as
small a probability of error as desired if it is transmitted at any rate less than the channel
capacity. In other words, it guarantees the existence of a code that may be transmitted at
any rate close to but less than that of channel capacity and still be received and decoded
with arbitrarily small probability of error. It proves that channel capacity is a fundamental
property of a communication channel. This is conceptualized analogously to the theory
of self-organization modeling. In particular, it shows that, in the presence of noise, non-
physical models obtained by self-organization modeling are optimal.

2 CLASSIFICATION AND ANALYSIS OF CRITERIA

Let us assume that the initial data is given in the form of the matrices

R _}E‘_ yIN x 1]
_ _ X [N x m]
r= _)_B_ » X = _X_B_ ’ NA +NB+NC =N (39)
Ny + N = N
Y Xc 4 s v

The entire data sample is partitioned into three disjoint subsets A, B, and C. The set W
is the union of A and B. The optimal dependence relation between output y and input
variables X is sought by the inductive learning that are linear in the coefficients of y = Xa.
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It is assumed that the submatrices X4 and X, which are used in the selection process to
any particular model of complexity s(< n), are of complete rank.

The external criteria used in the inductive algorithms can be expressed in terms of the esti-
mates of the output variables of the models and their coefficients obtained on A, B, W, and C.
Here the basic quadrature, and combined and correlational criteria are described.

All the external criteria that have the quadratic form can be grouped into two basic groups:
(i) accuracy criteria, which express the error in the model being tested on various parts of
the model and (ii) matching (consistent) criteria, which are a measure of the consistency
of the estimates obtained on different sets. There are symmetric and nonsymmetric forms
of the criteria in both the groups, where symmetric means one in which the information in
sets A and B is used equally; otherwise, it is nonsymmetric.

2.1 Accuracy criteria
Regularity criterion (nonsymmetric)
This is the typical quadratic criterion and historically the first one.
A*(B) = AX(B|A) = |lys — 33I1° = 08 — X5aa) (V5 — Xnéa)
= |lve — Xpaal, (3.10)

where 44 = (X5X4)"'XIya, and 94 = Xpaa.
We can obtain another nonsymmetric regularity criterion by replacing A by B and, vice
versa, A%(A) = A%(A/B).

Regularity criterion (symmetric)
This can be built up using the both the nonsymmetric versions of the regularity criterion.
d* = d*(A,B|B,A) = AY(B|A) + A’(A|B)
= |lvz — Xzaalf* + [lya — Xaan|l?, 3.11)

where sets A and B are used equally. It smooths out the influence of the noise that acts on
both parts of the data sample.

Stability criterion (nonsymmetric)

If we require an optimal model, which must be sufficiently accurate on both the sets—
training set A and testing set B for the coefficients estimated on the set A—then this com-
promise can be obtained by the criterion

Iiz = Kz(WlA) ”_}’W — XW&AHZ
AX(A|A) + AX(B|A) = eX(A) + A%(B), (3.12)

where €2(A) is the least squares error or residual sum of squares.
Stability criterion (symmetric)

§? = SH (WA, B) = K (W|A) + k*(W|B)

lyw — Xwaall* + llyw — Xwés||*. (3.13)

It
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It is expedient to use this criterion if the finiteness of the data is considered. The sensitivity
to the separation of data is lowered and the influence of noise is averaged (a kind of filtering
takes place). In other words, this has higher noise immunity.

Averaged regularity criterion [122]

According to this criterion the mean value is calculated on Ny for each particular model
being tested under the condition that each point in the set W is, in its turn, the testing sample
and the remaining Ny — 1 points constitute the training sample.

1 R/
As W) = 5=l =5 ew: (3.14)

W; . . ..
where 3; /= ija%, x; are the argument measures at the jth point, W; is the training sample

without jth point, and Gy, is the estimate of the coefficients on W;. It is expedient to use
this criterion for a small number of points.

Step-by-step prediction criterion
In case of finite-difference equations, it is expedient to use this external integral criterion.
AWy = 2WIW) = lyw — 3w, (3.15)

where the estimate $% is obtained by step-by-step integration of the difference equation
from the given initial conditions. This criterion can also have the forms of i2(A) and 4(B).

The above accuracy criteria, like all other types of criteria, are used in modeling of both
static and dynamic objects.

2.2 Consistent criteria

The criteria in this group do not take into account the error of the model in explicit form,
but measures the consistency of the model on two different data sets.

Criterion of minimum coefficient bias

This reflects the requirement that the coefficient estimates in the optimal model estimated
on sets A and B, differ minimally; i.e. they are in agreement.

7 = 1A, B) = |aa — asl|*- (3.16)

Minimum bias criterion

This is the most widely used form of the criterion.

775; = ngs(WM»B) = ”)A/V‘V - 57ng|2
= || Xwaa — Xwas|
= (ax — ag)" XiyXw(@a — ap), 3.17)
which differs from 7, by the presence of the weight matrix X}, Xw and expresses a different

minimum requirement of consistency on the set W from the estimates of the model outputs
that obtained coefficients from the sets A and B.
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Absolute noise immune criterion

V2= VA(W|A, B, W) = (aw — a4) X, Xw(as — aw)
= Gw — %) 6% — ) (3.18)
This uses the estimates of the model output for the coefficients obtained on three sets—
A,B, and W. It got its name because it satisfies the most important condition of noise
immunity. It rejects excessively complex models under noise conditions [67].

The above minimum bias criteria are symmetric. It is easy to write nonsymmetric forms
of m, and V2. For example, on the set B [129]

Mes(B) = |95 — $3lI° = | Xpta — Xpas |, (3.19)
V(B) = (aw — 8a) XEXp(ag — aw). (3.20)

One useful way is to clarify the connections among certain external criteria. One can easily
show that nZ,(W) = i (A) +n2,(B) and, in the same way, V(W) = VZ(A)+ V(B) because of
the relation Xj,Xw = X;Xa + X;X5.

2.3 Combined criteria

In addition to the criteria c¢1,¢2, and ¢3 introduced in chapter 1, here is another form of
the combined criterion ¢4.

Minimum bias plus symmetric regularity

c4? = 7 +d-. (32D

It is recommended that the sequential use of two-criterion selection is preferred in the
combined criteria. F number of models are selected using the consistent criterion like
n,fs, then the best model is selected using a accuracy criterion like A%(C). Such sequential
application of the criteria increases the efficiency of the modeling, including noise immunity.

2.4 Correlational criteria

These criteria impose definite requirements on the relationship of correlation characteristics
of the output variables of model and the object. Unlike the quadratic criteria, they can be
both positive and negative. This is one of the reasons for separating them as a special group
of criteria. Their applicability for model selection is ensured by the fact that coefficients
of the model are estimated on the set A and the correlation relationship is computed with
respect to the set B.

Correlational regularity criterion

_ Oa—y) (3 — 5)
- SLLES/ Sbi2
llve — 351174 — 95l

where yj is the actual output; §#4 is the model output, the coefficients of which are estimated

K(B) (3.22)

on set A; yp and 52 are the mean values of the actual and model outputs, respectively. The
best model is based on the condition K(B) — 1.
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Table 3.1. Classification of external criteria
Criterion form
Type Criterion nonsymmetric | symmetric
Accuracy regularity A%(B), Ay(A) d*(W)
stability k2(B), K2(A) S2(W)
averaged regularity - AZ (W)
prediction 2(B), 2(A) (W)
Consistent minimum bias m,,(A), 12(B) 75(W)
abs. noise immune | VZ(A), V3(B) Vi (W)
Correlational | regularity K(B),K(A) K(A) + K(B)
NL agreement J{(B), J(A) J,(A)+J(B)
Combined bias + regularity 775: + A%(B) "755 +d°
bias + MSE M, +ENA) | nE +EXW)
bias + prediction ne, + AXC) -

Correlational criterion with nonlinear agreement [129]

This has three different components; one is equivalent to the correlational regularity, the
other is the agreement criterion for the degree of nonlinearity, and the third is the agreement
criterion for the mean values of the actual and estimated outputs. These components are
based on the mean-squared error as follows:

1
2 - “ty—=9T(v=19%
e=30 No-=»
(1 =2+ 2+ 22, (3.23)

where y; and 9;, { € N are the actual and estimated outputs of N data points. The quantities
Jo,Jg, and J,, are expressed in terms of the centered vectors v=y —yand ¥ = — 3 and
the estimates of the variances as z, = /(/v/N) and z; = \/(OT9/N).

Jo = r(4,v) = ¥'v/Nzz, (3.24)
Js = 25/2y — r(,v) (3.25)
In = G =3/ (3.26)

It was proposed in [129] that the components J.,J;, and J,, of the error vector can be used
as independent selection criteria, calculated on the set B with the estimates a4 obtained on
the set A. The component J.(B) coincides exactly with the criterion K(B). The component
Js(B) is called the agreement criterion for the degree of nonlinearity; this should satisfy the
condition J;(B) — 0. The component J,,(B) is also cailed the agreement criterion for the
mean values, but it does not seem to have any independent significance. One can convert
the criterion J.(B) = K(B) into a minimization form |1 — K(B)| — min.

The above mentioned correlational criteria are nonsymmetric; to make them symmetric,
an expression must be added to each in which the sample parts A and B swap roles. Various
groups of criteria are given in Table 3.1.

2.5 Relationships among the criteria

In this section we derive the number of relationships that express the connection among
different external criteria.
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Let us consider the quadratic criteria of symmetric type. We can write the relationship
of 8% in terms of d?.

% = & +HA) + 2B, (3.27)

where £2(A) = A%(A|A) and £*(B) = A%(B|B) are the mean square errors on the sets A and
B, respectively. We can write the minimum bias criterion as

mey = low — $8) — Gw — 712
= |lyw — Wl + lvw — 17
20w — 38 Ow — 99, (3.28)

since XaXW = X;XA +XgXB, X{;/yw = X;y,q +X£y3, aB = (XIT;XB)AIX}gyB, aA = (X;XA)‘lX};yA.
The term from the above expansion can be evaluated further as

Ow — W) 0w — %) = Yava — yaXada + ybys — ypXpasp
= 2(A) + X(B). (3.29)
Knowing this, we can obtain a relationship between S and 7,
§* = mj, + 2 A) + EXB)); (3.30)
between d* and 72,
d* = n}, +eX(A) +£4(B). (3.31)
Now let us consider the criterion V2:
V2 = [ow — 3%) — Ow — 9 Tow — 53 — Ow — $5)]
= (w — S Ow — i) + Ow — ) Ow — )
—Ow = 3w Ow = %) — llow = 3w1*. (3.32)

The term (yw — 94)7 (yw — $%) is given above as e2(A)+e2(B). Since aw = (XhXw) ' Xhyw,
one can obtain the relation as

Ow — ) 0w — 3 = Gw — 99 0w — W)
= [lyw — Swll* =2W) (3.33)

by establishing that Y53, = % $4, and y55% = $%¥ $2. Ultimately, we can obtain the
formula [35]

V24X (A) + £2(B) = EX(W). (3.34)
Using the above examination, one can easily write the relationships

V24§ = &+ eX(W) (3.35)
Vi+ed® = nh + (W), (3.36)

One can show that the absolute noise immune criterion V2 is a quadratic, not a nonnegative

one, by the relation
V2 = (aw — aa) Xj Xw(an — aw)

ATyvTy & o aTvTy A AT Ty » AT Ty
A X3 Xaas +agXpXpap — ywXy Xalw — GywXXalw. (3.37)
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This can be expressed into the sum of two quadratic forms:

54 — S¥I1% + 1155 — 3511
= (84 — aw) X3 Xa(@a — aw) + (@g — aw) X5 Xp(ap — aw), (3.38)

v2

so that we can always have V2 > 0.

The relationships established between the criteria 52,42, and V? interconnect all the
symmetric quadratic criteria. In addition to this, the formulas reexpressed for the criteria
5% and d? in terms of the minimum bias and mean-square errors allow one to group these
criteria into the group of the combined criteria. They are, however, fundamentally different
from the combined criteria because of the components included in them and there is no
need for normalization.

Similarly, one can obtain the relationships connecting the nonsymmetric criteria. For
example, the regularity criterion A%(B) can be represented [129] as

AX(B) = X(B) + n2,(B), (3.39)

where 72,(B) is the nonsymmetric form of the minimum bias criterion on the set B.
The connection can be established among the regularity criterion and the correlational
criteria directly from the relationship €% = (1 — J? + J? + J2)2? as

AXB) = (1 — KX(B) + JX(B) + JA(B))Z2N. (3.40)

The representations of some criteria in terms of other criteria enable us to determine the
characteristics of unique models derived from the original ones. For example, after cal-
culating the squared errors £2(A), €2(B), A%(A), A%(B), and A%(C), one can also determine
d*,§%, and 77, directly; after estimating ¢2(W) one can calculate V2.

The reader can find the usage of canonical forms in analyzing the noise immunity of
quadratic criteria in the works [135], [119]. Here the expected value of the criterion is
considered the sum of two components: one takes into account the non-noisy data and
decreases (possibly nonmonotonically) with the increase of complexity of models; the second
reflects the presence of noise that is directly proportional to its variance and increases
monotonically with the increase of complexity of the models. With an increase in the noise
level, the minimum of the external criteria (V? and d*) moves into the region of simpler
structures, which is analogous to the behavior of the ideal external criterion.

3 IMPROVEMENT OF NOISE IMMUNITY

We assume that noise can be additive, multiplicative, or a combination of these two types
and that it does not contain a regular component. When the noise intensity (amplitude) is
very high, the external criterion used might select a model that does not correspond to the
system under study. The criterion is called noise-immune if it selects the true model even
at a significant level of noise immunity. The analytical properties of selection procedures
based on certain selection criteria are given here. Emphasis is made on improving the noise
stability of the criteria in extracting the optimal model with true structure in the presence
of noise. This identifies the true structure by comparing different structures that determine
the maximum allowed noise level.

Let us assume that y is an output variable with a normally distributed noise. Its unit
variance is represented as

y =Y+, E£]1=0, o = E[£T€] =1, (3.41)
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[s] (o]
where Y is the noise-free output connecting a set of m arguments (input variables) as Y= ¢(z).
Let us assume that we have some noise realization of £ with N values. We obtain a series
of output data for varying intensity of this realization of the noise, yielding N values of the
function

ye =¥ +o. (3.42)

The sample of noise-free data obtained from the function §’= @(z) can be called the signal
and output samples for different variances of £ can be called the signal with noise. Each
sample of noisy data is characterized by a value of the noise-to-signal ratio or by the noise
level as

2

N
a o —o
o? = = o?/ Y 0 =5, (3.43)
j=1

where s° and o? are the signal and noise variance or power, correspondingly; 7° is the
average value of the signal. For a fixed signal the variance and noise level are connected
by a one-to-one relationship 0% = a?.s* or o = a.s.

Suppose the function ¢(z) is a linear (in coefficients) convolution of some number of
functions (for example, a set of polynomial functions fi(z),/2(2), - - - ,fm(2)), equivalent to
the vector of arguments x = f(z). Then for each noise level «, the exact model is restored

by optimizing the structure and estimating the coefficients a of the model.
y=d'fz)=dx (3.44)

for the given sample of input and output values.

Here two types of study results are presented to show the efforts in improving the noise
immunity of various external criteria. The first part consists of the initial studies {129]
conducted on the minimum-bias criterion. This reveals the importance of the extension of
the time interval to the extrapolation region of the data and shows that the largest noise
immunity was possessed by special forms of the criterion with some specified general
properties. The second part is concerned with the finding of noise stability of various
criteria (single- as well as two-criterion analysis) by increasing noise levels for different
data divisions. This gives some comparative results on several most commonly applied
criteria for obtaining single- and two-criterion choices of models.

3.1 Minimum-bias criterion as a special case

The original form of the minimum bias criterion is

Nw GA — $8)2

=3

Toy = O ———F, (3.45)
e Yp

where 7 is the estimated output of the model, the coefficients of which are obtained using

the set A; 3% is the estimated output of the model, the coefficients of which are obtained

using the set B; and y is the actual output.

Geometric interpretation of the minimum bias

Suppose in an N-dimensional space RY (N is the length of the data sample), $.5 is an
orthogonal projection of the vector y' = (y), 2, -, yy) from the output of the linear model
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Figure 3.4. Minimum bias of solutions as a distance between projections of y for different divisions
of data sample

y = xTa, which is estimated by the least squares method onto a linear subspace L(X)

(Figure 3.4), formed by the vectors of m arguments X,.T ={xg,x2, -, xn) I=1,2,--- ' m,
ie, a,x € R™, and x; € R"; and X[N x m] consists of the sets of matrices with real
elements.

The data sets A and B are used as training sequence to estimate the coefficients of two
models of similar structure and to the approximations of y as a total sample. Projections
9 and $® of the same vector y on to the L(X) are formed and these are usually non-
orthogonal. Each ith version of the division of the data has corresponding vectors jf‘(,.) and jzﬁ)
belonging to L(X). The ensemble of such vectors forms a “cluster of projections”; ie., a
set of points in L(X); all points of the cluster are grouped around y;5. Models with false
structures are more sensitive to the variations of the training sequence and, as a result,
become significantly displaced from jy;s—causing the cluster to widen. Different forms of
the minimum bias criterion provide us with the possibility of estimating the dimensions of
this cluster; i.e., an ability to compare different models.

(i) Increasing the time interval of data in the criterion by introducing a noise immunity
coefficient 67. The minimum bias criterion has a relatively low noise-immunity because the
approximating properties of the models are usually identical on the interval of interpolation.
The squared errors are small for models of any structure except for the simplest linear
models. The performance of models diverge in the extrapolation interval in which the
differences between the model outputs become significant and, consequently, more immune
to noise. Figure 3.5 shows an example of bias estimation for two polynomial models. The
shaded areas indicate the differences of two sets of models (area between the integral curves
4, and 9%, and area between the curves ¥4, and 55,). Consequently, the bias estimate of
the second polynomial is significantly smaller than the first one; i.e., 75, < 7, .

Here it is recommended that the minimum bias criterion with additional length of time
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Figure 3.5. Explanation of estimation of bias of two models

interval should be

W (54 — 9By
A e

Yp

(3.46)
p=1

One can notice that it is applicable only to the nonlinear functions that have quadratic or
higher order arguments.

(ii) Extraction of first harmonic of the output variable. The output variable is approxi-
mated with the harmonic equation using the sets A and B as

y“ = ag + a; sin(wyt + 0y),
Y2 = by + by sin(wat + Q3), (3.47)

where w; and w, are the fundamental frequencies, O, and Q, are the phase shifts, and a’s
and b’s are the estimated coeficients. [t is assumed that the frequency expansion of the
useful signal without noise occupies a portion of the spectrum which is different from the
signal with noise. If this is justified, then the noise immunity of the minimum bias criterion
can be increased because of the first harmonic. The first harmonic of set A should coincide
as nearly as possible with the first harmonic of set B. The minimum bias criterion is
recommended as

T (54— 55)2
Mh = ) ;

YRR 3.48)
(5 + 38 (

=1

where 34 and $p are the estimated outputs of the first harmonics. In practical situations, the
fundamental frequencies w; and w, should be closer within the limits of the specified set
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of structures. If the spectral content of the signal and noise are identical, then it is difficult
to filter out the noise.

(iit) Extraction of the linear trend of output variable. If the outputs of the models are
smooth and can be approximated by polynomials, extracting linear parts instead of first
harmonics is recommended.

y?lin) = qag + af,
Yliny = bo+ it (3.49)

The two models to be identified have identical structures. The model y‘(“li n) should coincide

as nearly as possible with the model y?li n)’ i.e., the structure of the model is estimated in
accordance to the minimum bias criterion

T Olliny ~ iy
= Olin) * Hlin)»

2

Tos = (3.50)

This provides justification to calculate the minimum bias criterion based on the linear parts.
When the linear parts of the models are slightly dependent on the noise, such a criterion
will have an increased noise immunity.

Example 1. An experiment is conducted to show the effect of the data interval on the

noise immunity of the criterion. The true model is taken as ;: 2 — 0.1£%. Twelve values
of the output variable y(f) are taken, corresponding to f = 1,2 ---,12. The noise intensity
is increased step by step and the optimal models are extracted for each set of data. The
combinatorial algorithm is used with a reference function of the third-degree polynomial
in 1.

y = ag+ayt+ axf’ +asr. (3.51)

The first minimum-bias criterion most immune to the noise is found by extracting the linear
part with the noise immunity coefficient value 67 ~ 2.0. The second one most immune
to noise has data points arranged according to variance. The lowest one has data points
arranged as even and odd points.

In all the cases, preliminary extraction of linear parts or trends and widening of data
interval with 67 have significant effect; the noise immune coefficient 67 is found in the
range of 1.5 to 3.0.

3.2 Single and multicriterion analysis

Several qualitative estimates of the degree of noise stability can be obtained analytically by
considering just one fixed structure of the model. Suppose the equation y = Xa is written
for the chosen structure. Consider the prediction problem using the prediction criterion
7 — y)?
Ao = U (3.52)
Pk
where  is the estimated output, ¥ is the average value of the output, y is the actual output,

and C is the prediction data set. We obtain the estimates of the coefficients & using the data
set W=AUB.

a = (X"X) "X +£&) = a® + o%ag. (3.53)
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This is the sum of the exact value of the coefficient vector and the added quantity which
depends linearly on the noise level (the value of a; is independent of noise variance a?).
The predictions based on this model have the form of

Pi =y°,- +02a§x,- =)(7),- +a? szagx,-, ieC, (3.54)
where ¢ is substituted as a.s. The prediction accuracy is obtained as

AXNC) = ® ) ([ /s = &® ) (agx). (3.55)

icC icC

We obtain the critical noise level a* on the basis of the condition A(C) =1 as

ap =1/ [> (alx?. (3.56)
ieC

Thus, the critical noise level «, depends on both the volume and grouping of the data, and
on the realization of the noise. However, this estimate does not coincide with the limiting
noise stability of any criterion since, with increase in the noise level, the inductive algorithm
chooses another simpler model, which can predict a noise-free signal more accurately. Even
this is true with the identification and filtering problems. The analytical study of critical
noise levels for identification () and filtering (a}“) can be developed.

The combinatorial algorithm is used to obtain the optimal model of complexity by sorting
all possible polynomials from the complete basis according to a given external criterion or
set of criteria for the given partition of sets. The degree of noise stability of the selection
criterion is determined by gradually increasing the noise level and finding the critical value
of « in each case.

Example 2. An experiment on estimation of the noise stability of various selection criteria
is made with y® = 10—0.1¢2, t = 1,2, ---,22—and a normally distributed white noise with
unit variance is obtained for 22 values. This is realized for the output variable y for
different noise levels of o with percentage values of 3, 5, 10, 20, 40, 60, 80, 100, 130,
160, 200, 230, 260, 300, 330, 360, 400. Four variants of partitioning of data are used: (i)
No+Ng+Nc=T7+7+8, (i) Ny+Ng+Nc=8+8+6, (iii)) N+ Ng+ Nc =9+9+4, and
(iv) Ny + Np + Nc =4 +4 + 3 (in all the cases, the points are chosen successively).

The reference function considered here is the third-degree polynomial in t. Combinatorial
algorithm is used for sorting all combinations of the structures (15 polynomials of varying
structure). The following criteria are tested for their noise stability.

Regularity

G

AYB) = A*(B/A) = \
(B) = A*(B/A) Z@—y),z

ieB

3.57)

where A?(B/A) denotes the model calculated on the set B using the coefficients obtained
on A.

Minimum bias

A _ 5By
The = 0" -3 (3.58)

=32
iew o=
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where the estimates 3 and $® correspond to the same model structure but with coefficients
calculated on sets A and B, respectively.

Symmetric regularity

d* = AY(A/B) + AX(B/A)
= |iya — Xaagll® + llys — Xsall*, (3.59)

where parts A and B are used equally.
Here is another form of symmetric criterion:

§2 = A (W/A) + A>(W/B)
= lyw — Xwaalf? + llyw — Xwép|)*, (3.60)

which is an overall estimate on W for the same structure, but with coefficients estimated on
different sequences (just as in the criteria 7, and d).

The combined type: (“minimum bias plus prediction”)

The noise immunity can be increased significantly by using the following criterion.
c3? = i+ ANO), (3.61)

where 1,5 is one of the realizations of the minimum bias criteria and A(C) is the prediction
criterion that computes the sum of square errors using the set C. This criterion requires that
a model be unbiased and is also the best predictive method.

A common difficulty with direct application of the combined criteria is the incommen-
surability of their input quantities. They evaluate different characteristics of the model,
such as minimum bias and regularization or extrapolation. Therefore, using them requires
choosing and applying weights for each problem.

& = iy + (1 = NI, (3.62)

where k% indicates a stabilizing term of the form A%(C) or d*. To obviate selection of
weights, one uses a normalized form as

2 2
2 Mps k
=t

nma.x kmax

= 7 + k2, (3.63)

where 7 and k are the normalized values, and Thmax and kg are the maximum values of
the criteria of all the models being compared.

All the criteria given above can be used individually as a single criterion choice; at the
same time, the combined criteria can be used as two criterion choices. One can also use
a stepwise choice; first choose F number of models with the minimum bias criterion, then
choose the best model among them using the prediction criterion.

Noise stability of single-criterion selection

The combined criterion ¢3 with its normalized form exhibits the lowest noise stability.
Individual criteria operate efficiently with successive application. The regularity criterion is
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L
1bo a7 200 250 300 4yf 4000%

Figure 3.6. Relationship between selection criteria and percentage of the noise level a; the solid
line is for models chosen with respect to the minimum of the criterion and the dashed line is for the
model y = 10 — 0.17
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Table 3.2. Values of o] for different selection criteria

Criterion Different partitions of data
44443 | 7+7+8 | 8+8+6 | 94944
A(B) 20 360 0 40
Tbs 20 60 20 80
c3 0 10 10 0
d 20 80 20 80
S 20 130 20 80

the most sensitive criterion to the partitioning of the data; care must be taken in using this
criterion for noisy data.

The symmetric criteria (1, d, and S) proved to be stable with respect to the partitioning
of the data; they virtually have the same noise stability in the case of individual application.

The results of determining the limiting noise stability o (identification case) for which
the original model structure was still acurately reproduced is shown in Table 3.2. Figure 3.6
shows the values of the criteria for the structures obtained on the division N4y + Ng + N =
8+8+6. The solid curve shows the optimal structures based on the minimum of the criterion
and the dashed curve shows the actual structure y = 10 — 0.1/2. The limiting noise levels
af and a; (filtering and prediction cases correspondingly) are considerably higher than the
level of the structure for of.

Noise stability of two-criterion selection

Two-criterion selection is a widely used device in inductive self-organization modeling.
Here we use external criteria of a different nature (for example, 7, and A(B)) that are
related to different parts of data sets (for example, ,, and A(C)). There are two types of
two-criterion analysis—one is in the form of convolution and another is successive in nature.
Sometimes the former may lead to difficulties because of normalization of the criteria. It
often turns out that ),,,, exceeds A(C) or d by higher magnitudes so that the bias becomes
insignificant and the model is incorrectly chosen by the second criterion. This difficulty
is avoided by the successive use of the criteria. The first criterion is used to select F
number of models—the best one is chosen using the second criterion. The basic results of
successive application of different combinations of two criteria based on the above example
are discussed below.

(i) The combination A(B) — A(C). The noise stability increases to o = 60% (for the
criterion A(B), it is 0%).

(i) The combination 7,; — A(C). The noise stability is very significant; the correct
structure of the model is better to a level of o] = 260% (just for 7y, separately, it is
20%).

(iii) The combination d — A(C) and S — A(C). They yield the same results as the
preceding pair of criteria.

The use of two-criterion selection of models also increases the level of noise stability in
predicting and filtering problems; in case of the combination 175, — A(C), the noise stability
of filtering o} is preserved at the level of 360%, and the noise stability of prediction aj
increases from 130% to 400%.




98 NOISE IMMUNITY AND CONVERGENCE

Usually it is impossible to determine the noise stability levels a* for actual problems on
the basis of noisy data because the information regarding the exact structure of the model
and the characteristics of the noise is unknown. However, it can be controlled in the course
of calculations. The values of the errors A(A + B) and A(C) are noticeably correlated
with the ideal estimates of R(A + B) and R(C) (new notations). The difference between
A(A + B) and R(A + B) is the denominator term Ziew@i — ¥)?, that represents the signal
variance, similarly between A(C) and R(C). In almost all cases, A(A + B) > R(A + B), and
A(C) > R(C). This makes it possible to determine the prediction and filtering satisfactory
with the additional conditions A(C) < 1 and A(A + B) < 1.

There are three ways of testing the operability of an inductive algorithm—with exact
data, with a given noise distribution, and with noise distribution peculiar to the class of
modeling objects. To verify the results, one has to perform a large number of tests in all
the cases. Apparently, it is the only way to solve the problem of definitive verification
of the algorithms, and this is done before it is recommended for practical use. Insufficient
study of verification might lead to certain difficulties in the practical use of these algorithms.
Nonetheless, they can be recommended for solving problems for which other algorithms
are unsuited; for example, problems of detailed long-range predictions.

Correct choice of criteria and of the application sequence ensure achievement of quali-
tative noise stable modeling. Further increase in the noise stability is achieved through the
use of multilevel schemes which are described in Chapter 2.

4 ASYMPTOTIC PROPERTIES OF CRITERIA

In this section we present the recent work of Stepashko [120] on asymptotic properties of
external criteria for model selection.
The structural identification problem consists of choosing an estimate of the model

}o’z ag ;7 X= (;1, e ,xio), where ; and x are the output and input vector actions, corre-
spondingly, and ay is the actual parameter vector, which is optimal according to a specified
combined criterion of minimum-bias plus regularity from a set of various models which
contain all possible combinations of m (> s") input variables. The best regression model
is obtained according to the combined criterion from the 2" — 1 possible models under the
conditions of noisy output y; =§,» +o&;, E[§]=0, E[§E]= azé,j, where F is the mathemat-
ical expectation, &; is the kronecker delta, and ¢? is an unknown finite variance. Ny is the
number of points in the given data set.

A simplified version of this problem, which does not restrict the generality of the obtained
conclusions about the asymptotic properties of the external criteria, is investigated here.

It is considered as searching an optimal model by successive inclusion of regressors x;.
The set of compared models consists of m various models of the form

5}.&‘ = X.\‘&Sv §= 1127"')m, (364)

where X; = (x1,---,%) = (X;-1,x), s is the complexity of the model, and where the
parameters are estimated by the least squares method as &, = (X7 X,)~!XTy.

The structural identification problem is reduced to the determination of the optimal com-
plexity of the model as

*

s* = arg min c2(y, ¥), (3.65)

s=1,m

where ¢2 is the combined criterion evaluated by using the actual and estimated values of
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the output. The whole data set W is partitioned into two subsets A and B such that

The ideal (theoretical) criterion of minimum variance of the forecast J (and of its estimate,
the combined criterion) are examined. Two variants of the theoretical criterion that are
averaged over the number of points in the sample for which they are calculated, are given
below:
1 o ~ 2
J(s,N) = NE” Yy —X.a4*, 3.67)
1 o .
J5(s,Na, Ng) = 2= E|| yp —Xpstiasl?, (3.68)
B

and the external criteria; regularity and minimum-bias

1
Ap(s,Na, Np) = e llye — Xasdias)|® (3.69)
B
LT .2
T]bs(S,N) = N“XsaAs - XsaBs” . (3.70)

An optimal smoothing model corresponds to the solution of the problem with respect to
the minimum of J(s, ), and an optimal forecasting model corresponds to the minimum
of Jp(s,Na,Ng). The external criteria Ap and 7, are their estimates. To investigate the
behavior of the theoretical as well as external criteria as N — oo, it is assumed that the
matrix X satisfies the strong regularity condition;

1 -
lim —XiXy=H 3.71
Nooo NN N ! ( )
where H 1s a nonsingular finite m x m matrix.

The characteristic results of the solution of the structural problem according to the given
criteria for 02 = var,N = const, and 0> = const, N — oo are compared below for the
adopted assumptions.

4.1 Noise immunity of modeling on a finite sample

When solving the above structural identification problem, one has to estimate the parameters
for each set of regressors as s = 1,2,-- -, m. This can be done conveniently by the recursive
algorithm presented in the preceding chapter for constructing the partial models of gradually
increasing complexity, beginning with a single argument (“method of bordering”). (Refer
to the section on “Recursive scheme for faster combinatorial sorting” in chapter 2.)

For quick reference, we briefly give the algorithm here. X" X and X"y are denoted as H
and g, correspondingly, and H,, g;, and a, are represented in the form of

H—lh 8s—1 ~ 21*__
H; = . : y 85 = y s = {\1 ’ 3.72
=) e 5] e 1 67

_yT _ T — T
where kg = X[_ x5, ¥5 = xx;, and 9 = x]y.

The following recursive algorithm is valid for the calculation of H !

and Gy;

By =1/ — hTcy), ¢ = H\\hy, Hy'A=0, (3.73)
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Hs-—l + ﬁscscz i _/Bscs
Hs_l = - — - — | ————1, (3.74)
71856{ l ,Bs
Ag—| — Oy a*
A I - [ é—l] | ap=0. (3.75)
s

Belys — g;r—lcs)
This algorithm can be used directly for the criterion J(s, N), while for Jg(s, N4, Ng) and Apg,
it is applied using the subset A (using the index A). For 7;, the quantities are computed on
both the subsets A and B.
Properties of the criteria J(s, N) and Jg(s, Ny, Ng)

These criteria are reduced to the form;

1 o 2
s, Ny= P57 (5) = | Y —Xoa | + %s, (3.76)
* 1 ° 2 02 —1
J(s,Na, Np) = J3(s) + J5(s) = ﬁ” v —Xpstas||* + N, tr (H, Hgy). 3.77)

The parameters a; and a4, are estimated either by using the least-squares technique or by
using the above recursive algorithm and substituting ; for y; i.e., a; = E[ay], aas = E[das].
Here, J%(s) and Jg(s) characterize the structural bias, while J*(s) and J3(s) reflect the effect
of noise. Obviously, ao = ase = ap, so that JO(s®) = Jg(so) =0.

Let us examine J(s); one can obtain

JoUs) =% — 1) — %af/ﬂs =S -1 - Al,ﬁs(% — gl e, (3.78)

where 8; = xT( — X,—1(XT_,;X,—1) "' X;—1)x, is positive and equal to the ratio of the deter-

minants of the matrices H,_; and H;. Thus, /°(s) is a monotonically decreasing function of

the complexity s so that in view of J*(s) = J°(s) the function J(s, n) for 0® > 0 always has a

single minimum at the point s* < s°. As o2 increases, the complexity s* decreases. A sim-

pler model becomes J-optimal. This property is named “noise immunity”; i.e., the error in
o

reconstructing the noise-free vector y decreases due to the simplification of the model. This
means that the model of s° loses its J-optimality for the variance 02 > 02.(s°) = o /Be.
In general, for arbitrary complexity s, the transition from s* = 5 to s* = 5 — 1 occurs for
a? > o2(s), where

ol = NJs — 1) = J%s) = a2 /B;. (3.79)

oy is the coefficient of the sth regressor and ‘cr’ indicates the critical value.
Let us examine Jp(s); one can obtain J%(s) as

Jos) = Sy — 1) — 20045(y5 ~Xps—10a5-1) (XBs — Xps—1€as)
+ afn”st - XB,s—chst- (3.80)

Here, one cannot guarantee that the increment will be negative for every s (except when the
regressors are orthogonal), so that in the general case the decrease from J9(1) to J3(s%) = 0
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is not monotonic. The monotonicity of the dependence on s is preserved for the noise
component Jg(s). This fact is proven below on the basis of the recursive algorithm, with
hps = Xg,s_lxgs and ¥g, = x§ xp; taken into account.

. o? B i ’ o2 B B
Ty = ot (Hyp'Hgs) = Jp(s — D+ w7 BasOHG S sy yhas =
B

2
_ " g _
=23 Ha s 1has + One = Jp(s = 1+ = Baollis — XpsmrHy g yhas? (3.81)
B

The increment change in this equation is estimated, having determined the extremum of the
vector argument (2) = 2" Hp ;12— 22" hg,+Up,, where zA=H] (_ hy,. If we differentiate
with respect to z and equate it to zero, we obtain zo = H;’_:_lhgs. Since Hg ;_1 1s a positive-
definite matrix, ((z) for z = zp has a positive minimum; ¢(zp) = 9p; — hk, l;,.:-—lhBS = 1/0g;.
Thus, the minimal increment change of the trace in the equation of Jg(s, Na, Ng) equals
Bas/Bps, and is attained when the relation

Hy \has=Hg,  hps (3.82)

is satisfied. In particular, this relation is satisfied when Hg, = X2 Hy, or Xg = AX,, where )\ is
an arbitrary constant. Here tr(HA‘S1 Hg)=1r (H;,;_IHBJ_l)+)\2, so that the rate of growth of
the trace is proportional to the value of A? as s is to one; i.e., even if the relation is satisfied,
the examined increment may be arbitrary. Thus, as the component J§(s) in the equation of
Jg(s, N4, Np) decreases, and Ji(s) increases monotonically as the complexity of the model
s increases, the minimum of Jg(s, N4, Np) is possible only for s* < s°. Qualitatively
the behavior of the criteria J(s, N), Jg(s, Ns, Np) is the same. Moreover, for a model of
complexity s°, one can establish the threshold of the J-optimality loss. For this, it is

. o T .
considered that yg= Xgoap = Xps—1a%_, + xpoo, where ag = (a% | ap)’. Furthermore,
according to the recursive relation, a?o_l =G4 0| — QapCag, Qa0 = v, and, consequently,

[v]
yB —Xpw_10a 01 = Cu0(Xpo — Xp 0_1Cap),

J3%) = S0 — 1) — ape || Xpe — Xpo_ca0l? (3.83)

From the conditions Jp(s") = Jg(s® — 1), J9(s°) = 0, considering the equations for J3(s°)
and J3(s), we obtain

o2(s") = ado/Bap. (3.84)

Thus, the condition for losing the J-optimality for a model of actual complexity s° (with an
unbiased structure) turns out to be completely identical in problems of search for optimal
smoothing and prediction models. This property is determined solely by the properties of
subset A. This result can also be obtained by using different transformations. It is noted
that 02.(s%) does not depend on the number of points Np but depends implicitly on Ny.

Properties of the external criteria

The mathematical expectations of the regularity (Ag(s, N4, Ng)) and minimum-bias (17,:(s, M)
criteria are equal to

- 1 o (72 -
Ap(s) = N—Bn v —Xpsaas||* + Ny Mot (Hy'Hgy)), (3.85)
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1 o? _ _
Tins(s) = 31 Xsas = Xoan|” + 525+ tr (Hy Has + Hy,' Hy,)). (3.86)
Comparison of the equation Ay with its expectation Ap yields
Ag(s) = Jo(s, Na, Np) + 0°. (3.87)

This means that the minimum of the regularity criterion Ag gives an unbiased J-optimal
model, since the minima of Jz(s) and Ag(s) always correspond to the same optimal com-
plexity s*. Hence, the regularity criterion has the necessary property of noise immunity and
other properties of the criterion Jp(s, N4, Np); for example, the actual structure is optimal
for 0% < 02,(s9).

The criterion 7j,s(s) was worked out in detail in the work [118]; it was shown that,
if the condition (X{X4) 'X} Xc'),ﬁ! (XIXp)~'X} )gB is satisfied, then it has a single global
minimum. Biased values of its model structures decrease from 7,:(1) to 75(s°) = 0 (possibly
nonmonotonically) while the noise component increases monotonically. Consequently, the
minimum-bias criterion 7),,(s) has the noise immune property.

4.2 Asymptotic properties of the external criteria

As N = Ny U Npg, one has to examine the case of N — oo as well as its variants: Ny —
00, Ng — oo, and N4, Ng — oo. In addition to the assumption that limy_, o I%X[,XN =H,
let us assume that the matrices X, and Xjp are regular and are formed independently.

1 _ 1 _
lim —X0 Xan = Ha, lim —XL Xgy = )
NAiﬂw N, XanXan = Ha, NBinm N, XenXay Hpg, (3.88)

where Hy, Hg are finite nonsingular matrices. The limits in the above equations exist for
individual element of the matrices and for each of their blocks. Thus,

1

Nl—lll;o N-xirl‘vxjN = ﬁuv l)_’ = 1127 Y (N
1 _ Bll o l—lls
IJL“SO NX:TNXW:H3= IEEE I (3.89)
hsl o hn

where 1_1,7 and H, are the finite numbers and matrices, respectively.

(o) (o] . .
Taking the actual model ( y= ag ; X= (xol, - ,x(;n)T ) of the object into account, one can
write the following relation in matrix form as

yv=Xn ao =Xy ao + Xy0A=Xya*, (3.90)

where § is the zero or empty vector of dimension (m — s°), and a* = (af,07)” is the finite
vector of the actual parameters.

The assumption of limiting transition as N — oo implies the existence of the finite limits
as

. 1 %o 0= . _
NILIT;O N viyn= a* Ha*A=f, (3.91)

lim X7 yy=Ha"A=3. (3.92)
N—oo
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Similarly, the existence of fi4, jig, 84, and gg for other assumptions is Ny — oo and Ng —
0.

In asymptotic problems of control theory, the condition of mean-square summation (in-
tegrability) of functions is usually a common assumption. From the well-known relation
between the elements of the normal matrix X"X : xx; < (x]x; + xx;)/2, the mean square
summation of observations of all the individually taken regressors is written as

N

.14 . 2 _ 3
i, gy = Jim 5> =T 521200, (393)
based on the convergent sequences for all %x,f,,-xNj, i£j i,j=1,2,---,m.

Properties of the criteria J(s, N) and Jg(s, N4, Np)

The structural components of these criteria are represented in the form

] [+

L5, Ny = — (Yhyw —alyXon yv), (3.94)

z|

J3(s, Na, Nj) = X,;(yﬁgyﬁg ~2aly XTy g +aly, X0 Xovyau,). (3.95)

The convergence of the parameters in these equations is established on the basis of the
limiting transitions given as

lim agy = H; 'g;A=a,, lim aw, = Ay gaA=ap,. (3.96)
N—oo Ng—o00

Taking J*(s,N) = azs/N into account, we obtain

J(s)= lim J(s,N) = lim J°(s, \)=j — g H 'g,. (3.97)
N—ooo N—oo
It is obvious that for s = 1,2,.-,s°, J(s) decreases monotonically, while for 5 > s° the

quantity a; = a*, so that J(s) = 0. Thus, if the quantity J(s, N) for o> > 0, and N > oo
has a minimum of s* < s°, then there is a compromise between its structural JOs, Ny and
noise J*(s, N) components. As N — oo, the component J*(s, N) disappears (an increase in
the amount of information removes the uncertainty) and the minimum of J(s) corresponds
to the actual unbiased model structure.

In the case of Jz(s, Na, Ng) = Jg(s, Na, Np)+J5(s, Na, Ng), one has to consider the limiting
transitions for Ny — oo and N — oo. Finite values are obtained for the structural
component J3(s, Na, Np) by taking into account its convergence property of parameters.

~ . 1 _ _ _

T5(s,Np) = lim Jg(s,Na, Np) = AL 2ay,gps + ay Hpslias), (3.98)
A—b

Ja(s;Na) = lim Jp(s,Na, Np) = fin — 205y, &ps + iy, Hasaion, (3.99
B—>00

o
where pp =y,7\}8y138, g = limNBHoo pg- Convergence of the noise component J3(s, Ns, Np)
is determined by the asymptotics of the trace tr(H;(Sl Hpgy) in the equation given for Jg(s, Na, Np).
Ji(s,Ng) = lim Ji(s, N, Ng)
NA —00
2

o 1 1 !
—_— M N — s = U, 31
N N/ll—{»noo Na ir (NA HAs) Hpg 0 (3.100)
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(s, Na) = lim J3(s,Na,Ng) = 0% tr (H,;A’J_{BS) < 00. (3.101)
B—»OO

Thus, as Ny — oo, the noise component disappears and the properties of jB(s,NB) become
analogous to the properties of J(s). However, as Ng — o0, the uncertainty caused by the
parameter estimates a4, from a finite sample is not removed, and the criterion J(s, N,) =
jg(s,NA) +];;.(s, N,), where Ny4 is finite has the same properties as the equation given for
Jg(s,Na, Ng). This means that if the parameters of the model obtained on a finite sample A
and the model is applied on a infinite sample B, then the minimal variance of the forecast,
in general, is achieved by a model according to noise immunity (J-optimal), rather than to
an unbiased model which depends on 2.

If N4 — oo and Ng — oo, we obtain from the above equations
Jis)= lim lim Jj(s,Na,Ng)=0
Ng—oo Ngy—oo

Ja(s) =T5(s) = lim  Lim J9(s, N4, Np)

NB—*OO NA——*OO

= fip — zaAsgsB + aA.\‘I:IBsaAS < oo, (3102)

where Jg(s|s > %) = 0, as it is for Jz(s, Np).

This follows that the criteria J(s) for N — oo, J(s,Ng) for Ny — oo, and Jg(s) for
Np,Ng — o0 converge for any s. Their minima equal to zero which corresponds to the
actual model; s* = s°. This result is because of the consistency of the least squares estimates
of the parameters of unblased structures s > s¥ and the convergence of these estimates for the
biased structures s < s°. This established regularity of the asymptotic behavior of the criteria
J(s,N) and Jg(s, N4, Np) is called “consistency property.” As the sample length increases,
the actual model which corresponds to the minimum or zero value of the criterion, becomes
the limit of the optimal smoothing and forecasting model. Because there is no appearance of
the expression concerning o2, the indicated property is valid for any variance. This means
that the critical values of the variances o (s) and aL,(so) (the expressions given above)
should approach infinity as N — oo and N4 — 00, accordingly. In view of the established
convergence, the concerned parameters turn out to be finite: &; = limy_.oc v < 00, as
well as 0 < 00. At the same time, for any s, the given equation for 3 in the recursive
algorithm is obtained as

3, = lim B

1 1
1/{N(%195N Nh ( HN) NM)H:O. (3.103)

Analogously, the relation G40 = 0 can be established by virtue of the limiting transitions
that proves the assertion that a (5, N) — oo for o (s ,Na) — 00 and Ny — 0.

It is obvious that any estimates of the criteria J(s, N) and Jp(s, N4, Np) used in practice
must have the “consistency property.”

lim
N—oo

Properties of the external criteria

The convergence of the regularity criterion Ag(s) = Ag(s, Na, Np) for the cases Ny —
0o, Ng — oo and Ny, Ng — oo, and any s follows from the relation Ag(s) = Jg(s, Na, Ng) +
o2. The first and third cases are of interest with regard to “consistency property.” One can



ASYMPTOTIC PROPERTIES OF CRITERIA 105

obtain any s by taking into account the obtained finite values on jg(s,NB) and jg(s).
Ap(s,Np) = Jim Agls, N4, Ng) = To(s,Ng) + 02, (3.104)
A—)OO

Ap(s)= lim lim Ag(s,N4,Np) = T5(s) + 0. (3.105)
Np—oo Ng—o0
For the limiting transitions considered, taking into account the properties of the quantities
J%(s, Ng), J%(s), the minimum of the criterion Ag(s, Ns, Np) is

min Ag(s, Ng) = min Ag(s) = o°. (3.106)

Thus, the minimum of the mathematical expectation of the criterion Ag(s, N4, Np) is an
asymptotically unbiased estimate with the unknown noise variance and corresponds in the
limit to the actual model, which has the “consistency property.”

The asymptotic properties of the consistency criterion 7,5(s) = 7p:(s, N4, Ng) are to be
determined by performing on the established relation fj,(s) a double limiting transition
such as Ny — oo and Nz — oo. It is convenient to adopt the commonly applied condition
N4y = Np; then N = 2N, = 2Np. First, the deterministic component is considered and
represented as

1
o8, Na, Np) = —(ans — ap) Hi(azs = ags). (3.107)
Taking the limits, we have

fins(s)= _lim  lim mp(s, Na, Ng) = (aas — ap,) Hy(Gas — @) < 00,  (3.108)
NA—»ooNB—»oo

where 7Y (s|s > s%) = 0.
Second, the noise component (from the equation 7;,(s)) is considered for performing the
limiting transformations. This is analogous to the relation we got for Jg(s, Ng);

Te(s) = lim  lim n;.(s,Nq,Ng) =0. (3.109)
Np—o0o Ng—o0

This means that the mathematical expectation of the minimume-bias criterion also converges
for any s and has the “consistency property.” Moreover, this criterion can be viewed as
the asymptotically unbiased estimate of the values of J(s). Hence, using the minimum-bias
criterion is preferred in searching for the optimal smoothing model, while it is better to
use the regularity criterion in the search for an optimal forecasting model. The regularity
and minimum-bias criteria, in addition to the noise immunity, also has the “consistency
property” that permits the applicability of the inductive algorithms for complex problem-
solving by using small as well as large samples of data observations. The reader can also
refer to works on analogous results of Dyshin [13] [14] and Aksenova [2] for further study.

4.3 Calculation of locus of the minima

This section describes a procedure for calculating the locus of the minima (I.LM) for ideal
criteria [121]. This is important because extrapolation of LM allows one to detect a true
signal from the noisy data.

In the course of a numerical study of simulating properties of noise immunity, the fol-
lowing computational experiment is considered. An actual model of an object is given by

o o . [+ o o o . . . ~
y= ag x, where input vector x= (x,x3,--,xu). Based on this the noisy observations of the
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true output at N points are calculated; y; =§,» +o&;, where o is an arbitrarily selected variance
of the noise and &; are known realizations of uncorrelated noise with E[£;] = 0, E[{f,-z] =1.
In the experiment, the number of points N, the realization of £, and the variance o may vary.

Moreover, it is assumed that there is an extended vector of input variables x = (;,)?T) with
the dimensionality of m > s°. Models of different combinations of m input variables are
compared; $ = &’x. This corresponds to an application of the combinatorial algorithm for

modeling the actual signal ;: ()?hyoz, e ,yc;v)T by comparing all the models of the above
form or in the matrix notation

Vs = Xsa5, s=1,2"—1, (3.110)
where parameters a are the least-squares estimates
a, = (xXTx,)~'xTy, (3.111)

calculated using the noisy output vector.
The aim of this computational experiment is to compare the efficiency of various criteria
for selecting models in relation to the ideal criterion

AN = || Y =37 = || ¥ —Xa%, (3.112)

that gives a measure of precision in recovering the actual signal ; by means of the model
¥s obtained using the noisy data for each s. By varying s one can obtain optimal value
50 (optimal structure) and the corresponding minimum value of the criterion An(sY) for
different £ and o. It is convenient to pose the above problem according to the complexity
of the models as per their number of input variables. Evidently, there are C! models of
complexity for s = 1, C2 models of complexity for s = 2, and so on to C” = | models of
complexity m. The minimum value of Ay(s) is determined for each s. It will then constituie
the characteristic Ay(s) and Ay(s) = Ax(s”), so that the optimal value s° corresponds to a
model with the minimal variance.

Let us assume that the values of Ay(s) are obtained for s = 1,2, --- m by successive
inclusion of regressors x; and that the properties of the functional J as the mathematical
expectation of the Ay(s) is

JGs) = E| Y ~ X2 (3.113)
It is shown before that

J(s) = JOs) +J*(s) = E|| Y —X,a, | + o, (3.114)

where a, = (XTX,)~'X, Y= E@,).

J%(s) is a monotonically decreasing function with complexity s, where J(s|s > s%) = 0;
J(s) has a unique minimum for certain optimal complexity s* < s°. This minimum shifts to
the left as ¢ increases (refer to Figure 5.3). An(s) possesses the same properties, as shown
before (for regularity criterion).

An(s) = AX(s) + Ax(s) = J(s) + o2ag X] Xsdigs, (3.115)

where dg, = (XTX,)7'XT€, and Aj(s) is a monotonically increasing function.

Optimal intervals of each model can be calculated by using systematic algorithms.

The notion of the “locus of the minima” of a criterion is defined as a function J,,;,(s)
or A,i.(s) whose value corresponds to the critical value o..(s) for which the model with
complexity of s — 1 becomes optimal instead of the model with s.
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Algorithm for calculating the LM of J,;,(s)

Let us assume that the regressors are included in the model in order of the correlation
coefficients between the regressors and the actual output.

N - \,0 °
L (s — 205 — )
roe = 215 0; = _ s=T,m, (3.116)

(Ej)il(xjs - 56;)2) (Zﬁl(ﬁ - ;)2) E

and the regressors are ranked in decreasing order of the correlation coefficients.
The algorithm consists of the following steps:

-

1. calculating the matrices X7X, X7 )O/ for the Gaussian normal equations for the full
model;

2. computing the least-squares estimates of the parameters a, using the equation X7 X;a, =
[o]
XTy,

o
3. determining the quadratic error of the estimator ¥ using the least-squares method as

() =yTy —aTXT ; (3.117)

4. calculating the estimate of ag;
5. determining the J%(s + 1);
6. calculating the decrease in error due to the inclusion of regressors by one:

851 = 5) = S(s + 1), Js”) = 0; (3.118)
7. determining the ordinate of LM of the ideal criterion at point s: J,;,(s) = J’O(s)+s6§+ B
8. increasing the complexity by one unit. Return to step 4.

Note that these calculations can also be conducted by using the recursive algorithm.

Algorithm for calculating the LM of A,,;,(s) for an individual realization
of the noise vector

As in the above algorithm, the regressors are assumed to be ranked in decreasing order
according to their correlation coefficients.
The algorithm consists of the following steps:

1. calculating the matrices X"X, X"y, X7¢;
2. determining the estimator a, and the errors of this estimator a¢, due to the presence

(o)
of noise. Here g is the solution of the equation X X,a; = X7 ¥, and é; is the solution
of the equation X7 X, = XI¢;

3. calculating J%(s) using the formula JO(s) =Ty —aSTXZS)I as well as the quantity
A =ElE = al X X, (3.119)

as it is given in the equation Ay(s) = AY(s) + Ak(s) = J°>s) + UZ&LXSTXS&&;

4. determining the estimators of ag, and &g ol
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é:rﬂgsﬂ = &g‘x+]XL]XS+]&§,S+I;

6. calculating the increments of 2, and the amount of increment of the random com-
ponent A of the criterion Ay(s) with complexity:

5. calculating the quantity J°(s + 1) and A%, =

S = A0 = AL (3.120)

7. obtaining the ordinate of the LM of the criterion Ay(s) as
Dmin(s) = JO(s) + 62 N2 /68 (3.121)
8. increasing the complexity by one unit. Return to step 4.

Note: The above algorithms describe the calculating LM for two forms of an ideal criterion.
Extrapolation of LM allows one 1o detect the true signal from the noisy data [45]. To
develop an algorithm for calculating LM of the minimum-bias criterion, certain conditions
are imposed on the subsets A and B. The criterion is represented in the form of a difference
of LM of two ideal non-quadratic criteria as

mow = 15 5 1~ 119~ 3 1| ~ min. (3.122)

In the same way, one can also eliminate ; for special data samples. If all these are possible,
then the inductive learning algorithms can be replaced by analytical calculation of LM for
number of criteria. This leads to additional investigation,

5 BALANCE CRITERION OF PREDICTIONS

The criterion of balance-of-variables is the first of several kinds developed as a balance
criterion. It is the simplest criterion to use to find a definite relationship (a physical law) of
several variables of the process being simultaneously predicted. This has opened the basis
for long-range predictions using the ring of ‘direct’ and ‘inverse’ functions and is similar
to the balance-of-variables criterion [117].

The balance criterion is designed to choose models of optimal complexity with respect
to several interrelated variables being modeled. This occupies an important place among
the external criteria because of its nature as a system criterion and because it is used in
two-level algorithms. It is still in its basic form in the multilevel modeling of different
practical problems. Let us give a general form of the criterion. Later, we should delve into
the nature of change in position of the minimum with increase in noise intensity.

First, we give the balance criterion in a set of interrelated variables to be modeled. Let
us assume that some connections are known or established between the variables at every
instant of modeling; for example,

& = fOr,y2,---y); kEW (3.123)

is a known connection, where y;,ya,---,y; are the interrelated variables which are inde-
pendently identified. The balance criterion is written as

2
By = Z[(fﬁk _f@jk)} , (3.124)

kel

where ¢ and 9 are the predicted values of ¢ and y. The established connection is a constraint
that all the functions yy,j = 1,2, - - -, L are assumed to satisfy both in the interpolation region
k=1,2,--- Ny, and in the prediction region k = 1,2, N¢.
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The balance criterion By is intended to reflect either nonlinear or linear connection
between the variables. The nonlinear balance connection is known in the form of the ring
of differences of the “direct” and “inverse” functions. The linear relationship among the
variables being modeled can be established as

L
¢ = Y By k=1,2,-,N, (3.125)

J=1

where J are the balance coefficients which are determined from the experimental data. This
enables us to generate a linear balance criterion of the form

L

Bl = > b — Y Biul’, (3.126)

keG j=1

where G is the set that belongs to an arbitrary part or prediction part of initial measurements.

The linear type of the balance criterion is widely used in inductive learning algorithms.
They are often based on a precisely known relationship; for example, the change in the
population of a city is always to the population increment minus its decrement during a
certain period; total biomass of a plant is always equal to the sum of the biomasses of the
parts above and below the surface. In these examples, the balance coefficients are unity.

Second, given here is the balance criterion using the relationship of moving or sliding
average as a variable and its elements. This can be used successfully in algorithms for sep-
arately predicting the chosen time functions defined from the series data y;, k =1,2,--- /N.
The balance connection is

| +la-n
Fe=7 D, Y k=12 Ny (3.127)
J=—3d—1

The relationship holds between the measured and averaged values of length L. The balance
criterion is written as

1 +3(L—1)
2 . \"r8 & 12 ;
B =3 -7 D hwl (3.128)
kec j==3@=n
which is based on the predictions of the y and y;,y2,- -+, y. of the process.

The moving averages y,k = 1,2,---,N — L from the initial data y;,j = 1,2,---,N can
be obtained by using the matrix o [N — L x N] form [130] as
1

§ = [ON-LAY, (3.129)

where yT = (y1y2- - yw); ¥7 = (F1y2 - ¥v-L); and
11 ... 10 ... 00 ... OO
01..11 ...00..00
ON-LN =
00 ...00 .. 11 .. 10
00..00 ...01 ... 11

The matrix used here has consecutive 1’s of length L in each row. In adjacent rows the set
of 1’s is shifted one place to the right. The averaged vector y is of length N — L. The above
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criterion can be formally put in the form as below, though y; are not individual variables
to be modeled.

L
Bl =) (V= B9 (3.130)

keG i=]

where Y = yi; 8 = 1/L; and yix = Yi—g—@—1/2-

The linear concept of the balance criterion is extended further as a balance-of-predictions
criterion in modeling of time series data which is cyclic in nature. This is used in algorithms
of two-level predictions, in which the connection between the predictions of artificial vari-
ables g, j=1,2,---,L is obtained from the time series data q¢, k =1,2,..-, by averaging
on different time intervals; for example, season and year, month and year, and hour and day.

In general, we assume that a year contains L arbitrary intervals, the months. At the lower
level of the algorithm one predicts the mean monthly values of the process and at the upper
level, the mean yearly values. This means that we use two-dimensional time readout in
months ¢ and years 7 instead of actual one-dimensional time readout, in the usual manner of
continuous mean monthly data.” There is a unique pair of values (¢, 7); t=1,2,---,L; T=
1,2,---,N, where L is number of months (twelve months), and N is number of years, for
each observation corresponding to the original measurement. The average annual values Qr
and the monthly values g, 7 are connected by the relationship called calender averaging.

L
I
Or =g ;q:,r (3.131)

The balance-of-predictions criterion has the form

L
R L
Bl = Y (Qr— . > g (3.132)
=1

TeG

This type of criterion is used in various applications; for example, predictions of river flows,
air temperature [65], and the elements of the ecosystem of a lake [48].

The operation of calculating the mean annual values Or can be represented in the matrix
form as

1
Or = —oNkq, (3.133)

L
where ¢ is the vector of K elements, Qr is the vector of N elements, and ¢ is the matrix of
[N x K] as given below:

111 ... 100 ... 000 ... 000 ... 000 ... 00O
000 ... 011 ... 100 ... 000 ... 000 ... 000
onx = | 000 ... 000 ... OI1 ... 100 ... 000 ... 000

000 ... 000 ... 000 ... 000 ... 001 ... 111
Each row of the matrix oy x contains L 1's and each column contains a single one; a fact
that differentiates calender from the moving averages.
In this modeling, different monthly models are obtained with the consideration of both
the other monthly values and the annual values; i.e., the delayed arguments in months as

well as in years are considered in obtaining the monthly models. Therefore, the expression
By.qr has formal equivalence as in By;,y. Any balance criterion can be called a criterion of
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balance of predictions as long as the predictions of different variables are compared as in

Bliny-
One can consider the general form of external balance criterion of linear type with the
given balance coefficients 3;, j = 1,2,-- -, L in vector notation as
¢ = Oly2|--- )8 = Y8, (3.134)
where ¢ is the N-dimensional vector; Y is the [N x L] matrix; and 87 = (83,52, -,0L) is

the vector of balance coefficients. The balance criterion is written as
Bl = @6 — ¥6B) (b6 — ¥6B) = |ldc — ¥aBI%, (3.135)

which is used on set G.

The important thing one has to note is that the balance criterion which is established
among the variables ¢ and y¢, k = 1,2, -, L indicates the linear dependence and has to be
taken into account when using the balance criterion while process modeling.

5.1 Noise immunity of the balance criterion

Here we assume that the variable ¢ appearing in the balance criterion is physically measur-
able and that the balance coefficients are given (as a special case, §; = 1/L).

Let us assume that the measurements of all the jointly modeled variables ¢, y;, y2, ---,y.
are noisy.
o o .
¢ =Yo +£0; yYi =Yi +€i; = 1>27"'7L9 (3136)
o] [o] (o . .
where yg, y1,-- -,y are the vectors of nonnoisy measurements, all the noise vectors £ are

independent of each other, and they normally have distributed independent components with
mean zero and given variances.

E[§1=0, El§¢ = o?y: j=0,1,--- L,

where E is the mathematical expectation and [ is the identity matrix. The exact models of

the variables ; have the forms

;jz)zjb;); j=0,1,2,--- L, (3.138)

where )?j are the [N x s})] matrices of true independent arguments, b are the [s) x 1] exact
vectors of coefficients, and s? denote the complexities of the true models.

In self-organization modeling, one seeks for the optimal approximations to the true mod-
els from the noisy observations. The partial models are generated by sorting among the
basis sets of N x m; arguments X; in which there are also, by assumption, true arguments

o

Xj; that is, m; > s}),j =0,1,---,L. Thus, in the sorting, one determines the coefficients in
the partial models of differing complexity for each of the L + 1 variables in the conditional
equations of the form

‘Xj(Sj)aj{Sj) = yj; Xj(xj) [NV x 5], ajuj, [s; x 1], (3.139)
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where s; denotes the complexity of the partial model for the jth variable considering yo as
¢ for uniformity. All s; vary independently, and the vectors of coefficients are determined
by the least squares method using the noisy data.

—1yT
aJ(S) [ ](s) .I(S )] Xj(g ;vJ (3]40)
For the existence of the inverse matrices, we assume that N > max(m;, j = 0,1,2,---,L)

and that all the X; have full rank.

The data sample (of length N) is not partitioned into number of sets because the balance
criterion can be used on the interpolation region of the data. This means that all N points
of the data are taken into consideration in all operations of the modeling.

The estimates for each variable being modeled can be written as

yj(s i} XI(: )a./(s )

T
J(X)[ I(s; J}.M]Xj(;.,yj

jspYi = ,(“(yj +£); j=0,1,2,---,L, (3.141)
where Jo,, and yo are considered as $(SD) and ¢, respectively, for uniformity, and Pju )=
0,1,2,---,L are the projection matrices. The balance criterion can be obtained as

2 A A 2 2
B(lin) = “yO(SUj - (yl(sl)l T ‘yL(sL))ﬁ”

= ”PO(SO,)’O - (Plul,)’li T IPL(SL)yL)'BHZ
= ”[PO(SO) ;0 7(P1(s|; )'?1 I e IPL(.;L) yoL)[j]
+[Pagy o — (Pr, &1l - [Pry, EDBY. (3.142)

The objective of the balance criterion is to obtain consistent optimal predictive models for
each of the L + 1 variables connected by the balance law. The criterion B, is to be
calculated for all variants of the partial models of varying complexity. The total amount of
partial models is calculated as

L L
ps = [ pm = [J@" - D. (3.143)
j=0

J=0

If m; = m, then the complete sorting is proportional to 2'L; obviously, in complex problems,
for large m and L, complete sorting becomes impossible. We can tentatively assume that, as
in the case of the combinatorial inductive approach, the complete sorting is efficient when
mL < 20. For four seasons (L = 4), we can allow m = 5 arguments in each model of the
seasons. For more complex problems, it is essential to apply proper way of sorting. Here
let us assume that complete sorting is made. We shall seek the minimum of the balance
criterion.

B(mm) —min, __B(Zlin)[&if(XJ" yj)] (3144)
i=1 ,pmj; _[=0,L

The value of B(m,,,) determines the set of models of optimal complexity s7, j=0,1,2,---,L
for each of L+ 1 variables. Now let us see how the choice of models of optimal complexity
changes with increase in the noise variances ojz, j=0,1,2,--- L; ie., let us investigate the
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noise immunity of the choice with respect to the balance criterion. This is analyzed in the
mean value sense; i.e., with respect to its mathematical expectation.

Keeping in mind the noise properties, the fact that Pj-TPj = Pf =P; j=0,1,---,L, and
applying the mathematical expectation to the above derived balance criterion

B(Im) E[B(Zlin)] = ”Po(so) Yo —(Pl(s,) Y1 l e |PL(sL; yL)B“2

+0050+202ﬁ2s, = B+ By, (3.145)
i=1

Thus, the expected value of the balance criterion B(z,m) has two components: B?, imbalance
5
in the modeling of exact data, and 32 reflects the action of the noise.

First, let us look in greater detail at the component B2 and then at the B(,m) as a whole.
y

Bs = ||Pog, Yo =P, il IPL(JL, y0B|P
= ”XO(SO,BOW - (X|(51,51‘51,| e |X’L4SLJZA7L(3L,)5”2
= 98y = G|~ 52, DOIP
= 195, — T°BI* (3.146)

Considered with the exact data, it is necessary to determine B2 = 0 and to check whether

3
or not this corresponds to obtaining true models for which the balance relationship

Yo= 01 2 |- |y08 =¥ B ¥ IN x L] (3.147)

holds, and which is actually reflected in the exact initial data ;0, )?1, ;2, S )?L.
With increasing complexity of the models on the attainment of the true complexity sf

(for each one of L+ 1 models), the coefficients are restored exactly to 13,-‘ . l;;-’. Even with

further increase in s;, the coefficients b = ij do not change because the coefficients

|$;>5%
itz
of the extra arguments are equal to zero. The models of all the variables are attained true and
the value of the criterion Bo = 0. It is also possible, as it might turn out, that the criterion

assumes the value Bo =01 m the cases when the sorting among the different combinations
of models for all the variables discloses pamal models with coincidence structures such as
X0, =X =XL(S;)=X . As yo—‘—Yﬁ, Py, =P =P

s7) (618

= P*, B, becomes
S

sh T [ (s7y

= IP"Go — Y B)F =0 (3.148)

for arbitrary values of the coefficients.

This property of the criterion is mentioned by Thara [27] in his correspondence with the
editor of the journal “avtomatika” (Soviet Journal of Automatic Control). Later, the idea
arose as to nonuniqueness of the choice of models according to the balance criterion [36].

Theorem 1. Estimation of the coefficients of the prediction models with regard to the
prediction balance criterion is an incorrect problem because it has an enormous set of
solutions.
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Proof: Considering 3 as a unit vector, the prediction balance criterion can be written as
= ”X()ao et (X](lll R lXLaL)HZ, (3]49)

where a;, j = 0,1,2,---, L are the vectors of coefficients in the models of averaged data
and the detailed prediction models, correspondingly.

This is to be minimized with respect to the coefficients ap and g; to obtain the optimal set
of prediction equations. The system of normal equations in Gaussian form can be obtained
as

OB?

= =0; j=0,1,2,--,L, (3.150)
aaj

Assuming that the structures of the models are already known,

2X{Xoao — 2X;(X1ay| - -+ |Xrar) = 0,
—2X[ Xoao +2X] (Xyay| - - |Xpap) = 0. (3.151)

These matrix equations are linearly dependent. Each of the equations has an infinite set of
solutions and the system of equations yields the trivial solution &;=0; j=0,1,2,--- L.

Corollary 1. In modeling the exact data, it is necessary to obtain the value of Bg = 0, which
is sufficient for structural identification of the true models (yj—X, bJO, j=0,1,2,--- 1), if
(i) the exact data of the variables y;; j = 0,1,2,---,L satisfy the balance relationship

()?0=)O/ ﬁ); (ii) the arguments of the matrices X; contain all true arguments of the )?j, j=
0,1,2,--.,L; and (iii) the common basis of the arguments is nondegenerate; i.e., sorting
does not reveal a complexity s’ such that X o == XL(S,). These three conditions are
neither excessively stringent nor idealized. The ﬁrst two make the problem of modeling
several variables connected by the linear balance relationship well posed and the third
establishes the conditions for correct application of the balance criterion (uniqueness of
choice of models), which can be ensured algorithmically.

Attainment of the value of the criterion (B2 = 0) is achieved with increase in the com-

y

plexity, which is always monotonic. This can be explained by the calculation of B2 on the

y
same data as it is used to estimate the coefficients. This can be represented graphically
as the dependence of the criterion on the complexity of the partial models of the different
variables in a multidimensional space.

Let us look at the second part Bé of the balance criterion. The component of the criterion
Bf,., which reflects the influence of noise is

L
B} = ogso+ »_ Blats;. (3.152)
J=1
This increases linearly with an increase in the complexity of the partial models )‘)j(sj); j=

0,1,2,---,L; i.e, it is the plane whose inclination in multidimensional space is determined
by the noise variances ajz; Jj=0,1,2,---,L This inclination increases according to the
increase in the noise variances.

Keeping in mind the properties of the component Bo, we conclude that (i) the criterion

B(,m) being an (L+1)-dimensional function of the varlables (in numbers) s;; j=0,1,2,---,L
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always has a unique minimum, (ii) this minimum is always in the hypercube 1 < s; < s}’; Jj=
0,1,2,---,L (i.e., the overly complex superfluous models are always weeded out), and (iii)
with increase in the variances of the noises (at least in one of them), the minimum is
displaced on the side of decrease in the complexity of the models (with respect to at least
one of the variables).

These properties can be represented graphically. One can observe the decrease in the opti-
mal complexity of the models, which is typical of external criteria, using a multi-dimensional
surface whose sections (isolines) for different noise variances are ajz; j=0,1,2,.-- L.

Corollary 2. If the three conditions which are asserted in corollary 1 for 32 also hold in

the modeling of noisy variables y; j = 0,1,2,---,L, then the followmg propertles of the
selected models in optimal complexity as per the balance criterion B(,m) hold: (i) for arbitrary
nonzero noise variances ajz; j=0,1,2,---,L, the minimum of the criterion as a function of
different complexities s;; j = 0,1,2, .-, L exists and is unique, (ii) the achieved minimum
always lies in the bounded region 1 < 5; <57, j=0,1,2,---, L, where sj(-’ is the complexity
of the true models, and (iii) with increase in the variances of the noises af;j =0,1,2,---,L
the minimum is displaced in the direction of decrease in the complexity of the optimal
models.

Theorem 2. The problem of estimating the coefficients for the prediction models as per
the balance criterion becomes correct (having a unique solution) if the quadratic stability
criterion S is considered along with the balance criterion; i.e., by forming the combined
criterion as

c5? = B2+ §2. (3.153)

Proof: Let us consider the stability criterion as a stabilizing functional, the sum of the
quadratic criteria giving the quality of the output vector error on each of the prediction
levels.

L
2=y - Xt (3.154)

The combined criterion ¢35 is the combination of “prediction balance plus stability criterion.”

L

= || Xoao — Xyan| -~ 1Xparl® + > Iy — Xjasl*. (3.155)
j=0
Let us determine the estimates of the vectors ¢;, j =0,1,2,---,L by minimizing the com-
bined criterion. We obtain the system of normal equations as
Oes?
K220, j=0,1,2,- L. (3.156)
8a,-

Then, for the prediction model of the first level ¥, or $, we have:

dcs?
Bao

= 2X) Xoap — XS (Xyar| - - |Xpar) — X2yo = 0O, (3.157)
and from this,

. 1 _
o5, = E(X(TXo) "Xy + Xyai| - - - |Xan)]. (3.158)
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For the models of the second level §;, j=1,2,---,L:
des?

ba; = 2(X]-TX1a|| . |)(j.TX1_aL) - XJ.TXOaO _ X,-T()’1| ey =0; (3.159)
j=1,2,--,L
From this,
Bjesy = %(&T&)—‘&T[w -+ ly) + Xoaol; j=1,2,---,L. (3.160)
The matrices XjTXj, j=0,1,2,-.. L are assumed to be nonsingular.

Solving the system of two matrix equations of ¢5° and &,, we obtain the estimates of
the coefficients of the prediction models of both levels as

N 1 _ 2, 1 -
oy = 3XEX0) ™ XF 20+ 0+ )] = S0+ 500X X1l -+ )

. 1 _ 2. 1 _
Bies, = 3TX)TIXTR200] -+~ [ye) + yol = 38+ X X) ™ Xy (3.161)
j = 1, 2’ - 7L

where ¢;, j=0,1,2,---, L are the estimates of the coefficients of respective models as per
the least squares method. Thus, the goal of the regularization is achieved.

Corollary 3. On regularization of the problem of selection of structure for prediction
models by the balance-of-prediction criterion with the help of stability criterion.

The problem of structure choice of prediction models by the balance criterion becomes
correct (i.e., achieving a unique solution) if the quadratic stability criterion 5% in the com-
bined criterion ¢5? is used as regularizing the operator as

¢5%(s5,s7) = min __[B(sp,57) + S%(s5, 7)), (3.162)
SjemjijZO,L
where m denotes the set of arguments taking part in the predictive models of both levels,
sp and 57 are the notations for optimal structures.

The stability criterion in the above formulation makes it possible to reduce the region of
solution of the problem of selecting structures by using the prediction balance criterion to
a compact subset which leads to a unique solution of the problem.

Interpretation of the results in the case of B3, It follows from the comparison of Bf,,
and Bfm that the number of variables is equal to, for example, the number of seasons
(L = 4); the vector of connected variable is the vector of second-level variable ¢ = Q =
(O1,02,---,08). The remaining variables are the seasonal variables associated with the
first level y; = q, = (g1, G122, ,q,J\/)T7 t=1,2,--.,L. All the balance coefficients are
equal 3 = 1/L, 8 =(1/L,---,1/L)T. However, for the results of the investigation of noise
immunity of the criterion B(zh.n) to be applicable to the criterion Bgm (or what amounts to

the same thing,) to

Brewr = 10 = @l 08I, (3.163)
it is necessary to show the validity of noise conditions specified before. The vectors Q and
g, 1=1,2,--- L are obtained from the measured time series data ¢i; Kk =1,2,---,LN. Let

us suppose that a noise with the usual properties is imposed on these measurements,

@ =g G ELG] =0, B[ = 0%, EIG¢1 =0, i #j. (3.164)
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The components of each vector g, are taken from g, at a period of length L.
@ = (Gomty Gr=rnly **+ Grmesv—1pr)s £=1,2,+++, L. (3.165)

Therefore, for each g, the noise vector &, satisfies the original conditions.

qr =g, +&; E[€]=0, E[¢£T) = o’ly, E[€]€1=0,j 71, (3.166)

where, for all ¢ vectors of the seasonal values, the noise variances are equal to o and are
independent of r. Further, with reference to the mean annual values, we obtain

Q =é+§0, é=(qol |-+ g8,

2

g0 =(&]- - |68, El&) =0, E[&E]]= "TIN; (3.167)

i.e., the noise variance for the second-level mean annual variable is 1/L times the variance
of the original noise ¢ = o?/L which increases the noise immunity of modeling at the
second level. The components of the noise vector &, are also independent. This means that
one of the conditions fails to be satisfied; i.e., the condition of independence of &; and all
&, t=1,2,---,L

Elgé) = ﬁTE[(éll o EDT )
o2
= E[f &l = T (3.168)
This reflects on the calculation of the mathematical expectation of the criterion BM,, which
is obtained in somewhat different form
Bfear ye’ar] = ”Q (2]13 o IqL)ﬁllz
o? ot L
St o > si— Z r(Pg,, P i) (3.169)
i=1

i=1
The trace of the (PIP;) can be written as
tr(PIP) = w[Xo(XEXo) ™' XIX:(XTX) ' X7],

which cannot be calculated in the general case.

It is difficult to determine how B2 vear DEhaves with complication of the models of both
levels. It may fail to be wnimodal, or its global minimum may not be displaced in the
direction of simpliﬁcation of models with increase in the noise variances.

The criterion B?,,, will have the same properties as Bf,m) when the matrices X and X;

year

are orthogonal; i.e., XOXi =0; i=1,2,---,L Then

AD A0 0'2 -
)t'ar = ”Q — (@ | T qu)ﬁllz + I (50 + ZS[) ’ (3.170)
i=1

Although this condition usually contradicts the condition of linear connection of variables
of the two levels (Or = ; Z _1 4,7), one can interpret it as the specific nature of the
two-level modeling problem of a single variable given by its seasonal and annual values.
The orthogonality condition X5X; = 0 will in fact hold when the seasonal models of the
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first level are not used at the second level. Here, the mean annual models are constructed
independently of the seasonal models, and these are used in the selection of the best two-
level models according to the balance criterion.

Corollary 4. The problem of selecting structures for predictive models by the prediction
balance criterion becomes correct if a different (in nature and composition) set of arguments
is used for constructing models of the two levels.

Indeed, in reconciliation of seasonal and annual predictions using the same source of
measured data, the balance criterion is inefficient and leads to trivial results. On the other
hand, if one uses a different set of arguments for constructing two-level models, then the
balance criterion in the choice of structure becomes efficient.

In practice, such a case is ensured, for example, by constructing the seasonal models
in the form of a system of L difference equations and the annual models in the form of
a harmonical functions [48]. This corresponds to the condition of independence of the
informational bases of the models of different levels [36], which is necessary for efficiency
of algorithms for multilevel modeling.

6 CONVERGENCE OF ALGORITHMS

First we give the definition for canonical formulation of the external criteria [135] and then
proofs for internal convergence of two multilayer algorithms; one is the original multilayer
algorithm; the other is the algorithm with propagating errors [42], [79] [134], [136].

6.1 Canonical formulation

The canonical form of the external criteria is an analytical tool to investigate various prop-
erties of the criteria. This is not convenient from a practical standpoint for calculating the
value of a criterion in cases involving large numbers of observations, but it can be used
directly for model selection of a small number of observations.

Definition
The canonical form of the criterion is defined as the expression y? Dy, where D is a symmetric
strictly positive-semidefinite matrix—strictly in the sense that (a) Vy # ©, y"Dy > 0 and
(b) Iy#6, yDy=0.

The matrix D is determined by the corresponding criterion and the partitioning of data.

Residual sum of squares

We give here the canonical form of residual sum of squares (RSS) used in the least-squares
method. Suppose we have a system of conditional equations of the form y = Xa. The
parameters a are estimated as

a= XXy, 3.171)
The RSS is calculated as

€2 = (y — Xa)'(y — Xa). (3.172)
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This can be written in the canonical form using the notation Pyy = X(X"X)™'X7 as
e = y' — Pw)y = y"Dysy, (3.173)

where D;s=(I — Pyy) is a symmetric positive semidefinite matrix for N > m, [ is the unit
matrix, and N indicates the total number of data points.

Regularity criterion

This is given as

A*B) = (s — 98)" 08 — 9), (3.174)
where 5 = Xp(XXa)"'Xiya. Using the notation Pga=Xp(X1X4)~' X 2(p;), the criterion
can be written as

AYB) = > (5, — > pia)s (3.175)

i€B J€A

where A and B are the training and the testing sets correspondingly. By expanding this
algebraically, we get

ANBY = v —2) Zys,»pmj £ 3N PijPikYa;Yay s (3.176)

i€B i€B jeA iEB jEA keA
or the matrix form
, > ics PibPik| (—py) ya
B =(alys) | ——— |---|---
(—Dpy) 1 B
PgAPBA —PgA
= yT ______ y = yTDn,gy_ 3.177)
_PBA 1

This is the canonical form for the regularity criterion. The matrix D,,, depends on the
sequencing of the training and testing sets—so does vector y.

Minimum bias criterion

This is given as
Ths = G = 956" — 5w, (3.178)
where W indicates that the criterion is computed on the set W; 5% = Xw(X5Xe) 'XLyg: G

corresponds to either A or Band W=AUB.
Let us define the notations as

Xw(XZX6) "' XLyc 2 Pweyg, G=A or B. (3.179)
The criterion can be rewritten as
T = (Pwnya — Pwsyn)" (Puaya — Pwsys)- (3.180)
The canonical form can be obtained as
PluPwa |—PhaPws

o=y | —=—= | === |y=9Duy (3.181)
—PafBPWA Pa/BPWB

This is the canonical form for the minimum bias criterion.
Analogously, one can obtain canonical forms for other criteria.
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6.2 Internal convergence
Defining multilayer algorithm with propagating outputs

Let us assume that there are m input variables of x (x;,x2,---,x4), y is the output variable,
G, is the set of ¢ input variables at the rth layer (21,22, - -, 2), (¢ = m), N is the number of
initial data points. Mapping R takes place from layer r to the layer r+1; i.e., R : G, — Gp4.1.

First, the elements zy),k =1,2,--.,F are the column vectors of the matrix z” of the
transformed experimental data. They are determined from the condition

2" = Py, (3.182)

where P, = (zﬁ'"”|z](»'_]))[(z}'"l)lz;'_”)r(zf'_”Iz](»r‘]))]_'(ZE'_I)IZ}'_I))T, is the projection op-
erator of the least-squares method; and y is the observation vector of output variable.

Second, the N-dimensional vector z is a partial description of the rth layer as its kth
component is expressed by

" _ (=1 (=D
2 = &z G ) (3.183)
where #,j vary as per their representation from the (» — 1)st layer. The partial polynomial
in its simplest form is

8w, Ziwy) = MzZigy + @Gy =12, ,g— 1 j=i+1,i+2,--,q (3.184)

where a; and a3, as the arbitrary coefficients, assumes an iterative process.

Finally, from the set of elements zf,:; of the following layer that is obtained, a subset
7" is singled out according to an external criterion. The external criterion gives to these
solutions qualitatively new properties that the modeler finds desirable.

Suppose the regularity criterion A?(B) is considered as the external criterion that has the

sum of squares of the deviations on the testing set B

YA zy
y=| ===, z-vo| =_). (3.185)
yB zy~h

The algorithm stops when the criterion achieves the minimum in the layer r compared with
the layer r+ 1 for a particular component; it is then said that it is converged; i.e.
YDy < yTDf,;;”y, (3.186)

reg

where D(,;L and D‘,;;” are the positive-semidefinite canonical matrices formed based on the
components at » and r + | layers, correspondingly.

Internal convergence is an especially important property of multilayer algorithms. If the
external criterion becomes the internal criterion (i.e., the regularity criterion A%(B) becomes
the residual sum of squares (RSS) €2), the result of the algorithm must be equivalent to the
result of multiple regression analysis, at least when the function of y is linear in variables
and coefficients.

Here the internal convergence is considered (i) towards a solution and (ii) with respect

to the structures.

Convergence to a solution.  Suppose that stopping is not envisioned and the class of func-
tions formed by superposition of the function g includes a function A(xyy) = ywy, & =
1,2,---,N where x4, = (X140, X2%), * * -, Xmet)), then the algorithm converges to a solution if
the sequence of vectors zf"’ has a limit as r — oo and if this limit is y.
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Convergence with respect to structures. Suppose that stopping is not envisioned and the
class of functions formed by superposition of the function g includes a unique function h(x)
such that A(xg) = yw, k& = 1,2,.-- N, then the algorithm converges with respect to the
structure if the sequence of functions z,(r)(x) has a limit as » — oo and if it is equal to h(x).
Unlike the above case, here it takes the measure of distance between the functions. In the
class of linear polynomials, a natural measure for distance between two functions is the sum
of squares of the distances between similar terms involved in them. The distance between
two arbitrary functions is measuerd as the sum of the squares of distances between their
values from the initial data. Based on this, the definitions of convergence to a solution and
with respect to structure are equivalent.

Definition 1. An algorithm converges in a finite number of steps if, beginning with some

layer, zfr) are equal to their limiting value.

Definition 2. There is effective convergence if the algorithm converges in a finite number
of steps; i.e., the layer with which zﬁ') is the first one and equal to its limiting value; the

next layer has the divergent characteristics.

Definition 3. It is referred to the convergence under the condition that A%2(B) = RSS,
where RSS is calculated on the initial data, as internal convergence.

The internal convergence to the solution and in structure is ensured by the following
theorem.

Theorem 3. Suppose that y* is the projection of the vector y on to the linear space L(X),
formed by the columns of the matrix X. Suppose the criterion is calculated on the set W.
Then, F number of partial descriptions with the sequence of vectors zf(r) converges to y* as
r — oo. If the XX is nonsingular, the model corresponding to the limiting vector coincides

with the regression equation for y as a function of X.

Assume that the best model in optimal complexity is being sought, that means it is the
case of F=1.

Let us look at the numerical sequence of ||y —z”||, which can be shown as nonincreasing.
In the multilayer algorithm with the propagating outputs, the vector z*V is formed by

2 = a12” + axt)”, (3.187)

(i

where a; and a, are found by minimizing the quantity ||y —a,;z\" —azz}')H. It follows that the
vector z\"*V is the projection y onto L(z,(.’)lzj(.’)); i.e., the lincar hull of the vectors z” and z}’).

||y—z“+1)|l < ||y~—z(’)||, r=0,1,--- (3.188)

Thus, the sequence ||y — z”|| is nonincreasing and as a sequence of norms it is lower
bounded. Therefore it has a limit that is denoted by p.

Let us look at the sequence ||”||. By the definition, z{” € L(X) for all r. Consequently,
z € L(X). Further more, (y — z) is orthogonal to L(X); i.e., (y — 2)7X = 0. It follows from
the above that [|z*"]| > ||z”|| and one can easily see that [[z”{} < [[y||. Thus, the sequence
lz”|] is nondecreasing and higher bounded. It has a limit, which is denoted by 7.

Let us look at the sequence 7. The existence of the limits of the sequences |ly — 27|
and ||z”|| implies that with increasing r, the vectors z(” become arbitrarily closer to the
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manifold defined by the system of equations

lly — zll
Il

It is shown that there exists a unique vector z* belonging to this manifold, which is the
limiting vector of the sequence 7. It follows that

Il
=]

(3.189)

Z(r+1) — (Z‘(r)lzj(_r)) [(ZEI)IZ(-r))T(Z(-r)|Z(~r))]—l(Z(~r)|Z(~r))T

T T T T
Z;r) Z;’)Zﬁr)z,(r) (r) Z(r)z(r)z(r) (r) Z(r)z(r)z(r) zgr) ZE')ZJ(-”Z;V)
T T
Zgr) Zgr)zj(r) Zj(‘r) . (Zgr) Zj(f))z

= Pirya (3190)

y

where P, denotes the corresponding projection matrix.
It follows from the convergence of the sequence |y — z?|| that by choosing r suitably,
the equation |y — P;y|| = o can be satisfied to any desired closeness for all i =1,2,--.,m.
From the above, the following equation
Ty _ 23,07 0 0 o _ o7 2 AT 00 0" o o 0 o
Oy—0lz” 4 7 — zj)]~y( 75"z — 4" 57"z
T T 7
_Zl(_r) zj(_r)zj(r)z[(r) +Z5r) Z}r)zj(‘r)zj(.r) )y
(3.191)

(r) (f) (r) ((r) (r))z #0

will be satisfied for any desired accuracy by noting that z(') % g

The unknowns z(') zj() can be determined to an arbitrary degree of accuracy from the

above equation because of its dependence on coefficients in terms of the unknowns. The
solution can be found as

T
zEr) Z](r) = (f) y, i=1,2,---.m (3.192)

using the relationships o? + 72 = yTy, and y7z(" = 2" (0. This is satisfied with an arbitrary
accuracy as the quantities ||y — z”|| and ||z*”|| tending to their limits o and T, respectively.
This determines uniquely the limiting vector z* € L(X). It can be written as

X'z -y =0. (3.193)

Thus, z* is the orthogonal projection of y on to z(X) or, what amounts to the same thing,
* *
= y .

Let us look at the case F > 1. It shows that the distances between the parlial de‘;criptions

belonging to the same layer get arbitrarily smaller as r — oc; i.e., [lzf:) R 3 JF—
1, I=k+1,k+2,---,F gets arbitrarily small. Let us define |y — z, )|| = g+6,, and it leads
to

Iy = 2501 < lly = 2P0 (3.194)

(r)

We consider F partial descriptions of the form a;z;” + azz ) at the (r + st layer, for which

the above inequality holds. Therefore,

0+6, <|ly-2| <o+6_1, k=1,2,--- F. (3.195)
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Figure 3.7. Geometrical interpretation of the sequences used in the internal convergence

Also, for arbitrary values of a; and a2 we can have the relation ||y — alzﬁ.') - azz}')ﬂ > 0.

From the above inequalities, one can obtain the estimate of (Figure 3.7)

127 = £ < Ve +6-17 — @+ V(e + 6,7 — ¢ (3.196)

The right side quantity of the inequality can become arbitrarily small for a suitable r. This
completes the proof for the internal convergence of the algorithm to the solution and in
structure.

Defining multilayer algorithm with propagating errors
The function g has the form
g(xiaxj) = -xi+axj7 i= 1127'“ 7F7 j=F+ 1)F+2a"'1QJ (3197)

where 0 = F+m and a is determined by the least-squares method using the set A or W.
Here the algorithm is described in its simplest way. In the first step the partial descriptions
of the form

zi=ax;, i=1,2,---.m (3.198)

of which the residual errors are computed as A"z; = z; — y and F best of the descriptions
are chosen.
In the rth step (r > 1), the partial descriptions of the form

N =" vapyg, =12, F, j=12,.m (3.199)
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of which the residuals are computed as A“*Vz; = zfjm) —zf') , and F best models are chosen.

The process continues until the value of the criterion decreases significantly. Suppose
we are required to reproduce a dependence of the form y = h(x) + £&. The approximation is
achieved as

h(x) = g1(x) + g2(x) +- -+, (3.200)
where gi(x), i=1,2,--- correspond to the chosen equations at each step.

The internal convergence of the algorithm to the solution and in the structure is ensured
by the following theorem.

Theorem 4. Suppose y* is the projection of y onto L(X) and the criterion is computed on
the set W. For any F number of partial descriptions, the sequence of vectors z” converges
to y* as r — oo. If the matrix X7X is nonsingular, the model corresponding to the limiting
vector coincides with the regression equation for y as function of x.

The proof of this theorem differs from the theorem 1 because the vectors (y —z\”) and z{”
are not orthogonal in this case. We shall follow the preceding scheme.

When F = 1, the sequence ||y — z”|| is nonincreasing and lower bounded; it is denoted
by the limit o. As per the step-by-step iterations in the algorithm, we have

ly = 224 = |ly = 2"V} < 6, (3.201)

and we note that

T
X X;

@V = 2y = {0 Ty - 0), (3.202)
Xx

Iatd

From the above inequality, ||xy — x/z”|| < 6Q2)ly — 27| — &), i = 1,2,---,m can be
obtained. Thus, the sequence z*” has a limit 7.
The rest of the proof is analogous to the preceding one.



Chapter 4
Physical Fields and Modeling

Cybernetical systems are natural systems with complex phenomena in a multi-dimensional
environment. The concept of a physical field is given here as a three-dimensional field of
(x,y, 2), where x,y are considered a surface coordinates and z, a space coordinate. Our main
task is to identify a system in a physical field using our knowledge of certain variables and
considering their interactions in the environment and with physical laws. Researchers are
experimenting to predict the behavior of various complex systems by analyzing emperical
data using advanced techniques. Resulting mathematical models must be able to extrapolate
the behavior of complex systems in (x,y) coordinates, as well as predict in time ¢ another
dimension in the coordinate system. The possibility of better modeling is related through
the use of heuristic methods based on sorting of models, pretendents in the form of finite
difference equations, empirical data, and selection criteria developed for that purpose.

Examples of physical fields may be fields of air pollution, water pollution, meteorolog-
ical systems and so on. Observations of various variables—such as data about distributed
space, intensity, and period of variable movement—are used for identifying such fields.
It corresponds to the observations from control stations corresponding to input and output
arguments. The problem goal may be interpolation, extrapolation or prediction, where the
area of interpolation lies within the multi-bounded area, and the area of extrapolation or
prediction lies outside the area of interpolation process. Models must correspond to the
future course of processes in the area. Problems Can be further extended to short-range,
long-range or combined forecasting problems depending on principles and selection of ar-
guments. A model must correspond to the function (or solution of differential equation) that
has the best agreement with future process development. A physical model can be point-
wise or spatial (one-, two-, three-, or multi-dimensional). It can be algebraic, harmonic, or
a finite-difference equation. A model with one argument is called single-dimensional and
multi-dimensional when it has more than one argument. If the model is constructed from
the observed data in which the location of the sensors is not known, then it is point-wise. If
the data contain the information concerning the sensor locations, then the model is spatial or
distributive parametric. Spatial models require the presence of at least three spatial |ocations
on each axis.

In the theory of mathematical physics, physical field is represented with differential or
integro-differential equations; linear differential equations have nonlinear solutions. For
solving such equations numerically, discrete analogues in the form of finite difference equa-
tions are built up. This is done by considering two subsequent cubicles for analogue of
first derivative, three cubicals for analogue of second derivative, and so on. As the higher
analogues are taken into consideration, the number of arguments in the model structure are
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correspondingly increased. In other words, the physical field is discretized in terms of the
discrete analogues or patterns. To widen the sorting, it is worthwhile to adopt different
patterns (consisting of arguments) starting from simple two-cubical patterns to patterns with
the possibility of al polynomials. Higher-ordered arguments and paired sorting of patterns
and nonlinear polynomials give the possibility of fully reexamining the majority of partial
polynomials for representing the physical field. By sorting, it is easier to "guess' the linear
character of a finite-difference equation rather than the nonlinearity of its solution. This
reduces the sorting of basis functions. The collection of data with regard to the pattern
structures, presentation to the algorithm, and evaluation of the patterns are considered as
important aspects of the inductive modeling.

1 FINITE-DIFFERENCE PATTERN SCHEMES

Discrete mathematics is based on replacing differentials by finite differences measured at
the mesh points of a rectangular spatial mesh or grid. For example, the axes of the three
dimensional coordinates x,y,z are discretized into equal sections (steps), usually taken as
the unit measurement of Ax = I, Ay = 1, and Az = 1. The building up of finite difference
equations are based on the construction of patterns or elementary finite difference schemes.

A geometric pattern that indicates the points of the field used to form the equation
structure is caled elementary pattern. A pattern is a finite difference scheme that connects
the value of a given function at the kth point with the value of several other arguments at the
neighboring points of the spatial mesh. The pattern for the solution of a specific problem
can be determined in two ways: (i) by knowing the physics of the plant (the deductive
approach), (ii) by sorting different possible patterns to select the best suited one by an
external criterion (the inductive approach). The former is out of the scope of this book and
emphasis is given to the latter through the use of inductive learning algorithms.

In a system wherey is an output variable and x is an independent variable, a pattern with
mesh points within a step apart is shown in Figure 4.1. The general form of the equation
representing the complete pattern is

Vijik = FOist ks Yie1, ks Vi, j#1 ko Vi j— 1,k Vi j ket 1 Vi jok—1
Xis,j ks Xim1,j k> Xi o1 ks Xi jm 1oy Xi j ket 1> Xi jk—1)- 4.1

This will be more complicated if the delayed arguments are considered by introducing the
time axis r as a fourth dimension.

s —_ 1 1 I ! 1 1 t—1
Yijk = f(yi+l,j,k?yi—l,j,kv Yijr g Vi j=1do Yiojhea 19 i jk—11Yi j &
1 r 2 ! ! t—1

Xiet ko Xim 1 ks K j ko X jm o X a1 X6, ke 19 X7 1) (4.2)

In actual physical problems, most of these arguments are absent because they do not in-
fluence the dependent variable. This is the difference between the actual pattern and the
complete pattern.
For example, in the linear problem of two-dimensional (x and 7) turbulant diffusion we
have
9,09 _ 7"
ot Ox ox?
where u is the flow velocity and K is the diffusion coefficient. The discrete analogue of
this equation can be written as

=0, (4.3)

t+1

@ = gD+ 7(Gr — gi1) — 72(qhy —2qi + i) = 0, (4.9)
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Figure 4.1. "Complete" pattern in (x,y, z) coordinates

where vy = 3%, and 72 = Z£. In other words, we use a pattern with three arguments in the
functional form of

4" = (g i 420 (4.5)

If we consider the Fokker-Planck equation, which takes the above diffusion equation
with variable diffusion coefficient X as

dq dq OKq

+ =0, 4.6
o Mox T ox? 4.6)
then the discrete counterpart is taken as
@ = )+ NG — i) — 2K gl - 2Kigl+ Ki_ygi_p) = 0, 4.7
where vy, = 7/, and 7y, = ;7. The pattern consists of the functional form of
H] _f(qn%ﬂﬂ(/r I’Ku z+1’ rl'—l)' (4.8)

Usually the dynamic equation is expressed in the form of a sum of two parts: the left side
“operator” and the right side “source function” or “remainder.” In the problem of turbulant
diffusion we can write the equation as

8qg Oq Fq

E +u a — K—** _f(x t), (49)

where the left side is the "operator" and f(x, 1) is the "remainder." The discrete analogue
of this equation takes the form of

H‘ _f(quq|+lvq1 1) +f(x t) (410)
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where x and  are the coordinate values of ¢*' on the grid. f(x, ) can be considered as a
linear trend in x and #; for example, f(x, 1) = ag + aix + ayt.

For solving very complex problems using the inductive approach, complete polynomials
with a considerable number of terms should be used. Usually if the reference function or
"complete’ polynomia has less than 20 arguments, the combinatorial algorithm is used to
select the best model. If it has more than or equal to 20 arguments, the multilayer algorithm
is used, depending on the capacity of the computer.

1.1 Ecosystem modeling

Thefollowing examplesillustrate the identification of one-dimensional and multi-dimensional
physical fields related to the processes in the ecosystem.

Example 1. Usually model optimization refers to the choice of the number of time delays
considering a one-dimensional problem in time t. For the synthesis of the optimal model,
the number of time delays must be gradually increased until the selection criterion decreases.
The optimal model corresponds to the global minimum of the external criterion.

Let us consider identification of concentration of dissolved oxygen (DO) and biochemical
oxygen demand (BOD). The discrete form of the Streeter-Phelps law [9] is taken along with
the experimental data as

t+1

kICImax + (1 - kl)q’ - kzM'
Wt = u' — kou, (4.12)

where ¢' isthe DO concentration in mg/liter at timer; g,uq. iSthe maximum DO concentraion;
u"is the BOD in mg/liter at time #; K\ is the rate of reaeration per day; and &; is the rate of
BOD decrease per day.
Complete polynomials are considered as
t—2 =Ty

t+1 to =1 to—1 =2 -7
q :f(qu »q 1 q suwul ’ul »"'7“t T.)
1+1 R B 4 - too—=1 =2 t—T2
u =f([/aq yq g Tl:uvu s U IS T_)a (4.12)

where 71 and T2 are time delays taken as three. The combinatorial algorithm is used
to generate all possible combinations of partial models. The data is collected in daily
intervals—65 data points are used in training and 15 points are kept for examining the
predictions. The combined criteria of "minimum bias (7,,) plus prediction (i)” is used for
selecting the best model in optimal complexity. The optimal models obtained are

g = 1.3350 + 0.8142¢" — 0.000014'
Wt = u' — 025454 +0.14714' 3. (4.13)

The prediction errors for the model of DO concentrations is 7% and for the model of
BOD, 14%. This shows how a physical law can be discovered using the inductive learning
approach.

The interpolation region is the space inside the three-dimensional grid with points located
at the measuring stations and which lay inside the time interval of the experimental data.
The extrapolation region in general lies outside the grid, and the prediction region lies in the
future time outside the interpolation region. Usually, the interpolation region is involved in
the training of the object. According to the Weiesstrass theorem, the characteristic feature
of the region is that any sufficiently complicated curve fits the experimental data with any
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desired accuracy. In the extrapolation and prediction regions, the curves quickly diverge,
forming so-called "fan" of predictions. The function with optimal complexity must have
the best agreement with the future process development.

The following example illustrates modeling of a two-dimensional (x, ) physical field of
an ecosystem for identification, prediction, and extrapolation. This shows that the optimal
pattern and optimal remainder can be found by sifting al possible patterns, with the possible
terms of "source function" using the multilayered inductive approach and the sequential
application of minimum bias and prediction criteria

Example 2. The variables (i) dissolved oxygen ', (ii) biochemical oxygen demand ',
and (iii) temperature 7* are measured at three stations of a water reservoir at a depth of
0.5 m. The measurements are taken eight times at 4-week intervals. As a first step, with
the measured data, a uniform two-dimensional grid (16 x 16) of data is prepared by using
quadratic interpolation and algebraic models [46].

Here two types of problems are considered: prediction and extrapolation problems. The
model formulations are considered as combination of source and operator functions with
the following arguments.

(i) Prediction problem:

t+1 t—1  1—2
"fl(x t)+ﬁ(qu ,C], 7ql l,qu,ll”M s U Ui, l+l7 :)

u;+l =.f§3(x7’)+.ﬁ1(ql'7q,‘ aq, 7‘], laqH-lﬂunul lau;_’,au: 1 1+la 1) (414)

(ii) Extrapolation problem:

t+1 t 1— 1

Ghe = 500+ foldh af 1, gfay ai™ s al b ui g T T
u;«ﬂ =f7(xvt) +f8(¢I;y‘IL1aCIf_2»f11 7‘1:“,“,7”, 17"‘: 2 ut 17 :+l TI) (415)

The data tables are prepared in the order of the output and input variables in the function.
Each position of the pattern gives one data measurement of the initial table.

The complete polynomial in each case is considered second-degree polynomial. For
example, the complete polynomial for prediction of DO concentration is

¢t = (ap + ayx + azt)

+(asq} + asqi” "o trangl,, +agud + aguf_l + - tanul,, +anT!

+a14q,- -+ a24T + a25q’qf Teoo g a79uf+le), (4.16)
This has 80 terms: 14 linear terms, 11 sgquare terms, and 55 covariant terms. A multilayer
algorithm is used. In thefirst layer, C3, (=3160) partial models are formed and the best 80
of them are selected using the minimum bias criterion. It is repeated layer by layer until the
criterion decreases. At the last layer 20 best unbiased models are selected for considering
long-term predictions. Finally, the optimal models for each problem are chosen with regard
to the combined criterion "minimum bias (v,) plus prediction (¢3).”

For prediction:

gi*' = 12.4306 — 4.6477u! +0.1615g,u! + 0.88961! — 0.0035ulu’*" + 0.0004s;

3 = 0.00012
u*l = 1.1149 + 0.0200u, ' T! + 0.0042ul,, T!;

¢3 = 0.0003. (4.17)

Il
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For extrapolation:

gl = 9.5237 +0.0937ulu!_, +0.0031u!T!
+0.2500u! _yu!_, — 0.1403ul_,u*' — 0.0271ul__,
+0.0392u!_,q! ™" — 0.1782u!_u! ™" — 0.0288u; "
—0.1046u, ' uf*";
¢3 = 0.00015
Uiy = —0.1798 + 1.1573u! — 0.1124u! +0.000966u~'T;
¢3 = 0.000075. (4.1

The accuracy of these models is considerably higher for long-term predictions or extrapo-
lations of up to 10 to 20 steps ahead (the error is not over 20%).

In the literature, "Cassandra predictions’ (prediction of predictions) are suggested under
specific variations in the data [1], [30]. As we al know, the fall of Troy came true as
predicted by Cassandra, the daughter of King Priam of Troy, while the city was winning
over the Hellenes. It is important that the chosen model must predict a drop/rise in the
very near future on the basis of monotonically increasing/ decreasing data, correspondingly.
If the model represents the actual governing law of the system, it will find the inflection
point and predict it exactly. Usually, the law connecting the variables is trained in the
interpolation region to represent the predicting variable. This does not remain constant in
the extrapolation region. "Cassandra predictions’ explains that it is possible to identify a
governing law within the reasonable noise levels on the basis of past data using inductive
learning algorithms. For example, let us consider the model formulation as

q = [f(u,1)
Uj =fj"(“)» j: 1’27' Te,m, (419)

where q is the output variable, « is the vector of input variables, and ¢ is the current time.
The secret of obtaining the "Cassandra predictions’ is to build up the function that has the
characteristics of variable coefficients.

To identify a gradual drop/rise in the data at a later time by predicting ¢, one has to
obtain the predicted values of u; using the second function and use these predicted values in
predicting g. In other words, it works as prediction of predictions. However, the "Cassandra
predictions’ demand more unbiased models (0 < 1, < 0.05). For an unbiased equation
g = f(u,1) to have an extremum at an prediction point («',¢,), where ¢, is the time the
prediction is made, it is expected that either a decrease or increase occurs in the value of
g. If the data is too noisy, it restricts the interval length of the prediction time.

Here another example is given to show that the choice of a pattern and a remainder
uniquely determines the "operator" and the "source function" of a multidimensional object.

Example 3. Identification of the mineralization field of an artesian aquifer in the steppe
regions of the Northern Crimea is considered [56], [57].

We give a brief description of the system; a schematic diagram of the object with
observation net of wells is shown in Figure 4.2. The coordinate origin is located at an
injection well. The problem of liquid filtration from a well operating with a constant flow
rate is briefed as below: an infinite horizontal seam of constant power is explored by a
vertical well of negligibly small radius. Initially the liquid in the seam is constant and the
liquid begins to flow upwards at a constant volumetric rate. From a hydrological point of
view, the object of investigation is a seam of water-soaked Neocene lime of 170 m capacity,
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Figure 4.2. Location of observation wells

bounded from above and below by layers of clay that are assumed to be impermeable to
water—in the sense that it does not permitting significant passage of liquid. The average
depth of the seam is 60 m. The piezometric levels used for exploring the seam are fixed at
a depth ranging from 0 to 7 m below the earth's surface. Their absolute markings relative
to sealevel vary between 0.8 and 4.0 m. In the experimental region, the water flow has a
minor deviation in the northernly direction—this agreeing with the regional declination of
the seam in the direction of the flow of subterranean waters of this area. According to the
prevailing hypothesis, the Black sea is regarded as a run-off region—this is confirmed by
the intrusion of salty waters into the aquifer, accompanied by a lowering of the water head
in the boundary region as aresult of high water extraction for consumption. The aquifer has
an inhomogeneous structure, that consists of porous lime with cracks whose permeability
varies adong the vertical from 8 to 200 m per 24-hour period. The mineralization of the
water varies along the vertical from 2 to 3 g/1 (as the surface of the seam) to 6 g/l at a
depth of 100 m from the surface.

The physical law that is considered as a dynamic model representing the mineralization
is the conservation of mass. In hydrodynamics this principle is caled continuity law or
"principle of close action." The equation is expressed as

9  0q 9dq 9q O  0q 0  0dq 0 . Oq
o o TV ay e T e T 5, %5 K p)!
= Qy(x,y,2,0) + P(x,y,2), (4.20)

where u, v, and w are the velocity components, K., Ky, and K are the diffusion coefficients,
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Q, is a source function for the ith element, and P is a function representing the interaction
of the terms ( it is caled "remainder").
This can be expressed in the discrete analogue as follows:

(G55 — g0+ gl o — 450 + V(@ jorx — G0 + WG a1 — G5, 0)]

—’)’2[Kx(q;+1,j,k - 2‘1;,,',1( + ‘]Ll,;’,k) + Ky(qg,jﬂ,k - 2‘1;,j,k + ‘1;,,‘71,1()“'

K(qijae1 = 2G5 j i+ Giju—1)] = 06, 9,2,0), (4.21)

where: v, = 7/h, v2 = 7/h?; f(x,, 2, )is taken in the general form as

flx,y,z2,0) = P(x,y,2) + Qylx, y, 2, 1)
0.35R;
- -1 ' Qe T 4.22
= ap+aix+ayy + a3z asq;;zy g +asd; iy + aﬁ—m (4.22)

in which Q is the water flow rate in cubic meters during time Az, R is the distance of a
point with coordinates x, y, z from the injection well, R = /(x*+y?> +2%), Zz =7 —2z, tiS
the running time from the beginning of the operation (in 24-hour periods), and 0.35 is the
optimal value determined for porosity of the medium.

There exists a unique correspondence between the adopted pattern and dynamic equation
of the physical field. The choice of pattern determines the structure of the dynamic equation,
but only of its left side operator and not of the right-side part of the equation. The optimal
pattern is determined by the inductive approach using an external criteria. The pattern
must yield the deepest minimum of the criteria. In other words, the optimization problem
is reduced to a selection of a pattern. The inductive approach is of interest because it
leads to discovery of new properties of the system. Simulation of complex systems by this
approach is very convenient for examining a large number of percolation hypotheses and
selecting the best one. The selection of the arguments in the algorithm is directly related
to the percolation hypothesis to be adopted and must have a sufficiently wide scope. In
this example, the optimal selection of arguments is based on sorting of a large number of
patterns.

The above finite difference equation is considered a reference function representing the
"complete” pattern. All the partiadl models corresponding to the partial patterns can be
obtained by zeroing in the terms of the reference function as is done in the "structure of
functions." This means that a specified pattern determines the operator of the left side
equation, and not the remainder. For example, for pattern no. 1 the partial function is given
as

1 TW TU
(qr,rj,k - ‘1?,,',/() + 7(51;,,',1@1 - le;,',k) + 7(‘1§+1._/,k - ‘Iz,j,k)_

Kqinijo — 24ijx + dio1 i) = F 0,20, (4.23)

Overall, there are 13 coefficients for the complete pattern. 2!* — 1 partial models are
generated if the combinatorial algorithm is used. It is equivalent to the optimal selection of
arguments based on sorting a sufficiently large number of patterns. The difference data is
measured from the given region with interpolation of the g value at the intermediate points
of the mesh. The problem is reduced to the selection of an optimal pattern among a set of
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Table 4.1. Vaues of the minimum bias criterion

Nb. Val ue No. Val ue No. Val ue

0. 08239 8 (004669 | 15 | O
0. 08239 9 | 000 | 16 |0
008239} 10 | 00646 | 17 | O
0. 11075 11 ] 006545 | 18 | 0 04669
0
0
0

004669 | 12 | 006545 | 19
004669 | 13 | 0. 04660 | 20
0.09%652 | 14 | 0 04669 | 21

<NOUDNWN—

patterns; i.e., a unique model that yields the deepest minimum of the combined criterion is
selected.

c1? = qff + AX(W/A), (4.24)

where 7, is the normalized minimum bias criterion and A(W/A) is the normalized regularity
criterion.

The total number of feasible patterns is 2 — 1 = 63. Some of the patterns are shown
in the Figure 4.3. Table 4.1 exhibits the values of the minimum bias criterion for these
patterns. The optimal pattern with regard to the combined criterion ¢\ is found to be pattern
9. The optimal equation is
Ttk — 2056+ 91k 5 15‘1§J+1,k 'ﬁgﬁ
h? ' 2h

o.}sRi

Qe 7
\/;47TR1‘ '

The last two terms in the equation correspond to the remainder function.

gt = 1.325¢,;, +14.13

—0.087474 !, , — 0.002716 (4.25)

Stability analysis

The stability analysis of equations of the form above was carried out. It was proved that
stability with regard to the initial data can be realized under the conditions

<

P S 2
2K, 27K,

() < (1 - TRy (4.26)
T h?

where the former is the well-known stability condition and the latter is the condition for
interconnection of the coefficients of the finite-difference equation.

2 COMPARATIVE STUDIES

As a continuation of our study on elementary pattern structures, some examples of cor-
respondence between linear differential equations and their finite-difference analogues are
given in Tables 4.2 and 4.3. Here time ¢ is shown as one of the axes (see Figure 4.4).

For physical fields some deterministic models are usually known, they are given by
differential or integro-differential equations. Such equations from the deterministic theories
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Pattern No. Pattern No.

Pattern

k+ 1

k+1

Figure 4.3. Certain patterns among 63 feasible patterns
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Figure 44. Field in coordinates of x and t

may be used for choosing the arguments and functions for a "complete” reference function.
A complete pattern is made from the deterministic equation pattern by increasing its size
by one or two cells along al axes; i.e., the equation order is increased by one or two to let
the algorithm choose a more genera law.

2.1 Double sorting

There are two ways of enlarging the sorting of arguments. One way is as shown in Tables
4.2 and 4.3 and starts from the simplest to the more complex pattern. Another way is by
considering higher-order arguments for each pattern and sorting them. The polynomials
with higher-order terms provide a more complete view of the set of possible polynomials.
The complexity of the polynomials increases as the delayed and other input variables are
added to them. For example, shown are the pointwise models of a variable g using simple
patterns. Without delayed arguments, it is

qt" = f(¢") = ap+arq' +arg" (4.27)
with one delayed argument it is
¢ = f(d',q") = av+arg +axg " + g +aug ™" +asq'q ™, (4.29)
and with two delayed arguments,

qt+l :f(qr,qrfl’qer)
_ ' t—1 =2 A —12 1—2
=ap+aiq +axq + aszq +asq +asq + deq

+arq'qd " +agq'qd T +asg g2 (4.29)

1 2
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Table 4.2. Sorting of elementary patterns and data Tables

Pattern Model and its Discrete Analogue Data Tab‘le
Representation

%% +a1g = f(z.t),
[

— o

i3 341

gt = fulz.t) + falal)

y i1
3
B+ gE +aq = flr,t), _ t
= fi(z,t) + falgl, ¢iy)
| S )
i Tl
pi-1,j
atz +a1 4 a5+ azq = f(a.1),
s Qf+q1!+ ¢
AR et = file ) + falal gl dlly)

g—i;l +Cll +(lz —+—a3m
+agg = flz,1), ]t ool

gt = filx,t) + falgh gleydlo g Y)

3!3 +a1 8t2 + 0,25? + ‘“azl +(L401
+aaq— f(IYt)1

¢t = filat)
+hldhd g g g

()f“iq,’ quﬂJql lq,‘ ‘{ql ‘1

i+1]

Similarly, in case of two variables g and x, the formulations

+1 - f(qf,xt)’
U= fg' x g x g x Y, (4.30)

and so on, gradually increase their complexity. In the same way, spatial models can be
developed by considering the delayed and higher-order terms. Sorting of all partial polyno-
mials means generation of all combinations of input arguments for "structure of functions"
using the combinatorial algorithm. One can see that the sorting is done in two aspects. one
is pattern-wise sorting and the other is orderwise sorting. This is called "double sorting."
These are used below for modeling of simulated air pollution fields in the example given.
One should distinguish between Tables of measuring stations and interpolated initial
data. Different patterns result in different settings of numerical field of the Table. The
measurement points are ordered as shown in the "data representation” (Tables 4.2 and 4.3).
Each position of a pattern on the field corresponds to one measurement point in the data
table. Each pattern results in its own datatable; there are as many tables as there are patterns
compared. Tables resulting from the displacement of patterns with respect to the numerical
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Table 43. Sorting of "diagonal" type patterns and data tables

‘Diagonal’ Type Model and its Discrete Analogue Data Tab‘lc
Pattern Representation
7 j+1
] — [l
1-1 % 4+ 0,52+ asg = f(z,1),
<1,'+] 4y
1
gt = fi(z,t) + falglly)
F-17 j+1
2 2
i — 2 %g+alg?¥+az%%+“3§5
i— 1 +a4q = f(z,1), 41 |t t—1
i i-1 [di-2

gt = filz,t) + falglo1,4i23)

3 3 2 52 ¢
b B+l el o 4ol
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field of dataare divided for external criteria. The best pattern provides the deepest minimum
of the criteria

2.2 Example-—pollution studies

Example 4. Modeling of air pollution field. Three types of problems are formulated
[47] for modeling of the pollution field using: (i) the data of a single station, (ii) the data
about other pollution components, and (iii) combining both.

Inthefirst problem, thefinite-differenceform of the model is found by using experimental
data through sorting the patterns and using the higher-ordered arguments. The number of
terms of the "complete” equation is usually much greater than the total number of data
points. In the second problem, the arguments in the finite difference equations are chosen
as they correspond to the "input-output matrix" [122] of pollution components; whereas
in the third problem, it corresponds to the "input-output matrix" of pollution components
and sources. Three problems can be distinguished based on the choice of arguments. The
first problem is based on the "principle of continuity or close action;” the second, which
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is opposite to the first, is based on the "principle of remote action." The third is based on
both principles "close and remote actions."

The number of stations that register pollution data increases each year, but sufficient
data are still not available. The inductive approach requires a relatively small number of
data points and facilitates significant noise stability according to the choice of an external
criterion. The mathematical formulations of a physical field described in connection with
the above problems compare the different approaches. Additiona measurements are used
for refinement of each specific problem. In representing the pollution field, station data,
data about location, intensity and time of pollutions are used. The choice of output quantity
and input variables determines the formulations. This depends on the problem objective
(interpolation, extrapolation, or prediction) and on availability of the experimental data

Before explaining the problem formulations, a brief description about the formation of
"input-output matrix" is given here.

Input-output matrix

The "input-output matrix" is estimated based on the linear relationships between the pol-
lution sources u and pollution concentrations ¢ using the observation data at the stations.
The matrix is used as a rough model of the first approximation and the differences between
the actual outputs q and estimated outputs using the inductive algorithm. The pollution
model in vector form is given as q = f.u, where q is the pollution concentration at a station,
u is the intensity of the pollution source, and f is a coefficient that accounts for various
factors relating to the source and diffusion fields—f is regarded as a function of the relative
coordinates between pollution source and the observation station. Other factors, such as
terrain and atmospheric count, are implicitly taken into consideration in determining f on
the basis of observation data.

For a set of sources u;,j = 1,2,---,m, the pollution concentration for each observation
station g;, i = 1,2, --,n is represented by

g9 = Zfi(xy»)’ij)“j? i=1,2,-,n, (4.31)

J=1
where

xj=x—x; =02, j=12,---.m

5
yljzytr_yj" i:1727"'an;j=1w27”'7m'

gqi is the pollution concentration at the ith station; w;is the intensity of the jth source; xj, y;
are the coordinates of the ith station; x;,y; are the coordinates of the jth source; n is the
number of stations and m is the number of sources.

This can be written in matrix form as

g = F.u, (4.32)
where

qT = (‘117512»"',%)» uT = (u17u21"'vum) and

Su fiz o fim
F= 2 f22 “+ fom

fnl ﬁvZ ﬁ!m
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Here F is called the "input-output matrix." Each elementf; can be described by

/2 2
2 2 —a; X5 4y,
f;'j = ag;j + ayjxi; + azyi + a3jx,-j + a4jy,~j + as;Xi;yij + agje 1 uoy, (433)

which is estimated by using spatially distributed data. The equation obtained for one source
can be used for all other pollution sources. The matrix F is determined by applying f;
to each source. This is treated as a "rough" model because of its dependence on the
coordinate distances in the field. This is used to estimate the linear trend part of the system,
the remainder part, which is the unknown nonlinear part of the system, is described by

1 & .
Agi= — g0y i=1,2, N, (4.34)

j=1
where

Xj=x = x5 i=1,2, N, j=1,2,---.m

}’Uzy[r-—yj, i:1,2,'°~,N;j=1,2,--',m,

Ag; (= gq; — §;) is the remainder at the ith point; N is the total nhumber of points on the (x,y)
grid; the function g;(x;;, y;) is described by a polynomial of a certain degree in x; and yj.
The remainder equation is estimated as an average of m source models that is identified
by using an inductive algorithm. The predictions obtained from the linear trend or rough
model are corrected with the help of a remainder model.

Problem formulations

The first problem is formulated to model the pollution field by using only the data of a few
stations; this is denoted as I-1. Here the emphasis of modeling is to construct the pollution
field not only in the interpolation region, but also to extrapolate and predict the field in time.
Pollutants are assumed to change slowly in time so that complete information about them
is not used. Only the arguments from the stations data are included in the formulation.

1-1.

(1) for prediction

1 _ oot t ! (—1 -2 f—T
gy =5 di1jp 99 iy iy s

Gl Gir oo Dint o ‘1:,;1’ ‘12,;2’ e ’qy,-kT); (4.35)
(ii) for extrapolation

t _ i t—1 1t t t
Gierj = Jibijs Gij iy »dimrjr Di-2jo" "> Gierjo

t t—1 t t+1 t t
Qi 9ix sGi—1>9ik di—24 """ s Gimr i) (4.36)

where g;; is the pollution parameter j measured at the station i at the time ¢ f; indicates
the vector of polynomial functions corresponding toj parameters. The input variables may
include delayed and higher-ordered arguments; for example, qj’f', q;(“l, qu.z, qf ,
(q\q}), (qg;™ "), -+ at station i.

One can encounter the influence of the phenomena considering the settling of polluting
particles. Externa influences with the above diffusion process and source function are
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introduced. The source function includes perturbations such as the wind force vector P and
its projection on x—axis V’. In general, the formulation for prediction looks like

4t =[G +fx D+ 0P, V), (4.37)

where f(x, t) is the trend function with the coordinates of x and t is the pollution component;
similarly one can write for the extrapolation.

The second problem is formulated to model the physical field by using the "input-output
matrix" aong with the above turbulant diffusion equations. This is usually recommended
when forecasting of the pollution changes in time. This has three formulations; these are
denoted by II-1, 11-2, and 11-3 as given below.

II-1. In the first formulation, the "input-output matrix" uses only information from the
stations. The prediction equation at the station i is

a5 = Y fuias), (4.38)
s=1sH#

where g, denotes the vector of [¢! 1,4\, -+, 417 * . qY, qj.;1,° g = Leeom
are pollution parameters; » is number of stations; / is a polynomial function operator; m is
the number of components. The pollution at the rth station (or field point) depends on the
values measured at the neighboring points. For example, n=3, m=2, and T= 2

+1 _ t t—1 =2 1 =1 -2 i —1 =2 1 —1 =2
g1y = 021,95, 422 422:822 92 )+ 431,451 43 1 4325432 5935 )

(4.39)

11-2.  In the second formulation, it uses the "input-output matrix" containing only informa-
tion about the pollutants. The prediction equation for station i is

14
a5t = > S, (4.40)
s=1

where u, denotes the vector of pollutants [}, ul ' e e+ ul T 0o ul  ul) o Wl TP is

the number of sources. For example, m=2,r=2, andp= 2

1 t—1

t—2 1 1—2
Uy U g Uy s ).

(4.41)

+1 _ t —1 =2 t—1 =2 g t r—
q1,1 "flAl(”],lvul,l YU U 2 Uy o Uy o )+ 20Uy ), 1y

II-3.  In the third formulation, it uses the "input-output matrix" containing the information
of neighboring stations and the pollution sources—both q and « appear in the matrix. The
prediction for station i is

n P

g5 = D L)+ Y frglus). (4.42)
s=1:s7 s=1

It is good practice to add a source function Q to the above formulations in order to consider

external influences like wind force, temperature, and humidity. The complete descriptions

are obtained as sums of polynomials as was the case in the first problem. The formulations

with the source function may aso be considered for multiplicative case; for example,

n 14
Gt = QP VY + Qa(P VLD frj@) + Y fejul. (4.43)

s=1;s5 s=1
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This is done if it provides a degper minimum of the external criterion.
The third problem is formulated to model the pollution field by using the principles of
"close action” and "remote action.” This has three formulations.

HI-1. This uses the "close action” principle as well as information of stations forming
the "input-output matrix;” this means that a combination of I-1 and Il-1 is used in its
formulation.

I1-2. This uses the "principle of close action" and information of pollutants forming the
"input-output matrix;” thus, a combination of I-1 and I1-2 is used in its formulation.

111-3. This uses the "principle of close action" and information of stations and sources of
pollutions from the extended "input-output matrix;” this means that a combination of I-1
and I1-3 is used in its formulation.

The above seven types of formulations are synthesized and compared for their extrapo-
lations and predictions by using a simulated physical field. The field is constructed using a
known deterministic formulathat allows changes of pollution without wind and that assumes
that particles diffusion in space.

_ 2R [T e
q_kx R x

x=p

dx, (4.44)

where k is the turbulant diffusion coefficient, R is the distance between station and source,
and 7 is time from the start of pollution to the time of measuring. The number of sources is
assumed to be one. The change of pollution source and concentration of polluting substances
are shown in Figure 4.5; the above formula is used to obtain the data. Integral values serve
as the arguments.

All polynomials are evaluated by the combined criterion ¢3, "bias plus prediction error."

c3? = BE + (W), (4.45)

where 72, and (W) are the normalized minimum bias and prediction criteria, respectively.
For extrapolation error A%(C) is used instead of step-by-step prediction errors.

S — 4@k — g

Mhs = N (4.46)
St 43
where 6 is the noise immune coefficient that varies from 1.5 to 3.0, and
(@p — ap)*
(W) = 2 peny G — dr (4.47)

ZPENW q[zl

The solutions of the first and second problems allow one to construct the field, extrapolate,
and predict along the spatial coordinates. The solution of the second problem also allows
one to interpolate, extrapolate, and predict pollution parameters at the stations. The results
show that the model, based on the "principle of close action," cannot survive aone for better
predictions compared with the model that are based on the "principle of remote action" (11-3)
and on the "combined principle" (l11-2).

Modd 17-3.

g =2.0361 — 2.1815¢5" — 0.2102¢5> +0.00754u" +0.1099g545 % + 0.39244,™"
+0.00002¢5 — 0.0000024,45" — 0.0000014} . (4.48)
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Figure 4.5. (a) Change of pollution discharge in time (from the experiment) and (b) change in
concentrations of polluting substances at stations 1, 2, 3.

Model 111-2.

g = 0.4228 — 0.7792g) — 0.5797¢/"" — 0.4908¢' > +0.944]_, + 1.15024,,

-2 I -1 t =2 -1 12
+0,0442uj’- +0.0047qj +0-0017qu"1]" +0.00]8qjqj +0.0074qj q;

—0.0211g,""'q™> +0.0045¢/ "'}, — 0.0066¢) *q_, — 0.0021¢; g},

+0.0187¢/73¢/_, — 0.0032¢] | — 0.002q)_ 4., (4.49)
wherej indicates the pollution component pertaining to the station 1.

Figures 4.6 to 4.8 illustrate the step-by-step predictions of al formulations. Table 4.4
gives the performance of these formulations on the given external criteria.
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Figure 4.6. Performance of model I-1 ("close" action principle)

Table 4.4. Performance of the formulations

Formulation c3 s | AO) i

I-1 0.032 | 0.017 | 0.027 | 0.182
II-1 0.061 | 0046 | 0.040 | 0.188
11-2 0.089 | 0.082 | 0036 | 0.169
11-3 0.080 | 0.054 | 0.059 | 0.151
I11-1 0.064 | 0.063 | 0.026 | 0.176
111-2 0.033 | 0.009 | 0.031 | 0.149
I1-3 0.115 [ 0.050 | 0.040 | 0.246

3 CYCLIC PROCESSES

We have studied the formulations based on the "principle of continuity or close action,"
the "principle of distant or remote action,” and, to some extent the "principle of combined
action" using a combination of formulations. The "close action principle" is realized by
considering nearby cells and delayed arguments in the finite-difference analogues. The
"remote action principle” is arrived at by constructing the "input-output matrix," which is
one way of realizing this principle. The elements in the "input-output matrix" can be the
values of perturbations or values of variables in distant cells. The "combined action" gives
the way to consider the influence of both principles on the output variable.

Many processes in nature that have characteristic cyclic or seasonal trend are oscillatory.
For example, the mean monthly air temperature has characteristic maxima during the sum-
mer months and minima during the winter months. These values of maxima and minima
do not coincide with one another from year to another. Therefore, processes with seasonal
fluctuations of this kind are called cyclic in contrast with the strictly periodic processes.
They include all natural processes with constant duration—a cycle (year or day). The vari-
ations in these processes are determined by the influence of supplementary factors. Certain
agricultural productions, economical processes (sale of seasonal goods, etc.), and techno-
fogical processes might be classified as cyclic. These are described by integro-differential
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Figure 4.7. Performance of (@) model II-1, (b) model II-2, and (c) model I1-3 for "remote" action
principle
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Figure 4.8. Performances of (a) model III-1, (b) model 111-2, and (c) model 111-3 for "close" and
"remote” action principles
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equations—among such processes are the non-Markov processes. Such equations contain

terms such as moving averages (sometimes referred to as "summation patterns’). For ex-
ample, an equation of the form

0
/ th+d—q+q =0 4.50)
4 dt

has a finite-difference analogue as

1=k .. t

a (q +q ' +g)rag — g H+ag = 0. (4.51)

k+1
The "summation pattern” represents the moving average of k cedls in the interval of integra-
tion. In training the system, the moving averages take place along with the other arguments
of the model. For each position of the pattern on the time-axis, corresponding summation
patterns are considered.

The use of summation patterns for obtaining predictive models implies a change from
the principle of close- or short-range action to the principle of combined action because the
general pattern of the finite-difference scheme is doubly connected. In other words, during
self-organization modeling, two patterns are used: one for predicting the output value and
the other for the value of the sum. Predictive models have a single pattern that is based on
the "principle of close action" are suitable only for short-range predictions. For example,
weather forecasting for more than 15 days in advance using hydrodynamic equations (the
principle of close action) is impossible.

Long-range predictions require a transfer to equations based on the principle of long-
range action and combined models. In a specific sense, such models are a result of using the
interior of balance of variables based on the combined principle. The external criterion that
is based on a balance law allows specification of a point in the distant future, through which
the integral curve of stepwise prediction passes, and selects the optimal prediction model.
It enables overcoming the limit of prediction characteristic of the principle of short-range
action.

The criterion of balance-of-variables (refer to Chapter 1) is the simplest way to find
a definite relationship (a physical law) among severa variables being simultaneously pre-
dicted. This is the basis of long-range prediction using the ring of "direct" and "inverse"
functions. The ring can be applied both for algebraic and finite-difference equations. The
second form of the balance-of-variables criterion is the prediction balance criterion, which
fulfills the balance law. This simultaneously uses two or more predictions that differ in the
interval of variable averaging in selecting the optimal model. For example, in choosing a
system of monthly models the algorithm utilizes the sequence of applying the criteria

Fo — Fi1(Ms) = Fa(Bponn) — F3(Byear); F3 K< Fy < Fy < Fy, (4.52)

where F\ number of models are selected out of Fo number of models using the minimum
bias criterion 7, or prediction criterion i—in the case of a smal number of data points.
Using the monthly balance criterion B,onm, F2 number of models are selected from F;.
Finally, using the annual balance, one optimal model or a few models (F3)are chosen.

Here we describe the model formulations with one-dimensional and two-dimensional
readout and the realization of the prediction balance criterion for cyclic processes.

3.1 Model formulations

One-dimensional and two-dimensional models are given for comparison.
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At

Figure 4.9. Pattern movement. The arrow indicates movement during training along (a) a t—axis,
and (b) a T—axis

One-dimensional time readout

Let us assume that given a sampled data, ¢’ is the output value at time t depending on its
delayed valuesg'~', g/ ~2,*«+. Wehave

¢ =fO+AG " qd72 973, (4.53)

where f; is the source function, which is a trend equation as ¢' = f;(r). The data, given in
discrete form, is designated at equal intervals of time (Figure 4.9).

Two-dimensional time readout

If the process has an apparent repetitive (seasonal, monthly) cycle, one can aso apply a
two-dimensional readout. For example, let 7 be time measured in months and T the time
measured in years. The experimental data takes the shape of a rectangular grid (Figure 4.10).
The model includes the delayed arguments from both the monthly and yearly dimensions
in the two-dimensional fields,

qI,T = .f](t7 T) +.f2(qt—1,Taqf—2,T1 e 7Qr,T—1’CIr,T—2, te ')1 (454)

where fi(z, T) is the two-dimensional "source function”—considered two-dimensional time
trend equation.

The trend functions are obtained through self-organization modeling by using the min-
imum bias criterion. With the one-dimensional time readout, the training of the data is
carried out using its transposition along the horizontal axis t. With the two-dimensional
time readout, training is done by transposing the pattern along the vertical axis T (Figure
4.11) for individual columnwise models or along the both axes (¢, 7)for a single model.
Connecting the participating delayed arguments of the output variable provides the shape
of the pattern used in the formulation.

One advantage with the data of two-dimensional time readout is that it can be used to
build up a system of equations (the seasonal fluctuations in the data are taken care of by
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Figure 4.10. Scheme for two-dimensional time readout: (a) a model using predictions of moving
averages oy, 7y and (b) a model using the averages oy, _; 7,8s arguments.
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Figure 4.11. Schematic diagram for training of the model for the month of March by transposing
patterns ¢, v and oy 1, along the T— axis.

the system of equations). Each model in the system of equations is valid only for the given
month and the system of equations (twelve monthly models) for the whole process. For a
long-range prediction with stepwise integration, a transition is realized from one month”s
model to the next month's model. Similarly, the idea of three-dimensional time readout can
be realized in modeling cyclic processes (for example, period of solar activity; see Figure
4.12).

Moving averages In modeling of cyclic processes, one or more of the following moving
averages are considered arguments of the model [65].

1
Ohg = @+ dmgen i k=2.3,00,12 (4.55)

When one moving average is used, it is reasonable to select precisely that moving average
which ensures the deepest minimum to the model. If all possible moving averages are used,
there remain only the most significant ones—usually two averages o3 and ;> corresponding
to season and year remain more frequently than others. Moving averages can also be
considered by giving weights to the individual elements.
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Figure 4.12. Pattern representation for three-dimensional time readout, where t represents month
T years, and = units of 11.2 years (in case of solar activity).
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Monthly models

In the two-dimensional time readout, each cell of the numeric grid (¢, T) is represented
through the output value ¢ and the estimated value of a moving average .. For example,
a monthly prediction model has the form

a,t = HWED) + (G-, 1, G275 Qe T~1,Gr, T2, "
a"‘t.T’ Ok 70 Ok_y " 0Ok Oy p_yn ™ ) (4.56)
The estimated values g;,r and oy, . are not known in the process of prediction, but the others

can be determined from the initial data or by predictions. The monthly prediction model
(full description) for oy, ;. is

6k, ¢+ = BT +fa@rr, G-, 1. =275+ Qe 115172, ), (4.57)

where fi,f2,f3, and f; are the polynomials. There are auxiliary variables that can be used
in the complete descriptions.

3.2 Realization of prediction balance

The balance relation » for the prediction of sth year is expressed by

1
bs = [6x, ;)5 — m(f{r,r + @ T+ G2+ Gk Ts, (4.58)

wheres = 1,2,---,N and N is the number of years of observing process. The criterion of
monthly prediction balance for each month is written as

N
Boonn = st (459)
s=1

It is difficult to see the feasibility of the criterion in this form because we need to know oy, .
to predict g, 7. We need to know ¢, 7 to predict oy, . This requires a recursive procedure.
Assuming the initial value ¢, r- 0, we find O, 7 the second value ¢, 7,and so on until the
value of the criterion Bu..x decreases. It is necessary to eliminate either oy, or g, rfrom
the composition of the arguments. (Possible simplification follows below.)

The monthly prediction model for q is

QI,T = &lI,T = fl(ta T) +f2(6-k1_7-1 gk,‘l.Ta Uk,_:y]'ﬂ Tt okth_] s Uk,‘T_,Qa Tt
Gr—1.Ts qr=2,Ts* " qr,T=1,41,7—2, " * ) (4.60)

The monthly prediction model for oy is

Gk, = LOD +falgi-r,1,@—2,15 @, 7=15 41,725+
ka—l,T’ (71(,72'7') Ty UkI,T-— El 0’/{,)7*_27 o ) (461)
The criterion of monthly balance remains unchanged and is in usable form with the simpli-
fication in the formulations.

N
Boonth = Zb? 4.62)
=3
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The sequential application of criteria is according to the scheme Fo — Fi(15) — F2(Bumonn) —
FB(Bw'ar)~
The patterns of the above models are doubly connected (Figure 4.10). One can use the
expanded set of arguments and can dso eliminate the predicted value of oy, .. One can
use the combined criterion of "minimum bias plus prediction” in place of minimum bias
criterion. When a small number of data points are used, minimum bias criterion can be
replaced by the prediction criterion for step-by-step predictions of A months ahead.

() = Z_:il(_i]";z‘?‘ﬁ
214k

, 1 <A
Q) = N g[ﬂ(x)]s. (4.63)

For example, let us assume that A = 3. To select models for the month of March, one must
obtain all possible models for March, April, and May. The predictions of these models
are used sequentially in computing the prediction criterion error. To obtain the data, the
patterns are used aong the 7, T-coordinate field as indicated in Figure 4.11.

v A
Z,':[”(qi - C]i)z
\'4
S 4}

| o=
N P HENN (4.64)
s=1

[i*3)s = [ Is

i

’3)

The criterion /(3) demands that the average error in predictions that consider a three-month
model should be minimal. This determines the optimal March model; F, number of March
models are selected. Usually Fy is not greater than two to three models.

The criterion of yearly balance is used in selecting al 12 models;, one model for each
month is selected such that the system of 12 models would give the maximum assurance
of the most precise prediction for the year.

N
1 | .
Biear =N ;[qvear - E(q: +qu+ -+ gl (4.65)

where g,.q, is the average yearly value computed directly and used in training. The predic-
tions (Z‘IWr)can be obtained by using a separate algorithm, such as a harmonic agorithm,
while the B, is calculated.

Various sequences of applying criteria can be written as

Fy — Fy(ps) — F2(Buonn) — 1(Byear)s

Fy — F1(c3) = F2(Bimonmn) — 1(Byear),

Fy — FilI(M)] — F3(Byear),

Fy — Fi(c3) — F3(Byear), (4.66)

and so on. The selection of sequence differs in a number of ways depending on the
mathematical formulation, availability of data, and user's choice.
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3.3 Example—Modeling of tea crop productions

Example 5. Modeling of a cyclic process such as tea crop production is considered here
[59], 187].

First we give a brief description of the system. The cultivation of tea on a large scale
is only about 100 years old. North Indian tea crop production accounts for 5/6 percent
of the country's tea output. Tea is cultivated in nearly dl the subtropics and mountainous
regions of the tropics. When dormant, the tea shrub withstands temperatures considerably
below freezing point, but the northern and southern limits for profitable tea culture are set
by the freezing point. A well-distributed annual rain fall of 150 to 250 cms. is good for
satisfactory growth. Well drained, deep friable loam or forest land rich in organic matter
is ideal for growing the tea crop. Indian tea soils are low in lime content and therefore
somewhat acidic. The subsoil should not be hard or stiff. The fertilizer mixtures of 27 kg.
of N, 14 kg. of P,05 and 14 kg. of K,0O per acre are applied in one or two doses.

In North India tea leaves are plucked at intervals of seven to ten days from April to
December; whereas in the South plucking is done throughout the year at weekly intervals
during March to May (the peak season) and at intervals of 10 to 14 days during other
months. The average yield per acre is about 230 to 280 kg. of processed tea. Vegetatively
propagated clones often give as much as 910 kg. of tea per acre. The quality of tea depends
not only on the soil and the elevation at which the plant is grown, but also on the care taken
during its cultivation and processing.

Here two cases are considered: one for modeling of North Indian tea crop productions
and another for South Indian tea crop productions. The weather variables, such as mean
monthly sunshine hours, mean monthly rain fall, and mean monthly water evaporation (data
collected from the meteorological stations during the same period), can be used in the
modeling.

The following sets of variables are considered for the model formulations.

a7 er
Gi—1,1> =275 Gr,7—1,Gr,7—2, ") € P
(02)‘7 1.7 031 2,77 T ’01214.7') €o

SerSe—1,1: 82,70 Ser—1, 8072507
Rir,Riv7Rear,  ,Rer—1, Reren,
ErE v Ear, o Eir-1,Er2,) € Z, (4.67)
where r and T are the time coordinates measured in months and years, respectively; ¢.r is

considered the output variable measured at the coordinates of (¢, 7); ¢,—;rand g, r—;are
the delayed arguments at i units in months and; units in years, correspondingly; ok, |, -

%(q,_1,7+ g2 7+ - - +qp)ae the moving averages of length k. The weather variables
S, R, and E represent sunshine hours, rainfall, and water evaporation, correspondingly.
In modeling North Indian tea crop productions the following model formulation is adopted
for each month.
7-7.
g1 = f(P,o). (4.68)

Because of a small number of data points, the complete polynomial below is used as
reference function for each month.

qrr= do +a1gi—1, 7+ a2qr,7—1+ a3o3,_ +fl4cr6,_, ;- (4.69)
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The sequence of criteria, which has shown better performance than other sequences, is
shown here.

FO d Fl(nbs) - F2[1(3)] - 1(Byear)- (470)

The total number of data points correspond to eleven years; Ny = 5,Ng =5, and N¢c = \.
The coefficient values of the best system of monthly models are given as

Month ¢ ag fli a az ay
1 0.318| 0.026{-0.366
2 -0.010| 0.022|-0.384| 0.013
3 -6.730 0.452
4 -0.620 -0.084 1.309
5 0.276] —1.040 4,335
6 35.350(-0.820|-0.174| 2.289
7 18.010 0.321 1.227
8 67.730(-1.124 —1.459| 4571
9 18.110] 0.313 0.576
10 {-10.340| 1.110
11 |-23.850|-1.017|-0.293 2.485
12 |-10.530 3.498|-2.933

The blank spaces indicate that the corresponding variable does not participated in the model.
The prediction error on the final-year data is computed as 0.0616. The system of monthly
models is checked for stability in a long-range perspective.

In modeling South Indian tea crop productions, five types of model formulations are
considered as complete polynomials that are studied independently.

Different formulations
-1

g1 = f(1,P, 0, 2), (4.71)
where/ is a single function that considers al variables. It is considered a one-dimensional

model that represents the system.

77-2.

qir = fillm) +£2(P, 0, 2), (4.72)

where f1 isthe trend function in two time coordinates; f> is the function of delayed arguments,
moving averages, and other input variables. Use of the two-dimensional time trend function
is preferred when the initial datais noiseless and when individual components of the cyclic
processes that have a character of time variation have no effect. The behavior of f; is
supposed to be effected by these variables.

This formulation is evaluated in two levels. First, the trend function is estimated based
on whole data, residuals are computed, and the function f; is estimated using the residuals.
The final prediction formulation will be the summation of both.

7-3.
qr = fi(r,P,0); i =1,2,---,12. (4.73)

This is similar to the formulation II-1, but represents the system of 12 monthly models; 12
separate prediction formulasf; for each month.




CYCLIC PROCESSES 155

B

025+ ®

02 4 3

0.15+

0.1 +

5
o=, : : : : —
05 1 15 2 25 3 i(N)

Figure 4.13. Selection of optimal model on two criterion analysis

4.
q.T :fl(T) +f2,(P,O-)1 i = 1725"') 12 (474)

This is similar to the formulation 11-2, but has a system of 12 monthly models at the second
level. The trend function f; is a single formula, as in the formulation I1-2. The residuals
are computed on all data; this data is used for identifying the system of 12 monthly models
Sy

1I-5.
qr T = fli(T) +fZJ(P7 U)’ l).] = 172a Ty 12. (475)

Time-trend eguations for each month are separately identified; in other words, the function
fi,(r) is considered a function of 7 for each month. The residuals are computed and the
second set f2j of the system of monthly models are obtained. This makes a st of combined
models for me system.

Each formulation is formed for its complete polynomial; combinatorial algorithm is used
in each case for sorting all possible combinations of partial polynomials as "structure of
functions." The optima models obtained from each case are compared further for their
performance in predictions. The scheme of the selection criteria is

FO - FI(C3) - FZ[I(N)] - l(Byeur)a (476)

where c3 is the combined criterion with "minimum bias () plus prediction (i(W)),” i(W)
being the prediction criterion used for step-by-step predictions on the set W, and i(N)—the
whole data st V.

The data used in this case belong to ten years; Ny = 4, Np = 4, and two years data is
preserved for checking the models in the prediction region. The simplest possible pattern
is considered for the formulations 11-3, 11-4, and I1-5, because of the availability of a few
collected data. In the monthly models the weather variables are not considered for simplicity.
One can se¢e the influence of such external variables in the analysis of cyclic processes. All
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Figure 4.14.

Performance of the best model

optimal models are compared for their step-by-step predictions of up to ten years and tested
for their stability in long-range actions. The results indicate that the formulation 11-5 has
optimal ability in characterizing the stable prdictions (shown in Figures 4.13 and 4.14). The
system of monthly models in an optimum case is given below; first, the set of time trend

models is

fi(D) = ap+ai T+ axT* + 3T + a1,

where

Month ¢

ap

a\

a3

tf4

KEBoowroo~wWN -

5.801
12.380
6.289
9.454
10.364
8.141
6.009
5.665
7.678
6.588
6.288
5.659

0.048
-1.587

-0.082
0.368
0.937
0.057
0.076
0.316

1.917

0.076

-.070

-.013
-.258

0.070

-0.006
-.000012

-.000012

and the set of remainder models is

1;(P,o) = bigi—i,1+ b2grr—1 + b33, +baoia, | 1,

@4.77)

(4.79)
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where
Month i bl bz b3 b4
1 0.626 -0.317|-0.260
2 0.168 -0.923| 0.292
3 1.489 -1.501(-2.611
4 -0.774 —1.976| 3.481
5 1.189 -2.196| 1.215
6 -0.514 3.176{-1.588
7 -0.162 -0.647| 1.188
8 0.355 0.109| -0.587
9 0.334{-0.034 -0.190
10 -0.298! -0.039 0.132
11 1.630 0.931 | -3.238
12 -0.069 0.205

The blank space indicates that the corresponding variable does not participate in the monthly
model. These two sets of monthly model systems form the optimal model for an overall
system.

1-2 & 1I-6. Here is another idea for forming a model formulation which is not discussed
above. This considers a harmonical trend at the first level instead of time trend.

g1 = filsinwt,coswt) +f5.(P, 0, Z), (4.79)

where f; represents a single harmonic function for the whole process with the arbitrary
frequencies and f;, is the system of monthly models. At the first level the harmonic trend
is obtained as g, = fi(sinwt, coswt) using the harmonical inductive algorithm. Residuals
(Ag, = g, — g,) are computed using the harmonic trend, then the system of monthly models
are estimated as in the above cases.

The first level of operation for obtaining the harmonical trend of tea crop productions is
shown. The data g, is considered a time series data of mean monthly tea crop productions.
The function f; is the sum of m harmonic components with pairwise distinct frequencies
wi, k=12---m

fi = Z(Aksin Wit + By cos wit), (4.80)
k=1
where w; #w;, i #j; 0 <w < 7, k=1,2,---,m. The function is defined by its values in
the interval of data length N (1 <1 <N).

The initial data is divided into training N,, testing Nz, and examining N¢ points. The
maximum number of harmonics is m,.IN/3(1 < m < my,,,). The sorting of the partial
trends that are formed based on the combination of harmonics is done by the multilayer
selection of trends. In the first layer, the freedom of choice F best harmonics are obtained
by the selection criterion on the basis of the testing sequence, the remainders are then
calculated. In the second layer, the procedure is continued using the data of remainders and
is repeated in all subsequent layers. Finally F best harmonics are sdlected. The complexity
of the trends increases as long as the value of the “inbalance” decreases (refer to Chapter 2
for details on the harmonic algorithm). In the last layer, the unique solution corresponding
to the minimum of the criterion is selected. As this algorithm is based on the data of
remainders, the sifting of harmonics can be stopped usually at the second or third layer.

The data is separated into NA = 90%, NB - 6%, and NC = 4%, and m,,,, is considered
as eight in these cases.
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In North Indian tea crop productions model, the structure of the optimal harmonic trend
is obtained as

. m;
Z Z (Ajj sinwt + B cos wyt), (4.81)

=1 j=1

where g, is the estimated output, / is the number of layers, m; are the number of harmonic
components at each layer, and the parameters for / = 3 are given as

Layer | Components | Frequency | Coefficients

i mi W,‘j A’] B’J

1 1 0.523 |-24.64{-13.09
0.693 -0.64 0.23
1.052 -1.24| -2.13
1.570 -0.60| -2.50

1.988 0.28{ -0.08
2.285 -0.63 0.16
2.775 053( -0.13
2 \ 4.598 0.20 0.18
3 6 0.458 -0.68 0.69

0.917 -0.37 0.07
1.278 -0.32 0.16
1.847 -0.15 0.82
2.203 -0.12 0.22
2.699 -0.21| -0.23

The root mean square (RMS) error on overall data is achieved as 0.0943.
In South Indian tea crop productions modeling, the data is initially smoothed to reduce
the effect of noise by taking moving averages as

L
1
Z E qrk—1- (4-82)
k=1

This transformation acts as a filter that does not change the spectral composition of the
process, but changes only the amplitude relation of the harmonic components [130]. The
harmonic trend for g, can be written as

L m
1
=7 Z Z[Aj sinw;j(t+k — 1) + Bjcos wj(t + k — 1)]. (4.83)
k=1 j=1

After simple transformations, this can be reduced to the form:

g = Z(Aj sin w;f + B; cos wjt). (4.84)
Jj=1
The filtered data is used for obtaining the harmonic trend. For fixing the optimal smoothing
interval, the length of the summation interval L was varied from one to ten. For L < 3,
the algorithm was not effective. L, is achieved at 4 because it is not expedient to greatly
increase the value of L (Table 4.5). The optimal harmonic components for / = 3 and L = 4
are listed as

!
4, = Z (Ajj sin wyit + Bjj cos wjt), (4.85)
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Table 4.5. Effect of smoothing interval on the noisy data

RMS error

0.06779
0.05579
0.07321
0.06375
0.06648
0.05730
0.05647
0.04957

ISR B NV R R o

where ¢, is the estimated filtered output;

Layer | Components | Frequency | Coefficients

i m; W,:}' A ij B if

1 4 0.486 -0.25| 0.70
0.846 -0.01| 008
1073 008 |-0.38
2371 |-0.002| 0.001

2 5 0.282 0.002; 033

0.508 0.309| 003
0.721 -0.26| 004

1.016 0.11f 0.32
1.193 |-0.005|-0.03
3 3 0.452 041-0.21

0.853 003 (-0.01
1.236 -0.03| 0.05

The RMS error on the filtered data is achieved as 0.05579. Part of the prediction results
are shown in Figure 4.15.

3.4 Example—Modeling of maximum applicable frequency (MAF)

Example 6. Modeling of maximum applicable frequency (MAF) of the reflecting iono-
spheric layer [43].

This example shows the applicability of self-organization method using the two-level
prediction balance criterion for constructing short-range hourly forecasting models for the
process of MAF variations at a preassigned point of the reflecting ionospheric layer. The
general formulation of the models for the process of MAF variations can be set down as
follows:

gt =fq" 7.0 (4.86)
g = 1d77 1w, (4.87)

where ¢! is the MAF value at the time r+ 1 in MHz; ¢'~7 is the delayed argument of q at
thetime r— 7; 7 is the time of the day and u is the vector of the external perturbations. The
size of the MAF is influenced by a large number of external perturbations, such as solar
activity, agitation of the geomagnetic field, interplanetary magnetic field, cosmic rays, and
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Figure 4.15. Performance of the harmonic model with L = 4

so on. These perturbations are estimated by several indices, such as the K- and A-indices
and the geomagnetic field components H, F, D, etc.

Here the scope of the example is limited to the use of first formulation to compare the
performances of individual models and system of equations. The combinatorial inductive
algorithm is used in synthesizing the models.

Experiment 1. Because MAF variations depend on the time of the day, time of day is
considered one of the arguments. The following complete polynomial is considered in the
first experiment.

g =a+ait+ag " vazg o+ +ag T
+ak+1q’_—ltt71 + ak+2q’72t’_2 +- 4 agkq,_Tt'"T, (488)
where ¢, ¢~} ... F~7 ae the time values corresponding to the output variable and its
delayed arguments.

Observations are made for five days and 65 data points were tabulated. Two series of
data are made up: one for interval of small variations (from 8am to 8pm), another for
interval of sharp variations (from 8pmM to 8am). For these two types intervals of data,
individual models are constructed considering = = 5. The prediction criterion i is used to
slect these models, for an interval of small MAF variation

g = 18.13+0.0229¢' =% — 0.01834" 1. (4.89)
For an interval of sharp MAF variation

g = 10.26 + 0.65547 + 0.32994' ™' +0.11094' % — 0.18024' >
+0.0013¢'71#~" — 0.00784'2#~% + 0.01064' 33
—0.0138¢" "% +0.0152¢' %1, (4.90)
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In addition to the above, another model is constructed without having to divide the data
into separate segments.

g = 8.55+0.0413¢ +0.3594' ' +0.02894'? + 0.22834' > — 0.03514'*
0.00324' ¢~ +0.00664' ¢ 3. (4.91)

Figure 4.16a demonstrates the performance of predictions of these models. The thin line
indicates the actual MAF variations for 12 hours ahead, the thick line is for predictions
using two individual models, and the broken line is the predictions using the single model.
Two individual models are considerably more accurate in comparison to the single model.

Experiment 2. Here two-dimensional readout (¢, T) is used—t indicates the time in hours
and T indicates the time in days. The value of the process output variable ¢ is taken as the
average for each hour. The complete polynomial is considered as.

ant = @1, G271, S Qe T Qe T—1, 41,72, " "

ql,T—Trv UZ[-—J,T’ 0’3,_]‘7‘7 T O'L,__]'T)7 (492)
wheret = 1,---,24; 7, and 7r are the limits of the delayed arguments on both directions t
and 7, correspondingly. oy, ,.k=2,3,---, L are the moving averages, maximum length

of L considered.

Combinatorial algorithm is used to select the £ variants of 24 models in relation to the
combined criterion of "minimum bias plus regularity.” From these F variants of 24 hourly
models, one model—the best set of 24 models—is chosen according to the prediction balance
criterion,

N 24
_ 1 .
szla_v = Z(qj - ﬁ Zqi.j)27 (493)
j=1 i=1

where g;,j- 1,2, ---,N ae the daily averages of MAF variations for N days, g;;,! =
1,2,---,24, j=1,2,--- N are the estimated values of the hourly values using the hourly
models by step-by-step predictions given the initial values. The hourly data was collected
for 25 days and arranged in two-dimensional readout. The system of equations obtained are

qi,r = —0.298 +0.45g24,7 + 0.4590% , .,

g2 = 0.497 +0.892q, r,

g3, = 1.929+0.8¢> 7,

qar = —0.208 + 0.289g3 7 — 0.399¢; 1 + o3, 15

gs.;r = 2.006 + 17154 7 — 0.979¢3 7 — 2.05203, ;. + 0.1990¢, 1,

g6, 1 = 3.13+0.814¢gs 7+ — 0.057g6 7—1,
q1,1 = 2.5840.619¢g6 r — 0.263gs 1,
1.51+0.072gg 71 + 1. 1103, 4,
q9,r = —0.607 — 0.308gs 7 + 1.644¢7 1 + 0.63603, ;. — 0.7730¢
qro,r = 3.596 +0.788¢y T,

gu,r = 0.816+1.084g,0.7 — 0.156g11 71,

qi2r = 3.54 —0.309g12,7—1 + 1.10703
qi3,7 = —0.857 +1.08903

qia,r = —0.824 +0.069g 471 + 2.584031” — 1.5760¢

Il

qs,t

8, T

1.7°

3.7
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qi15,T = 5.12 + 0.8ql4,1' — 0.107(]15‘7‘_1,

qi6,T
q17,17
q18,T
q19,T
q20,7
q21,7
q22,T1
q23,1
424,17

I

5.104 + 0.8064,s5 1 — 0.988031” + 0.88706”,

0.822 + 1.151g16,7 — 0.058q17,7—1 +0.49303 . — 0.59806
2.976+ 1.17205 . — 031106, |
-9.478 +3.079¢1g.1 + 0.30219.7_1 - 1.908073
—2.436 + 111930 7,

3.056 +2.592q20.7 + 2.774qi0 1 — 5.73405 + 1.22506_ .,

~4.317 — 0.727ga0,r + 0.023g2 7 + 1.59503 ., |
10.57 +2.316g22,7 — 0.8503, . - 1.0876,, 7,
1.683+0.79703,

1.7

18,77

163

(4.94)

Figure 4.16b exhibits the actual and forecast values of the MAF variations on 24-hour
duration of the interval considered. It shows that the models of this class select a basically
regular cyclical component in the process.

Inductive algorithms make it possible to synthesize more universal models to forecast
both regular and abrupt irregular MAF variations by providing the information on external
perturbations. This also makes it possible to raise forecast accuracy and anticipation time
by using prediction balance criterion with two-dimensional time readout.



Chapter 5
Clusterization and Recognition

1 SELF-ORGANIZATION MODELING AND CLUSTERING

The inductive approach shows that the most accurate predictive models can be obtained in
the domain of nonphysical models that do not possess full complexity. This corresponds
to Shannon's second limit theorem of the general communication theory. The principle of
self-organization is built up based on the Godel’s incompleteness theorem. The term "self-
organization modeling” is understood as a sorting of many candidates or partial models by
the set of external criteria with the aim of finding a model with an optimal structure.

A "fuzzy" object is an object with parameters that change slowly with time. Let us
denote N as a number of data points and m as a number of variables. For N < m, the
sample is called short and the object "fuzzy" (under-determined). The greater the ratio
m/N, the "fuzzier" the object.

By describing the relationships, clustering is considered a model of an object in a "fuzzy"
language. Sorting of clusters with the aim of finding an optimal cluster is called "self-
organization clustering." Although self-organization clustering has not yet been developed
in detail, it has adapted the main principles and practical procedures from the theory of "self-
organization modeling." This chapter presents the recent developments of self-organization
clustering and nonparametric forecasting and explains how the principles of self-organi-
zation theory are applicable for identifying the structure of the most accurate and unbiased
clusterizations.

Analogy with Shannon's approach

Structural identification by self-organization modeling is directed not only toward obtaining
a physical model, but also toward obtaining a better, and not overly complicated, prediction
model. The theoretical basis of this statement is taken from the communication theory by
Shannon's second-limit theorem for transmission channels with noise. The optimal com-
plexity of ciusterizations is required as the optimal frequency passband in a communication
system. Complexity must decrease as the variance of noise increases. The complexity of
the models to be evaluated is often measured by the number of parameters and the order
of the equation. The complexity of clusterization is usually measured by the number of
clusters and attributes. The complexity of a model or clusterization is determined by the
magnitude of the minimum-bias of the criterion as minimum of the Shannon-bias. The
greater the bias, the simpler the object of investigation. The measurement of bias represents
the difference of the abscissa of the characteristic point of the physical model. Bias is mea-
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sured for different models of varying complexities. However, without Shannon's approach,
it would be incomprehensible why one cannot find a physical model for noisy data and why
a physical model is not suitable for predictions. This is analogous to the noise immunity of
the criteria for template sorting in cluster analysis.

Godel and non-Godel types of systems

The inductive approach is fundamentally a different approach. It has a completely opposite
assertion to the deductive opinion of "the more complex the model, the more accurate it
is' with regard to the existence of a unique model with a structure of optimal complexity.
It is possible to find an optimal model for identification and prediction only by using the
external criteria.

The concept of "external criteria" is connected with the Godel’s incompleteness theorem.
This means that the Godel type systems use a criterion realizing the support of the system on
an external medium, which is like an external controller in a feedback control system. There
is no such controller in the non-Godel type systems. Usually, the controller is replaced by
adifferential element for comparison of two quantities without any explicit reference to the
external medium.

Let us recall some of the basic propositions of these theories of modeling. In case of ideal
data (without noise), both approaches produce the same choice of optima models or cluster-
ing with the same optimal set of features. In case of noisy data, the advantage with Godel's
approach is that although the method is robust compared to the non-Godel type, it captures
the optimal robust model or clustering with its basic features. It conveys to the modeler
that it is simpler to follow traditional approaches without taking any complicated paths with
inductive approaches. However, an obvious affirmative solution to this question, in which
the training data sample does not participate, must be sought among external criteria.

One important feasibility of such a criterion that possesses the properties of an external
controller is the partitioning of data sample into two subsets A and B by the subsequent
comparison of the modeling or clustering results obtained for each of them. Various exam-
ples of constructing the criteria differ according to the initial requirement and in the degree
of fuzziness of the mathematical language.

Division of data as per dipoles

In self-organization modeling, usually the data points with a larger variance of the output
guantity are taken into the training set A and the points with a smaller variance are taken into
the testing set B. Such a division is not applicable in self-organization clustering because
"locd clusters" of points for the subsamples are destroyed. The "dipoles’ of the data sample
as point separations alow us to find (N/2— 1) pairs of points nearest to one another, where
N denotes the total number of points in the sample. Figure 5.1 depicts six "dipoles" whose
vertices are used to form the sets A and B, as well as C and D. The points located closer to
the observation point / are taken into the set A, while those closer to the observation point
/I are taken into the set B. The other vertices of the dipoles respectively form the sets C
and D. This is also demonstrated in one of the examples given in this chapter.

Clusterization using internal and external criteria

Cluster analysis is usually viewed as a theory of pattern recognition "without teacher”; i.e.,
without indication of atarget function. The result of the process is called clusterization. We
know that the theory of clustering is not a new one. One can find a number of clustering
algorithms existing in pattern-recognition literature that allow clusterization to be obtained:
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Figure 6.1. Partitioning of data sets A, B from observation | and C, D from observation Il

namely, to divide a given set of objects represented by data points in a multi-dimensional
space of attributes into a given number of compact groups or clusters. Most of the traditional
algorithms are used in the formation of clusters and in the determination of their optimal
number by using a single internal criterion having a meaning related to its accuracy or
information. With a single criterion, we obtain "the more clusters—the more accurate the
clusterization." It is needed for specifyng either a threshold or some constraints when the
choice of the number of clusters is made.

Here it describes algorithms for objective computer clusterization (OCC) in which clusters
are formed according to an internal, minimum-distance criterion. Their optimal number and
the composition of attributes are determined by an external, minimum-bias criterion called
a consistency or non-contradictory criterion. Any criterion is said to be external when it
does not require specification of subjective thresholds or constraints. The criteria regularity
(called precision or accuracy here), consistency, balance-of-variables, and so on, serve as
examples of external criteria. Interna criteria are those that do not form the minimum, and
therefore exclude the possibility of determining a unique model or clusterization in optimal
complexity corresponding to global minimum.

Explicit and implicit templates

The main difference between self-organization modeling and self-organization clustering
is the degree of detail of the mathematical language. In clustering analysis, one uses the
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language of cluster relationships for representing the symptoms and the distance measure-
ments as objective functions instead of equations. The synthesis of models in the implicit
form f(x) = O corresponds to the procedure of unsupervised learning (without teacher, in
the literature it is also notified as competitive learning) and in the explicit form y = f(x) it
corresponds to the procedure of supervised learning (with teacher).

The objective system analysis (OSA) algorithm usually chooses a system that contains
three to five functions which are clearly insufficient for describing large scale systems. Such
"modesty” of the OSA algorithm is only superficial. Indeed, a small system of equations
is basic, but the algorithm identifies many other systems which embrace al the necessary
variables using the minimum-bias criterion. The final best system of equations is chosen by
experts or by further sorting of the best ones. What one really has to sort in the inductive
approach is not models, plans, or clusterings, but their explicit or implicit templates (Figure
5.2). This helps in the attainment of unimodality of the "criterion-template complexity.” If
the unimodality is ensured, then the characteristics look as they do in Figure 5.3 for different
noise levels. The figures demonstrate the results of sorting of explicit and implicit templates;
i.e., in single and system models, correspondingly. These are obtained by computational
experiments that use inductive algorithms with regularity and consistent criteria. "Locus of
the minima" represents the path across the minimum values achieved at each noise level.

Self-organization of clusterization systems

The types of problems we discuss here—one is the sorting of partial models and other is
sorting of clusters—can be dealt with with some care and modeling experience. Figure
5.3b shows the curves that are characteristic for objective systems analysis. Here the model
is represented not by a single equation, but by a system of equations, and one can see a
gradual widening of the boundaries of the modeling region. There is a region which is
optimal with respect to the criterion. The problem of convolution of the partial criteria of
individual equations are encountered into a single system criterion.

The theory behind obtaining the system of equations also applies to clusterization in the
form of partial clusterization systems that differ from one another in the set of attributes and
output target functions. For example, in certain properties of the object, two independent
autonomous clusterizations of the form

<Y1 o< XX X, >, < Y2 > XpX0X23 ¢t Xom >
have to be replaced by a system of two clusterizations being jointly considered
<y < XXRX3cccXimy2 >, < Y2 > X1X20X23 * - XomY1 >,

where y; and y, are the output components corresponding to certain properties of the object
and x;, (i = 1,2 andj = 1,2,---,m) first denote two data points corresponding to them
input attributes.

This is analogous to the operation of going from explicit to implicit templates. The opti-
mal number of partial clusterizations forming the system is determined objectively according
to the attainable depth of the minimum of the criteria as achieved in the OSA algorithm.

Figure 5.4 illustrates the results of self-organization in sorting of clusterings by showing
a specia shape of curve using two criteria: consistency and regularity. The objective based
self-organization algorithms are oriented toward the search for those clusterizations that are
unique and optimal for each noise level, although the overall consistency criterion leads to
zero as the noise variance is reduced. It is helpful to have some noise within the limits in the
data; however, the greater the inaccuracy of the data, the simpler the optimal clusterization.
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Clusterization as investigation of a model in a "fuzzy" language

Clusterization algorithms differ according to their learning techniques that are categorized
as learning "without teacher" and learning "with teacher." This means that in the latter case,
the problem consists not only of the spontaneous division of the attribute space into clusters,
but also of establishing the correspondence of each cluster with some point or region in the
target function space. These algorithms are described for both the techniques as different
stages "with teacher" and "without teacher." In other words, it leads to clusterization not
only with the space of attributes X but also of the target function space Y, or of the united
space XY where the target function is one of the attributes. As a result, clusterization
<X >< Y >or < XY >=< Y > is obtained—considered a certain "fuzzy" analogue
of the model y = f(x) of the object under investigation. The obtained model is optimal
with respect to the criteria used and is unique for each object. In idea data (without noise),
it corresponds to the true target of the physical model. In noisy data, it corresponds to
the nonphysical model—unique for that level of noise variance. Stability is considered
according to the Darwin's classification of species and Mendelev's table of elements which
confirm the uniqueness of classifications.

Artificial analogue of the target function

When the target function is not specified, it is sometimes necessary to visualize the output or
target function through certain analysis. Visualization here means to make visible that which
objectively exists but is concealed from a measurement process. This can refer to a person
making a choice of initial data, not intentionally making it nonrepresentative, arranging it
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along certain axes—‘“weak-strong,” "many-few," "good-bad," etc.—even when the target
function is not completely known. A sample of conventionaly obtained measurements thus
contains information about the target function. Therefore all clusters must be represented in
a sample for it to be representative. This is verified in various examples: in water quality
problems, samples without any direct indication of the quality spanned the entire range from
"purest” to "dirtiest" water. In tests of a person's intelligent quotient (/Q), it represents a
broad range of values (/= 10 - 170). Since it is also determined by experts, it is always
possible to check the idea of visualization of the target function. As results indicate, the
experimentally measured target function correlates with its artificial analogue of correlation
function (value ranges from 0.75 to 0.80), which is considered as adequate. Even for
some experiments these are of higher values. The component analysis or Karhunen-Loeve
transformation which is used to determine the analogue of the target function can be scdar,
two-dimensional or three-dimensional (not more than three) corresponding to visualization
of a scalar or a vector target function.

True,undercomplex, and overcomplex clusterizations

The view of clusterization as a model allows us to transfer the basic concepts and procedures
of self-organization modeling theory into the self-organization theory of clusterization. A
true clusterization corresponds to the so-called physical model which is unique and can be
found in ideal and complete data using the first-level external criteria.

The consistent criterion expresses the requirement of clusterization structures as unbi-
ased. Clusterization obtained using the set A must differ as little as possible from the
clusterization obtained using the set B (A U B = W). The simplest among the unbiased
(overcomplex) clusterizations is called true clusterization—the point with the optimum set
of features denoted as "actual model" in Figure 5.3b. The overcomplex ones are located
to the right of that point. Optimal clusterization corresponding to the minimum of the cri-
terion is also unique, but only for a certain level of noise variance (the trivial consistent
clusterization where the number of clusters is equal to the number of given points is not
considered here). It is determined according to the objectives of the clusterization, and it
cannot be specified. This explains the word "objective" in "objective computer clusteriza-
tion." Optimal clusterizations are found by searching the sat of candidate clusterizations
differing from one another in the number of clusters and attribute ensembles. The first-level
external criteria are explained previously in self-organization modeling. The basic criteria
for clusterizations are defined analogously.

The consistency criterion of clusterizations is given as

ne = (b — AK)/p, (5.2)

where p is the number of clusters or the number of individual points subject to clusterization
in the subsets A and B; Ak isthe number of identical clustersinA and B [70]. The regularity
criterion of clusterizations is measured by the difference between the number of clusters (kg)
of the attribute space in the subset B and their actual number (k) indicated by the teacher.
This is represented as AB = (kg — k).

It has been established that in the problem of sorting models the values of the minimum-
bias criterion depend on the design of the experiment and on the method of its partitioning
into two equal parts. For an ideal data (without noise), the criterion is equal to zero both
for the physical model and for all the overcomplicated models. The greater the difference
between the separated sets A and B, the greater the value of the criterion. It is recommended
that one can range the data points according to the variance of the output variable, then
partition the series into equal parts of A and B. In clustering (delayed arguments are not
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considered), it is recommended that one choose a sufficiently small difference between the
sets to preserve the characteristics of different clusters. If the clusters on the sets A and B
are not similar, it is not worth using the consistent criterion. We cannot expect a complete
coincidence of subsets A and B, which is inadmissible. Consequently, the problem of sorting
clusters becomes a delicate one.

The consistent criterion is almost equal to zero for all the ensembles when the data are
exact. It is recommended that the data be partitioned in such a manner that the criterion does
not operate on the exact data. However, one can use various procedures to find the unique
consistent cluster: (i) according to regularity criterion, (ii) according to system criterion of
consistency > 7. = }(770“, + N, +*+ + Ney) DY fOrming more supplementary consistent
criteria computed on other s partitions, (iii) by adding noise to the data and from there
finding the most noise-immune clustering, or (iv) by involving experts.

Necessity for regularization

Mathematical theory so far has not been able to suggest an expression for a consistency
criterion indicating the closeness of al properties of models and clusterizations for the
subsets A and B. The most widely used form of the criterion (minimum-bias criterion)
stipulates the idea that the number of clusters (k4 = kz) be equal and that there be no
clusters containing different points (Ak = 0). The patterns of point divisions into A and B
must coincide completely in the case of consistent clusterization. The consistent criterion is
acriterion that is necessary but not sufficient to eliminate "false" clustrizations. This means
that a circumstance might occur that leads to nonuniqueness of the selection. Several "false'
clusterizations will be chosen along with the required consistent clusterizations. In these
situations, regularization is necessary to filter out false clusterizations.

When the consistency criterion is used in sorting, a small number of clusterizations is
found from which the most consistent one is selected—unique for each level of noise vari-
ance. For regularization, it is suggested that one use the consistent criterion once more, but
employ adifferent method of forming it. To obtain a unique sample while sorting and using
the consistency criterion, only a small number of clusterizations should be taken—chosen
by an auxiliary unimodal criterion. Such an auxiliary, regularizing criterion is provided
by a consistency criterion calculated on the other data sets C and D. For consistency of
clusterizations, the patterns of point divisions into A and fi, as well as C and D must com-
pletely coincide. In addition to this, the optimal consistent clusterization must be unique.
If more than one clusterization are obtained, then the regularization must be continued by
introducing another two-subselections until a single answer is obtained. If the computer
declares that there are no consistent clusterizations, then the sorting domain is extended by
introducing new attributes and their covariances (higher order of the terms), introducing
their values with delayed values in order to find a unique consistent clusterization.

High effectiveness of inductive algorithms

As in self-organization modeling, the model with optimal complexity does not coincide
with the expert's opinions. The best cluster, being consistent and optimal according to
the regularity precision, does not coincide with a priori specified expert decisions. Expert
decisions are related to complete and exact data. The self-organization clustering that
considers the effect of noise in the data, reduces the number of symptoms in the ensemble
and the number of clusters. The greater the noise variance, the greater will be the reduction
in the number. The computer takes the role of arbiter and judge in specific decisions
concerning the results of modeling, predictions and clustering analysis of incomplete and
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noisy data. This explains the presence of the word "computer" in the name "objective
computer clusterization."

It is simply amazing how much world-wide effort has been spent on building the most
complex theories oriented toward, surely, the hopeless business of finding a physical model
and its equivalent exact clusterizations by investigating only the domain of overcomplex
structures. The revolution associated with the emergence of the inductive learning approach
consists of the problem of identification of a physical model and clusterization. The prob-
lems of prediction are solved in the other direction—of proceeding from undercomplex
biased estimates and structures. Optimal biased models and clusterizations are directly rec-
ommended for prediction. Advancements in this direction propose a procedure for plotting
the "locus of the minima" (LM) of external criteria for identification of the physical model
and true clusterization.

Calculation and extrapolation of locus of the minima

The analogy between the theory of self-organization modeling and the theory of self-
organization clustering can be continued to find optimal undercomplex clusterizations. One
can use either search for variants according to external criteria or calculation of the locus
of the minima of these criteria.

The calculation and exirapolation of the locus of the minima of external criteria is an
effective method of establishing true clusterization from noisy or incomplete data. A special
procedure for extrapolating the locus of the minima or the use of the canonical form of the
criterion is recommended in various works [138] and [45] for finding a physical model or
an exact clusterization. (Refer to Chapter 3 for the procedures in case of ideal criteria)
One can only imagine the effect of the analytical calculation of the locus of the minima on
various criteria. This is calculated for a number of values of the variance and for various
distributions of perturbation probabilities.

Usage of canonical form of the criterion for extrapolating LM.  All the quadratic criteria
can be transformed into a normalized canonical form by dividing the trace of the matrix of
the criterion. The criterion is expressed as follows.

CR = Y'S,_,.Y, (5.2)

where CR indicates an external criterion in the canonical form. Y and Y7 are the output
vector and its transpose, correspondingly. Sp—,, is the canonical matrix of the criterion for
different structural complexities.

The mathematical expectation of the criterion for al the models is

CR =Y'Sy_n,Y + 0% tSo_m, where So_m = S0, Sm- (5.3)
For example, Sy corresponds to a physical model, then

R (5.4)
trSy

and S; corresponding to a nonphysical model, then

CR  , YISy

2
=0+ =0°+A, A>0. 5.5
tI‘Sj g II‘SJ’ o ’ - (5-3)
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Theorem. The minimum of the mathematical expectation of the criterion in canonical
form for nonphysical models is greater than it is for a physical model [138].

It is shown that al the criteria in canonical form create LM which coincides with the
ordinate of the physical model (Figure 5.5). From a geometric point of view, transformation
of the criterion to canonical form means rotation of the coordinate axes around the point
So and some small nonlinear transformation of the coordinate scade. Figure 5.5 exhibits the
locus of the minima: (&) for an external criterion with the usual form and (b) for its canonical
form taking the values of CR/ trS. This shows that with the use of the canonical form of
the criteria, one can find a model in optimal complexity without adding any auxiliary noise
to the data.

The choice of a rule for restoring the actual or physical model depends on the number of
candidate models subject to descrimination, the perturbation level, and the type of criterion.

First rule. If the number of candidate models and the perturbation level are so small that
the noise level o2 is not exceeded; there is no need for special procedures. The actual
clustering is found by using the consistency criterion.

Second rule.  If the number of models or candidate clusterings and the perturbation level
are comparatively large, a "jump" to the left by the locus of the minima is observed (Figure
5.5a). By imposing supplementary noise on the data sample, one can find several points
of the envelope of locus of the minima and use its extrapolation to determine the physical
model or actual clustering [45].

Third rule.  Addition of auxiliary noise is not needed if the criterion is transformed into
canonical form. The ordinate of the minimum of the canonical criterion will indicate the
optimal structure (or template) of the physical model or of the clustering if the perturbation
variance is within considerable limits (Figure 5.5b).

Asymptotic theory of criteria and templates

In Chapter 3, we discussed the asymptotic properties of certain external criteria. For the
mathematical expectation of the external criterion with an infinitely long data sample, the
characteristic of the criterion-template sorting is unimodal which is required according to
the principle of self-organization. One should not conclude from this result that every
time-averaging of the criteria is well only in asymptotic behavior. But unimodality is
attained considerably within the limits for a sample length of fiveto ten correlation intervals;
however, a more accurate estimate of the required time-averaging of the criteria is to be
found analytically—a subject of theoretical interest.

Asymptotic theory of templates is also not yet developed, although it has been estab-
lished experimentally. The gradual increase in the number of models according to a specific
template leads to an increase in the probability (number of occurrences) of attaining uni-
modality. Figure 5.6 demonstrates the proposed dependence using the consistency criterion
in the plane of "perturbation variants-template complexity."

The future asymptotic theory of templates requires the investigation of the behavior
not of the average line of criterion variation, as one selects out of each cluster of feature
variants that comes for sorting only one model—the best. This is done by distinguishing
among the patterns of variation using a partial, solitary, and overall consistency criteria. For
features with noiseless data in clusterizations, the partial nonoverall consistency criterion
is identically equal to zero for the entire duration of sorting if the subsamples A and B
are close to each other, but nonetheless distinct. The interval of the zero values of the
consistency criterion shrinks with sufficiently high probability as the perturbation variance
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increases. When it becomes sufficiently small to distinguish between the templates, it
becomes expedient to extend the sorting by using an accuracy criterion or a series of
consistency criteria calculated for various partitions of data sample. For a larger perturbation
variance, it will be in the region of unimodality of a solitary criterion, where a larger
perturbation variance is required for more complex templates. Strictly speaking, this serves
as the basis for the asymptotic theory of templates. For excessively large perturbations, it
becomes impossible to find an optimal consistent model or clusterization, since the regular
nature of the curve disappears (Figure 5.6).

2 METHODS OF SELF-ORGANIZATION CLUSTERING

Unlike the sorting of partial models, which is amost always obtained, the sorting of clusters
can be implemented only for a sufficiently large number of points that are located favorably
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in the symptoms (variables). The importance of special experimental designs are enhanced
in this section.

If there are m symptoms, one can construct 2 different ensembles and evaluate them by
a suitable external criterion; for example, regularity criterion for an accurate approach and
the system criterion of consistency for a robust approach. This corresponds to unsupervised
learning because of the absence of specific objectives. If the objective is specified as
the ensembles are grouped to a known target function, then it corresponds to supervised
learning. The self-organization clustering methods vary according to the techniques used
for the reduction of computational volume.

The first method is a selection-type of sorting method based on unsupervised learning
[39]. At the first step, all the symptoms at the time of succession are evaluated by the
specified basic criterion and the best of F (freedom-of-choice) are chosen (for example,
F = 3 and the symptoms are x;,x; and xq). At the second step, all the ensembles that
contain two symptoms are evaluated. These ensembles include al the symptoms selected
at the first step.

X1X2
X7X2
XoX2

X1X3
X7X3
X9X3

X1 X4
X7X4
X9Xg

X1Xs
X7X5
X9Xs

X1X6
X7X6
X9X¢

X7X1
X9X]

... (5.6)

The F best ensembles (for example, F = 3, and they are x;x7, x3x7, and x;x4) are selected. At
the third step, the ensembles that have three symptoms by including the ensembles selected
at the second step are evaluated. This evaluation continues until the 3 x m ensembles are
selected.

The second method, which is based on correlation analysis [70], is suitable for the
precision in the approach. Here, one can obtain a series of m symptoms which range
according to their effectiveness; only m different ensembles are evaluated by the criterion.

The third method uses one of the basic inductive learning algorithms, either combinatorial
or multi-layer, to find m effective ensembles. For example, one can use a device like
combinatorial type of "structure of functions" for generating all combinations of ensembles
by limiting the number of symptoms. The consistent criterion is used with the data sequences
of A and B that are close to each other.

The latter two methods correspond to the supervised learning (learning with teacher)
because they use information about the output vector Y based on the comparison among
the actual and the estimated data. One way of doing this is by specifying the output data
from the experiment and another way is by using the orthogona Karhunen-Loeve projection
method for obtaining the artificial data.

The above methods does not limit the scope of all possibilities. They are feasible
only when the unimodality characteristic of the "criterion-clustering complexity” is ensured.
These we see in detail below.

2.1 Objective clustering—case of unsupervised learning

There are various computer algorithms that have been proposed for separating a set of
ensembles or clusters given in a multidimensional space of variables or symptoms. This
includes the classical algorithm of ISODATA (lterative Self-Organizing Data Analysis Tech-
niques Algorithm) [124] that is based on comparing al possible clusters using the minimum
distance criterion. In this program, the number of clusters are specified in advance by the
expert.

Objective clustering is envisaged by the inductive approach in which a gradual increase
in the number of clusters is specified to the computer and are compared according to the
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consistent criterion. In separating a multidimensional data space into clusters, the consistent
criterion may, for example, stipulate that the partitioned clusters differ from one another
as little as possible as they are partitioned according to the odd and even-indexed points
of initial data. As is well known, typographical images of some pattern consist of dots.
Even when the even or odd dots are excluded, it preserves the image with large numbers of
initial data points. If the origina image is chaotic; i.e., even if it contains no information
conforming to some law, the criterion alows discovery of a physical law.

The object or image is given in a multidimensional space represented in the form of
observation data with symptoms x;,x;,---,x,. The first part of the problem consists of
dividing the space into a specified number of regions or clusters using the measurements
of distance between the points [124]. The number of clusters is specified in advance by
the experts. Self-organization involves iteration of such clusterings for various numbers of
clusters from k = 2 to k = N/2, where N is the number of data points. It aso invlioves
comparison of results by the consistent criterion—non-contradictory clusters are selected.
A single-valued choice is achieved by regularization. Here regularization is selecting the
single most appropriate cluster from several non-contradictory clusterings indicated by the
computer. The role of regularization criterion is to use the minimizing function which takes
into account the number of k and number of variables or symptoms m according to the
computer's and expert's clusterings.

p= [(kexp - kcomp)z + (me.xp - rn(:ump)217 (57)

where k., is the number of clusters specified by the expert and kcmp is the number of
clusters in the process of computer clustering.

If kxp is known, then the computer completes the determination of clusters—for example,
by using the function L = k/m. This is also determined by other relations, in case it is
required by agreeing results on three egqual parts of the selection.

Even if the 4., is not known, one can use the consistent criterion calculated in other
parts of the data sample. It evaluates the degree of non-contradiction on various clusters
and helps to choose the best one.

Example 1. Clustering of water quality indices (one-dimensional problem).

The initial data contain the following variables: x;—suspended matter in mg/liter, x;—
chemical consumption of oxygen (CCO), x3—mineralization in mg/liter, x;—carbohydrates
in mg/liter, and xs—sulphates in mg/liter. The data is normalized according to the formula

X—X—i_i'ﬂh— The measurements are averaged on seven years of data for each
max  “lyin
station. The data Sets A and B include al stations with even and odd numbers, respectively.
The algorithm is confronted with the problem of isolating all non-contradictory clusterings
using the given set of variables and all subsets which could be obtained from them. Thus,
the water quality expert could choose the most valid clustering and find the number of
clusters and the set of variables that are optimal under given conditions. It computes the
value of the criterion for al possible combinations of the set of given variables. In this case
the validity of clustering is not verified because of the absence of expert clustering. The
sorting process showed that it is not possible to obtain a non-contradictory cluster using
al five variables. For each identified cluster, the centers and boundaries are found and
the water quality at the given station using the corresponding variables from the cluster is

computed.

Xinorm

Example 2. Clustering of water quality along the series of water stations along a river
system.
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In this case, expert clustering is known. It is established based on the information
available on ecologic-sanitary classification of the quality of surface waters of dry land. It
differs from certain variables which are absent from the data (out of total of 21 variables,
only 14 participated in the example). The data of 14 variables is normalized and separated
into two sets A and B.

The number of clusters specified by experts is k = 9 with the variables m = 14. There
is no single set of variables chosen from the given 14 variables which would yield a non-
contradictory partition of the stations into nine clusters as required by the experts. This
means that the expert cluster is contradictory.

Non-contradictory partitions into eight clusters are given by a comparatively small num-
ber of variables which include x4, xex14, X2x7x10x14 and xpx4xex10x14. Many sets of vari-
ables give non-contradictory partitions into seven clusters, eight such sets are xx;, xx4,
X1X5, X1X6, X1X7, X1X12, X1X14, X4X13, and 22 sets—each having three variables (from x;x;x, to
x1x12x14). The following three sets each with 10 variables give a partition which is closest
to one of the expert's clusterings:

X1 X2X3X4X5X6X7X9X10X12,
X[ X2X3X4X5X6X7X9X10X14,

X1X2X3X4X5X6X7X9X[2X]4.

The sets with higher number of variables (11, 12, 13 and 14) do not increase the number
of clusters. The set of variables m = 9 is denoted as optima in this example which gives
a non-contradictory partition into seven clusters. The boundaries, the stations making up
their composition, and the cluster centers are indicated for al non-contradictory clusters for
further analysis of water quality.

2.2 Obijective clustering—case of supervised learning

Classification, recognition, and clusterization of classes are similar names given for process-
ing a measured input data. The space of measured data for input attributes X (xi, xz,¢ ¢ ¢, x,,)
with a given space of output Y (y;, 2,2 ¢ *, ) representing a target or goa function (where
[ < m) is common in these algorithms. The problem task is to divide both spaces into cer-
tain subspaces or clusters to establish a correspondence between the clusters of the attribute
space and goa function space X « Y.

Unlike in traditional subjective algorithms, the number of clusters are not specified in
advance in objective clustering, but the number of clusters is chosen by the computer so
that clusterization is consistent. This means that it remains the same in different parts of
the initial input data. This number is reduced to preserve the consistency in case of noisy
and incomplete data.

As it is mentioned earlier, the objective computer clustering is based on the search for
the variants of ensemble of attributes and the number of clusters using the consistency
criterion on the given measured data assuming certain errors. The algorithm gives the
consistent clusterizations while al existing measurements are distributed over the clusters.
The new measurements that do not participate in the clustering also belong to certain cluster,
according to the nearest neighbor rule, or according to the minimum-distance rule from the
center of the cluster.

The search for the attribute ensembles and for the number of clusters leads to multiple
solutions: several variants of ensembles giving consistent clusterizations are found on the
plane "ensemble of attributes-number of clusters." This is solved by further determination
of consistent clusterings using some second-level criterion or by inquiring from experts.
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Table 5.1. Initial Data

X X2 X3 X4 X5 y
2131 | 1041 | 69.22 | 7352 | 443 | 12.23
2031 | 9797 | 69.26 | 74.10 | 484 11.86
2076 | 9892 | 69.06 | 7342 | 436 11.72
2084 | 1009 | 69.02 | 7336 | 434 | 11.83
2057 | 9.816 | 6897 | 73.32 | 445 11.47

asrwn R

19 | 2109 | 1005 | 6881 | 7316 | 431 | 1205
20 | 2143 | 1052 | 6876 | 7301 | 425 | 1248
21 | 2115 | 1024 | 6877 | 7307 | 430 | 1222
22 | 2150 | 1045 | 68.71 | 7310 | 439 | 1238
23 | 1919 | 9295 | 6866 | 73.06 | 440 | 1096
24 | 2046 | 9840 | 6863 | 73.06 | 443 | 1164

2005 | 9631 | 6801 | 7233 | 432 | 1150
2047 | 9937 | 6806 | 7243 | 437 11.67
2013 | 9864 | 6806 | 7242 | 436 | 11.60
2123 | 1037 | 6803 | 7242 | 439 | 1230

5889

Example 3. Objective clustering of the process of rolling of tubes [71].

Here the problem of objective partitioning of an m-dimensional space of features x;, x,,
e *. x, into clusters corresponding to compact groups of images is considered; each image
is defined by a data sample of observations.

Objective clustering of images (data points) is done based on sorting a set of candidate
clusterings using the consistency criterion to choose the optimally consistent clusterings.
The data is divided into four subsets: ANB and CND. Here the concept of dipoles (pairs of
points close to each other) is used; one vertex of a dipole goes into one subsample and the
other into another. Thus, the greatest possible closeness of points forming the subsamples
is achieved. This example demonstrates the various stages of self-organization clustering
algorithm which does not require computations of the mean square distances between the
points.

The table of initial data is given (Table 5.1), where x; is the length of the blank, x; is
the length of the tube after the first pass, x3 and x4 are the distances between the rollers in
front of the two passes, x5 (= x4 — x3) is the change in distance between the rollers, and
y = f(x1,x2, -+, xs5) is the length of the tube.

The objective clustering is conducted in the five-dimensional space of the features
xy1,x2,--+,xs5. The clustering for which we obtain the deepest minimum of the consistency
criterion is the optimal one. The stage-wise analysis of the algorithm is shown below.

Sage 1. To compute the table of interpoint distances. The first N = 34 data points from
the 40 points of the originad sample are used to form the subsets A N B and CN D. The
remaining six points are kept as testing sample to check the final results of clustering and
for establishing the connection between the output variable y and the cluster numbers. The
initial data table is represented as a matrix X = [x;]; i = 1,2,---,Nandj=1,2,---,m
(hereN= 34 and m= 5).
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Table 5.2. Interpoint distances between dipoles

No. [ 1] 2 3 4 5 6 . ] & 33 34
170 10150310 | 0171 | 0484 | 0344 | .. | 3779 | 1952 | 3484
2 O | 0743 | 0943 | 0845 | 1434 | .. | 5211 | 2339 | 5376
3 O | 0449 | 00325 | 0399 | .. | 2547 | 1195 | 2561
4 0 0092 | 0636 | .. | 2503 | 1150 | 2.391
5 0 0318 | ... | 2115 | 0895 | 2.169
6 0 | .| 1990 | 1465 | 2361
32 0 | 0966 | 0111
33 0 | 09%4
34 0

The interpoint distances are calculated as
m
dy = Y (xj—xg)?, i=1N; k=i+L,N. (5.8)

j=1

The results are shown in the Table 5.2.

Sage 2. To determine the pairs of closest points and partition into subsets. The clusterings
are to be identified in the two subsets of ANB and CND. Thus, the coincidence of clusters
is required, indicating that they are consistent. This leads to the attainment of a unique
choice of consistent clustering.

The subsets AnB and Cn D are formed using the values of the dipoles. The dipoles
are arranged in increasing length: for N = 34, there are N(N — 1)/2 = 561 dipoles. The
shortest dipoles are exhibited as

1) 11 00020 14, 2) 12 0.0038 13, 3) 23 0.0850 25,

To form the subsets A and B, the first (%’ — 1) = 16 shortest dipoles are chosen in such a
way that the data points are not repeated. In this specific example, it turns out that these 16
dipoles are obtained from the first 389 dipoles; the 17th dipole which satisfies the condition
is obtained at the end of the series; i.e., the 561st dipole connects the points 2 and 34 at a
length of d> 34 = 5.376 units.

The following 16 shortest dipoles belong to the subsamples A and B.

I 11-14 2) 12-13 3) 23-25 4) 26-127
5y 16-19 6) 10—-15 7 5-8 8) 17-24
9) 20-22 10) 3-7 11) 31 —34 12) 29 -33
13) 6—18 14) 9-21 15) 1-4 16) 28 — 30

From the remaining dipoles, the 16 shortest dipoles are chosen in an analogous manner to
form the subsamples C and D.

1) 18-23 2) 13-21 3) 1617 4) 8-10
5) 14-15 6) 12-19 7 3-5 8 9-22
9) 30 -3l 10) 11 —24 11) 4-17 12) 32 —-34
13) 20 —27 14) 6-25 15) 26 —33 16) 1-2
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The dipoles obtained in this way enable the formation of the st of points into the subsets
A, fl,C, and D.

A 11,12,25,26, 16, 15,8,24,20,7,34,29, 18,21, 4,30;
B: 14,13,23,27,19,10,5, 17,22,3,31,33,6,9, 1,28;
C: 23,21,16,10,14,19,5,22,31,24,7,34,27,25,33, 1;
D: 18,13,17,8,15,12,3,9,30, 11,4, 32,20, 6, 26, 2.

Sage 3 To sort the clusterings according to the consistency criterion.
The following steps are followed:

1. Grouping the subsets into 16 clusters (k - 16). The points in subsets A and B are
indexed from 1 to 16 as vertex numbers, indicating a group of 16 clusters shown
below:

11 12252616 158 2420 7 3429 18 21 4 30
i 2345678 910111213141516
14132327191051722 3 3133 6 9 1 28
i 3

k=16 5
2 4 5 678 9101112131415 16.

B

—
"W

Number of corresponding vertices or clusters:
Ak=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1=16.

In each subset A or B, the upper row denotes the actual data point and the lower row
denotes the number of the vertex of the dipole. If the number of the vertices coincide,
then those vertices are called "corresponding” vertices. Here, al vertices of subset
A correspond to the vertices of the subset B. The consistency criterion is computed
asn. = (p— Ak)/p = (16 — 16)/16 = 0, where p is considered the total number of
vertices and Ak is the corresponding vertices which coincide.

2. Grouping the subsets into 15 clusters (k - 15). Tables of interpoint distances are to be
compiled for the points of each subset A and B (Tables 5.3 and 5.4, correspondingly).
Points 2-14 in subset A and points 1-8 in subset B are the closest to each other.

For the evaluation of the consistency criterion, it is grouped into 15 clusters in the
following form.

A 3456789101112131516
k=15
B 23456791'01‘11‘21‘3 14 15 16.

Number of corresponding vertices:
Ak=0+0+1+1+1+1+140+1+141+1+1+0+1+1=12.

The double number of the vertices indicate the formation of a cluster consisting of
two points. Having the corresponding vertices as Ak = 12, the consistency criterion
isn. = (16 — 12)/16 = 0.25.

3. Grouping the subsets into 14 clusters (k = 14). Again the tables of interpoint distances
are compiled, considering the formed clusters from the previous step. According to
the nearest neighbor method, the distance from a cluster to a point is taken to be the
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smaller of the two distances. For example, the distance from point 1 to cluster 2,14 is
the smaller of the two quantities d,_» = 0.184 and d;_14 = 0.221; ie, dy.-2,14 = 0.184.
Thus, the closest points to each other are 3-13 (subset A) and 5-1,8 (subset B).

The third candidate is grouped into 14 clusters of the form

456789101112 15 16
A
k=14
B 52345675910111213 14 15 16.

Number of corresponding vertices:
Ak=0+0+0+1+0+1+1+0+1+1+1+1+0+0+1+1=9

and7.= (16— 9)/16=0.437.
4. Fourth and subsequent steps. Continuation of the partitioning of the subsets into
clusters and evaluation by consistency criterion is followed from & = 13 to k= 2.
For the last two clusterings; i.e., in case of k= 2, n.= (16 — 16)/16 = 0, and in
case of k=3, n.= (16 - 16)/16 = 0.

All groupings of the clusterings is complete. From the above evaluation, the consistent
clusterings for k = 2, 3, and 16 can be chosen because 7. = 0 in these groupings.

One can note that if the table of interpoint distances consists of two equal numbers,
then the number of clusters changes by two units. To avoid this, one must either raise the
accuracy of the measurement distances in such a way that there will not be equal numbers
in the table, or skip the given step of sorting of clusterings in one of the subsets. The
consistency criterion is used only when the number of clusters is the same on two subsets
ANB and CND; otherwise, the amount of sorting increases and it ends up with bad results.

To reduce the computational time of the algorithm, the comparison of the variants of the
clusterings can be started with eight clusters instead of 16 clusters. This means that at the
first step the points are not combined by two, but by eight points.

Sage 4. Repetition of clustering analysis on subsets A and B for all possible sets of
variable attributes (scales) and compilation of the resulting charts (Figure 5.7a).

The cluster analysis described above should be repeated for all possible compositions
of the variable attributes. As there are m = 5 attributes, there are altogether 2° — 1 = 31
variants. The dots in the figure indicate the most consistent clusterings which are obtained
on the subsets A and B.

Sage 5. To single out the unique consistent clustering with the aid of experts or by using
the subsets C and D (regularization).

It is desirable to choose a single most consistent one from the clusterings obtained on
the subsets A and B. This can be done in two ways: One way of singling out is with the
help of experts for whom examination of a small number of variants of clusterings does
not constitute any great difficulty. The unique clustering suggested by the expert might not
be the most consistent clustering, but merely one of the sufficiently consistent clustering.
Another way is by repeating the clustering analysis on subsets C and D to obtain a clustering
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Figure5.7. Results of search for the most consistent clusterings on (a) subsamples A and B and (b)
subsamples C and D

that will prove to be sufficiently consistent both for the subsets An B and Cn D. Figure
5.7b shows the results of choice of consistent clusterings on subsets C and D. The value of
the consistency criterion for the clustering corresponding to the point O; is zero both on the
subsets AnB and CnD. For the clustering Oy, it is zero only for Cn D. Here clustering
02 is considered to be the true most consistent ones.

If unique clustering is not obtained, the points are further divided into three equal subsets,
thus forming another consistency criterion and so on until the goal of the regularization—a
single consistent clustering—is achieved.

Figure 5.7 shows less than eight clusters (out of the 16 possible ones) along the abscissa,
since further increase in their number yields an inadmissibly small mean number of points
in each of them (total 34 points are subjected to grouping in clusters).

For reducing the sorting of attributes, it is recommended that

1. the attribute sets for which half or more of the dipoles on A n B (or Cn D) do not
coincide are not considered, and

2. for analysis on subsets C and D, one considers only those attribute sets for which
small values of the criterion during the analysis on the subsets A and B are obtained.

Sage 6. Results of the two clusterings corresponding to @, and O».
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Corresponding to the point O,, three clusters are obtained with respect to four scales of
attributes x;, x2, x3, and x4. The points of the origina data sample are distributed among
the clusters as below (the point humbers and the mean values of the output variable y are
given):

st cluster : 6, 18,23,25; ¥ =10.99m;

2nd cluster : 30,31,32,34; y=11.58m;

3rd cluster : 1,2,3,4,5,7,8,9,10,11,12,13, 14, 15,
16,17,19,20,21,22,24,26,27,28,29,33; y=11.799m.

Corresponding to the point O,, six clusters are obtained with respect to the two scales of
attributes x\ and x;.

Ist cluster : 6, 18,23,25; y=10.99m;

2nd cluster : 29,32; y=11.20m;

3rd cluster : 1,2,3,5,7,8,9,10,11,14,15,17,24,31,33,34; y=11.47m;
4th cluster : 4,16,19,26,27,30; y=11.83m;

Sth cluster : 12,13,21,28; y =11.93m;

6th cluster : 20,22; y=12.43m.

Sage 7. To check the optimal clustering using the checking sample of data points (35 to
40) according to the prediction accuracy of required quality of the tube length.

The single consistent clustering can be used to predict the output variable y from the
cluster number. For example, let us consider the three clusters corresponding to the point
O\ with the attributes x;, x2, x3, and x4 (the three clusters with the point numbers and mean
values of the variabley are given above). The mean values of y are arranged in an increasing
order and the regression line for y according to the groupings of clusters N is given in Figure
58. A new point belongs to the cluster for which the distance from it to the closest point
of the cluster is least; knowing the cluster, the estimated value of y can be obtained from
the figure. This type of prediction is checked for the testing sample points 35 to 40. Out
of six points, five are correctly predicted.

2.3 Unimodality—“criterion-clustering complexity"

We understand that the experimental design is feasible only when the unimodality of the
“criterion-clustering complexity" characteristic is ensured. This can be done in three ways to
determine the optimal consistent clustering: (i) extend the cluster analysis using a regularity
criterion for further precision, (ii) design the cluster analysis for using a overal or system
criterion of consistency by increasing the number of summed partial consistency criteria,
and (iii) design the experiment by applying a supplementary noise to the data.

The applicability of the first method is demonstrated in the preceding example.

The second method of attaining unimodality is when an increase in the number of partial
criteria which constitute the overall consistency criterion reduces the number of consistent
clusterings from which an optimal one is to be selected. Specially designing the experiment
can make this method very efficient in yielding a single consistent clusterization. The
following example demonstrates the usefulness of this method.

Example 4. Investigation of the consistent criterion by computational experiments [69].
Here is a test example to clarify whether (i) it is possible to select a data sample such
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that sorting of clusterings by the consistency criterion yields a unique solution and (ii) the
overall consistency criterion leads to a unique solution.

The consistency criterion is expressed as 7. = (k — Ak)/k, where k is the number of
clusters and Ak is the number of identical clusters in the subsets A and B.

According to the procedure involved in the experimental design of cluster analysis,
the original data sample is divided into two equal parts by ranking their distances from
the coordinate origin. Then the consistent clusterings are found by complete sorting of
hypotheses about the number of clusters, proceeding from k = N/2 to a single cluster,
where N is the total number of points in the data sample. The initial data sample along
with their ranked distances are given in Table 55 and in Figure 5.9, where, for simplicity,
two variants of ten points (N = 10) on the plane of two attributes x; and x, are shown.

Figure 5.10 shows the procedure for sorting of clusters using the tables of interpoint
distances for subsets A and B.

For each transition from one number of clusters to another, the tables of interpoint
distances for each subset are rewritten such that the newly formed row in the table contains
(when the poles of the dipoles are united) the shortest distance in the two cells of the
preceding table. The poles of the dipoles are united in pairs for each hypothesis according
to the minimum of the criterion of interpoint distance in this example.

The subsets A and B are taken into two equal parts. This is represented as an original
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of dipoles



METHODS OF SELF-ORGANIZATION CLUSTERING 191

Table 55. Two samples of initial data ranked by distances

No. First sample of points Second sample of points
)c'L x; Cxt e 2 x;' x; xl”f +x, 7|

1 0.00 040 0.16 0.00 0.40 0.16
2 000 -040 0.16 000 -040 0.16
3 -2.32 -0.69 5.86 -2.48 -0.69 6.62
4 2.80 0.68 8.30 254 0785 7.07
5 -2.70 -1.25 885 -2.76 -1.32 9.36
6 2.60 160 9.32 2.52 178 9.52
7 -4.61 093 2212 -4.40 0.90 20.17
8 -4.70 0.25 22.15 476 -010 22.67
9 5.50 0.60 30.61 -4.99 0.99 25.88
10 585 -0.75 34.78 5.44 0.75 30.16

code:
Code 0O O O O
371 4 9
L1
58 2 610
rnmivy
@ k=4
I i v rTauarmnv v
37 1 4 9 582 6 10
I 3079 02163 I 5026 3673
7 0 2255102 11 8 02251112
I 1 0 8 30 HHI 2 0 11 34
1V 4 o 7 IV 6 0 16
Vo 0 vV 10 0
(b) k=3
Luar uimwy Ly
i 0 798 30 I 0 63673
11 0 55102 I 0 11 34
A% o 7 v 0 16
Vv 0 Vv 0
(k=2
0ir i v Liurmwyv
riar 0 79 8 rLmar 0 1134
14 0 55 v 0 16
v, v 0 Vv 0.

It is known that the consistency criterion indicates the false consistent clusterings with
the actual consistent clusterings. The false consistent clusterings; i.e, false zeros of the
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Figure 5.10. Calculation of consistency criterion on the two equal parts of the data sample

criterion can be removed by (i) a special experimental design, the purpose of which is to
form a data sample for which the criterion does not indicate false zeros and (ii) using the
overal consistent criterion, which is equal to the sum of partial criteria obtained for different
compositions of subsets A and B.
To sort among the hypotheses, the notations are introduced for the original data sample
and to the subsets (vertex numbers) as below:
Code 00 0 0 O
37 1 4 9 subsetd
Dipoles | | | | |
58 2 6 10 subsetB
rnmuiwvy
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where / — V are the dipole addresses and 00000 is the initial code for the sample. A dipole
is a two-point subsample. Selected dipoles have the shortest dimension of al the feasible
points of the considered sample. The code changes if the corresponding dipole changes the
pole addresses in the subsets. For example,

Code 01

Dipoles | | | | |

57 1 6 10 subsetB

rnurmwvy
The partia consistency criteria are calculated for dl the variants of subset composition, and
their dependencies on the number of clusters are constructed. As shown in Figure 5.11,
some partitioning variants for the first sample of data points do indeed yield false zeros.
This gives rise to the problem of removing false zeros of the false clusterings. Repetition
of the experiment with the second sample of the data points showed that none of the 16
characteristics yields false zeros.

In this example, the consistency criterion for the selected original data sample is uni-
modal. One can see from Figure 59 that a very small variation in the locations of the
sample points disturbs the unimodality. So, the above experimental design aimed at attain-
ing criterion unimodality may lead to the required result, although it is still very sensitive.

This means that a small deviation in the data leads to the formation of false value of the
criterion.

Overall consistency criterion

The overall consistency criterion is the sum of the values of the partial criteria obtained for
al possible compositions of subsets A and B.

1
Z n= z(m(,, + nc(z) +-o-+ nc(L))’ (59)

where L = 2F71,

Figure 5.11 demonstrates the performance of the overall consistency criterion, which does
not lead to the formation of false zeros for various numbers of clusters. The experiment
explains the physical meaning of the stability of the overall criterion and substantiates the
basic conclusions of the coding theory as follows:

« if the overall criterion does not lead to the formation of complete zeros, then among
the partial codes there is at least one that ensures the same result;

« if a least one of the codes does not form false zeros, then the overall code will also
be effective; and

« for a complete sorting of the codes, one necessarily finds a partitioning into parts that
leads to false zeros (the unsuccessful partitioning).

Apparently, one can apply the optimal coding theory, developed in the communication
theory, for determining the optimal partitioning of a data sample into subsamples.

The goa of the experimental design is to attain the global minimum among the mod-
€ls. The high sensitivity to small variations in the input data and absence of unimodality
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Figure 5.11. Dependence of the criterion on the number of clusters for various compositions of
subsamples A and B

are characteristic symptoms of the noncorrectness of the problem of selecting a model or
clusterization on the basis of a single consistency criterion. The transition to an overall
consistency criterion can be viewed as one possible regularization method. With a robust
approach as demonstrated above, the main goal must be the attainment of the unimodality
of the consistency criterion. Sometimes, the use of the overall criterion might be insufficient
in removing all the composite zeros, even for al possible partitions of the data sample into
two subsets. This can be avoided by further splitting the data into subsets.

The third method of attaining unimodality consists of superimposing an auxiliary normal
noise to the data sample. Its variance is increased until the most noise-immune consistent
clusterization as the "locus of the minima" is achieved. One can obtain consistent clusteri-
zation without extending the experiment for regularization by the precision criterion or by
experts.

Further development of this method is done by appling the canonical form of the external
criterion. The locus of the minimum of the criterion coincides with the coordinates of the
optimal design of the experiments and the optimal model structure. The Shannon-bias as
displacement of the criterion becomes zero for al the designs and structures. This leads to
a new dimension of research which will be discussed in detail in our future works.

3 OBJECTIVE COMPUTER CLUSTERING ALGORITHM

The objective computer clustering (OCC) algorithm in a generalized form is given here.
The algorithm consists of the following blocks.
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Block 1. Normalization of variables

Normalization is done here for the input variables %, %3, - -, X%», measured at N time in-
stances as
X — X Xoi — X2 Xmi — Xim

X=X o s Xmi T, (510)
Xlmax — xlmin A2max — xzmin Xmmax — Xmpp

wherex;, j = 1,2, + -, m are the mean values of corresponding variables; x;, j=1,2,---,m;

i=1,2,---,N are the normalized values. This can be done not only from the mean value

but also from atrend of the variable. It is also useful to extend the table of attributes with

the additional generalized attributes such as

S U - - - - 1, .
Xij = E(Xi +X%), or X = \/Zx,-xj), or X;; = \ﬂ—z—(xi2 +xf)], (5.11)

wherei=1,2,---,m; j=i+1,i+2,---,m.

In addition to the input attributes, information about the goal function can be included
into the original data in the form of columns with the deviated data of the output variables
Yi,¥2,- -+, ¥, where I < m < ml; and ml is the total number of primary and generalized
attributes. The information about the goal function is very useful for reducing the amount
of cluster search. In many clustering problems the dimension of the space / of the goa
functionisknown: ! = constant. If it is not specified, it can be determined by the successive
test of Karhunen-Loeve projection on to an axis, a plane, a cube, etc. or by means of the
component analysis.

This isjustified as follows: The modeler, while compiling the table of data, knows the
goa function without fully realizing it. There necessarily exists certain axes like "good-
bad," “strong-weak,” "much-little," etc. These correspond to the axes serving as orthogonal
projection. The space of the goa function in certain cases is two-dimensional or three-
dimensional. For example, clustering of atmospheric circulation, is distinguished between
two axes. the "form" and "type" of circulation; the Karhunen-Loeve orthogonal projection
is applied on two variables Y(y1, y2).

Sub-block 1a: Choose dimension of goal function

The clustering target function may be expressed by a particular vector of qualities, rather
than by a scalar value. In most complex clustering problems, it is necessary to derive a
complete quality vector Y (y1,y2,- -, y1).

There is a sample of observations X(x;,x2,---,x,). Experts maintain that the target
function (at any rate, one of its components—the target index) may be determined from the
variance formula:

y= Vi, Y- (512)

where %; is the mean value of the ith attribute.

The above formula represents the Karhunen-Loeve discrete transformation in the case
where m-dimensional space of factors is mapped into one average point ("center of gravity"
point, if each of the constituents has an identical mass), and the target formula is represented
as a single scalar value [137]. This way, more information is retained in projecting points
of an m-dimensional space onto a single axisy, although it remains a scalar quantity. The
y-axis is chosen in such a way that (i) it passes through the "center of gravity" of points
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that is the origin of the attributes x;, and (ii) the axis direction in the m-dimensional Space
is such that the points have minimum moment of inertia around the y-axis.

In the same way, even more information is retained in projecting the m-dimensional
measurement space onto atwo-, three-, or more dimensional spaces, to the state of projecting
it on itself and not loose information. To reduce the number of computations involved in
these operations, one can limit the comparisons of Karhunen-Loeve transformations to the
final stage at the point on the axis or on the two-dimensional plane. The target function
will be two-dimensional Y(y;,y2), which is enough for many problems. The joint space
attributes correspond to the vector of XY(xy,x2,: -, X, ¥1,y2). This might be excessive
for the optima number of dimensions of the goal space in specific practical purposes. An
optimal number of measurements for the target function space is determined by comparing
the versions of the best number of coordinates that leads to consistent and accurate clusters,
and by positioning these closer to the number of clusters E specified by an expert.

A way of estimating the target index. An estimation method for a single dimensional axis
is developed as given below. The equation for the y-axis takes the form

X1 X2 Xm
—===...=— 5.13
L L In (5.13)
where ), 1, - - -, I, are the components of the unique target vector. The moment of inertia
is computed using the following criterion as
N m N m
Tni = > Y i = O _(Uxg)*/ > 17) — min, (5.14)
=1 j=1 i=] J=1
which amounts to the sdection of /;,5,---,I,. The second term in the criterion J,,; is
maximal as YV Yon hixi — max, with the constraints Y07, /7 = 1. The parameters
L, bL,---, 1, ae found iteratively using the initial approximation of /; =, = --- =1, =

1/4/m. This gives an equation for the y-axis. The projection of data points on the y-axis
are then found. The hyperplane passing through the ith point perpendicular to the y-axis
takes the orthogonal form

Zz,(xj —xj)=0, i=1,2,---,N. (5.15)
J=1

The coordinates for the projection x;, are determined while solving the above equation
along with the equation for the y-axis. The function for alocating the projections along the
i-axis is found as

yi= VI Gy — %)%, i=1,2,---,N. (5.16)
j=1

This is considered a target function and recorded in the input data.

For example, the input data corresponding to the nodes of a three-dimensional cube
are shown in the Figure 5.12. The minimum value of the criterion J,,; corresponds to the
maximum value of the function

(ixny + Loy + Bxay) + (Lxgp + bxpy + lxan) + - - + (I xig + laxgg + lxag) — max.
(5.17)
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x2
(~.5,.5]-.5)
(5,.5,—.5)
(-.5,.5,.5)
(5,.5,.5)
TS L x
(=5,-.5,.5)
(5,—.5,-.5)
(-.5,—.5,.5)
(.5,—.5,.5)
x3

Figure 5.12. data for the given example

By iteration, /; = 1,5, = 1, and /3 = 1 are found. The equation of the y-axis iSx; = x; = x3.
Projections are alocated along the y-axis; at point 1, y = +,/3/2, a point 8, y = —/3/2;
a points 2, 3, and 4,y = ++/3/6. At points 5, 6, and 7, y = —,/3/6. Here, it is better not
to use the Karhunen-Loeve transformation on the axis of the plane because of overlappings
of many point projections. Only two projections coincide on the plane. This is solved in a
different way in [124].

There is much in common between the successive application of Karhunen-Loeve pro-
jection and the method of principal components of factor analysis. The variance decreases
continuously as components are isolated. Specifing a threshold is required for choosing
the number of components. According to Shannon's second-limit theorem, there exists an
optimal number of factors which are to be isolated. In self-organization clustering, the
consistent criterion is recommended to select the optima number of principal components;
consequently, the dimension of the goal function Y(yi,y2,* ¢ ¢, y;) is determined.

Block 2. Calculation of variances and covariances

The data sample is given in matrix form as X = [x;1, Y = [y]; i = 1,2,---,N, j =
1,2,¢+ .. m. The matrix of variances and covariances G = ,lVX7Xhas the elements
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N
1
8ij = Ccov ()C,',.xj) = N j;xk,-xkj, (518)
where x; and x; are the columns i andj of the matrix X.

Block 3. Isolation of effective ensembles

This is done in one of the following three ways:

Sub-block 3a. Full search over all attribute ensembles

This refers to clustering without goa function. A full search of al possible clusterings
differing by the contents of the set is to be carried out in the absence of the numerical data
on the goa function. For each value of the number of clusters k, 2™! clusterings are to be
tested using the consistency criterion, where ml is the number of attributes—including the
paired or generalized attributes. This type of cluster analysis is feasible for a small number
of attributes of upto m1 = 6. In alarger dimension of the attribute space, effective attribute
ensembles are selected using the inductive learning algorithms or correlation analysis. At
the same time, the goa function (scalar or vector form) must be determined experimentally
by orthogona projection. This means that it leads to clustering with goa function.

Sub-block 3b. Selection by inductive learning algorithms

This is done by using the inductive learning algorithms. The consistency criterion is used
in selecting the effective attribute ensembles. The models are of the form:

yir =fulxixs - xu), ya1 =Xz - Xm), o0, Y =fn(xixz - Xm),
yi2 =fr2(axe - xm), y22 = f2laaxy - xm1), oy Y =fpaxs - xm),
ViF = fir(x1xa - X)), Yor = for(x1 X2 - Xmt)y -0 Yir = fir(x1X2 - - Xm1),

(5.19)

where F denotes the quantity of “freedom-of-choice.” It is the number of models selected
on the last layer. This indicates an ensemble of attributes for which we have to seek the
most consistent clustering.

Sub-block 3c. Selection by correlation algorithm

If there are many attributes (mis large) and the number of measurements are small (N < 2m),
then it is better to use the correlation algorithm (also called “Wroslaw taxonomy") instead of
inductive learning algorithms. Initially, atable of correlation coefficients of paired attributes
(G) is set up. Using this matrix, the graphs of interrelated attributes for different limit
values of the correlation coefficient are set up. One attribute that is correlated least with the
output quantity is chosen from each graph. Ultimately, an ensemble of attributes which are
correlated as little as possible with the output are determined. The limit of the correlation
coefficient is gradually reduced commencing from r,, = 1 until al attributes fall into a
single path; i.e, until an ensemble containing a single attribute y = f(x;) is obtained. This
way, discriminant functions which indicate effective ensembles of attributes are found:
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yi =fixxz - Xm1), Y2 = oxaxa X)), Y = filxaxy X))

Block 4. Division of data points

The ensembles obtained for different values of the correlation coefficient are subjected to
a search for consistent clusterings. All ensembles are processed using the same search
algorithm [124]. A square table of distances between points (with a zero diagonal) corre-
sponding to the attributes is set up. Segments connecting any two points in the attribute
space is called dipoles. These are arranged according to their length to form a full series
of dipoles.

The next step is to sdlect dipoles whose nodes form the subsets A— B, and C—D. The
two nodes of the shortest dipole go into A and B; the next in magnitude go into C and D,
and so on, until al nodes are investigated. Alternatively, first dipoles are chosen for A and
B, and the remaining dipoles are chosen for C and D.

Half of the nodes of the dipoles go into A, while the other half go into B; subsets C and
D are simply different division of the same full set of points. Conventionally, the nodes
of dipoles located nearer to the coordinate origin are introduced into A and C, while those
more remote are into B and D.

Block 5. Search for clusterings by consistency criterion

The next step is to carry out a search for al clusterings on the subsets A and B. Nodes
belonging to the same dipole are considered equivalent. Commencing from the division of
subsets into N/2 clusters, the number of clusters decreases to unity. The subsequent cluster-
ings are formed by uniting into a single cluster of two points located closest to one another.
The consistency criterion is determined for @l clusterings by 7. = (p—Ak)/p, wherep is the
number of clusters or the number of individual points subject to clusterization, and Ak is
the number of identical clustersin the subsets A and B. As aresult, al clusterings for which
7. = 0 are identified. The search is repeated for &l possible attribute ensembles and a map
is obtained, in which consistent clusterings are denoted by dots (for example, Figure 5.8).

Additional analysis and exclusion of clusters with single dipoles. The clusters containing
more than two points and the clusters containing two points belonging to the same dipole
are obtained from the search of consistency criterion. The latter ones are better assigned to
other clusters, or excluded from the analysis because they can represent long dipoles. Such
clusters containing a single dipole are located at the end of the series of the dipoles ordered
according to their length.

If the initial data table is sufficiently large (for example, N > 100, in order to avoid
formation of two-points clusters), it is sufficient to use N/3 points instead of N/2 points
and leave the rest of them for examining the clustering results.

Block 6. Regularization

The search is repeated on subsets C and D for further confirmation. Only those clusterings
that are consistent both on A and B and on C and D are in fact considered. If we again find
not one but severa of the consistent clusterings, then the clustering closest to the clustering
recommended by the experts is chosen. Usually, the clustering recommended by the experts
turns out to be contradictory.
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Block 7. Formation of output data table

The output data table that contains the division of the points of the origina table into an
optimal number of clusters is formed.

Block 8. Recognition

At this step, assignment of new points (images) to some cluster with the indication of the
value of the goal function is carried out according to the "nearest neighbor" rule. This
means that this is based on the minimum distance from the image to a point belonging to
a st indicated in the initial data table.

Here we can say that the two-stage algorithm in image recognition is established in the
OCC agorithms. At the first stage (teaching) of y; = f(x1x; - - - x,1), the data about the space
of measurements (attributes) and about the space of the goal function is used to obtain the
discriminant functions with the objective of dividing the space into clusters. At the second
stage (recognition), new points are assigned to some class or cluster. The number of clusters
and the attribute ensemble are identified objectively using a variant search according to the
consistent criterion. All the blocks given above form a schematic flow of the OCC algorithm.

Calculation of membership function of a new image to some cluster. A membership func-
tion (taken from the theory of fuzzy sets of Zadey) is given as

d_-l
z= Sil .100%, 5.20
dil+dy+--+d} ’ (520

XY

where d, ;is the distance from the image to the center of the cluster x; dy;,j = 1,2,---,k
are the distances to the centers of al clusters measured; k is the number of clusters.

The greater the membership function of an image to a cluster, the smaller is the distance
from the image to the center of the cluster. The measurement of distances is carried out in
the space of an effective attribute ensemble.

Example 5.  Application of OCC algorithm.

The objective clustering of the rolling conditions of steel strip is considered. The original
variables (xy,xz,x3,x4, and x5) and the goa function (strip length, y) are given. It is
expanded to other sets of generalized paired variables (xg— x;s).

Block 1. Table 5.6 has been obtained as a result of normalization of the variables as
deviations from their mean values.

Block 2. The matrix of variances and covariances is given in Table 5.7.

Block 3c Isolation of the effective attribute ensembles by the correlation agorithm of
“Wroslaw taxonomy" yielded the 15 effective ensembles shown in Table 5.8.

Block 4 Division of the data according to the dipole search for the ensemble xsx;jx1.x;3
is as follows:

subset A: 12, 23, 38, 37, 14, 27, 15, 24, 39, 19, 28, 11, 16, 29, 20, 34, 3, 22, 25, 40;
subset B: 13, 18, 31, 32, 8, 26, 10, 17, 35,4, 30, 7, 21, 33, 9, 36, 5, 1, 6, 2;

subset C: 32, 14, 23, 21, 38, 24, 16, 31, 22, 13, 17, 8, 34, 28, 26, 20, 18, 10, 33, 7,
subset D: 36, 11, 25, 12, 39, 15, 27, 35, 9, 4, 19, 3, 37, 40, 30, 1, 6, 5, 2, 29.

Block 5. The cluster search is carried out using the consistency criterion by dividing the
subsets into eight.
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Table 5.6. Normalized initial data
No. X X2 X3 X4 X5 X6 - X13 X14 X15 y
1 0.286 | 0.374 | 0302 | 0.303 | -.137 -.077 -.081 | 0.338
2 -.055 -.091 | 0.322 | 0.619 | 0.706 0.766 | 0.771 | 0.111
3 0.098 -019 | 0222 | 0249 | -.043 0.003 | 0.001 | 0.026
4 0.125 | 0.131 | 0.202 | 0.216 | -.075 -.033 -.035 0.093
5 0034 | -077 | 0675 | 0195 | 0.097 0.236 | 0.127 -.127
37 -.144 -.217 -.300 -.343 -.106 -.166 -.157 -.110
38 0.000 | 0.016 =275 -.280 -.026 -.082 -.073 -.005
39 =117 -.040 -.276 -.205 -.043 -.098 -.089 -.048
40 0.250 | 0.346 | -.200 -.205 | 0.004 -.054 -.044 | 0.381
Table 5.7. Matrix of variances and paired variances
Attributes X\ x2 x3 X4 X5 X4 x5 y
X\ 0.0518 | 0.0525 | 0.0086 | 0.004 | -.0078 -.0059 -.0064 | 0.0515
X2 0.0602 | 0.0051 | 0.0022 | -.0077 -.0066 -.0070 | 0.0553
x3 0.0492 | 0.0433 | -.0028 0.0072 | 0.0045 | 0.0047
x4 0.0519 | 0.0114 0.0200 | 0.0194 | 0.0044
X5 0.0481 0.0474 | 0.0474 -.0058
X14 0.0482 | 0.0479 -.0049
X1s 00480 | -.0048
y 0.0569
Table 5.8. Effective attribute ensembles
No. | Ensembler
1 X1
2 X5 X11
3 xsxnx
4 X5 X11 X12 X13
5 X5 X9 X11 X12 X13
6 | x5x9X11 X2 X13X14
7 X5 X9 X[ X12 X13 X14 X}5
8 | x1X5x9x)3 X12 X13 X14 X15
9 X| X5 Xg Xg X1{ X12 X13 X14 X|5
10 | xyx5.x7 X8 X9 X1 X12 X13 X14 XI5
11 | x1x5X6 X7 Xg X9 X11 X12 X13 X14 X15
12 | x1 X3 X5 X6 X7 X8 X9 X11 X12 X13 X14 X]5
13 | x1x3 x4 X5 X6 X7 X8 X9 X11 X12 X13 X14 X15
14 | x1 X2 X3 X4 X5 X6 X7 X8 X0 X11 X12 X13 X14 X15
15 | xqx2 X3 x4 X5 Xg X7 X8 X9 X10 X11 X12 X13 X14 X15

201
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Block 6. The consistent clusters are further determined by the condition of their presence
on the maps obtained for the subsets A, B and C, D and summarized on the summary map
as shown in Figure 5.13. The clustering marked C in the figure is the most effective one.

Block 7. The following data points are grouped into clusters according to the mean strip
length by using the above result of objective clustering.

Cluster 1: Points 6, 18, 23, and 25 for y = 10.99;

Cluster 2: Points 2, 29, and 33 fory = 11.63; and

Cluster 3: Points 1, 3,4, 5,7, 8 9, 10, 11, 12, 13, 14, 15 16, 17, 19, 20, 21, 22, 24,
26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, and 40 fory = 11.77.

Block 8. In the recognition stage, let us assume that a new image is obtained with
the attribute values of x5 = 4.373, x;; = 26.986, x;, = 6.631, and x;3 = 70.202. Then
the distances from the point obtained to al 40 initial points are calculated. The nearest
point is located as the point 30 with the attribute values of x5 = 4.410, x;; = 26.96, x> =
6.65, and x;3 = 70.28. This point belongs to the third cluster; conseguently, the new point
image belongs to the third cluster. The values of the membership function revea that the
first cluster z - 0.203, the second cluster z = 0.240, and the third cluster z = 0.553; i.e., the
input image affiliates more to the third cluster.

4 LEVELS OF DISCRETIZATION AND BALANCE CRITERION

The criteria of differential type are quite varied, but they, nonetheless, ensure the basic
requirement of Godel’s approach. They are a clustering found by sorting according to a
criterion using a new data set which is not used with the internal criterion. In the algorithms
described above, the basic criterion used is consistency. Here is another form of differen-
tial criterion: the criterion of balance of discretization is proposed for selecting optimal
clusterings in self-organization clustering algorithms for a varying degree of fuzziness of
the mathematical description language [34]. The principle behind this criterion is that the
overall picture of the arrangement of the clusters in the multidimensional space of features
must not differ greatly from the type of discretization of the variable attributes. The optimal
clustering (the number of clusters and the sat of features) must be the same—independent
of the number of levels of discretization of the variables indicated in the data sample.

Initial data sample is discretized into various levels on the coordinate axes to find the
optimal clustering. Hierarchical trees for sorting the number of clusters are set up from the
tables of interpoint distances. The optimal number of clusters coincides at the higher levels
of hierarchy of reading variables. The balance of discretization criterion is used like the
criterion of consistency; i.e., according to the number of identical clusters.

In self-organization modeling the criterion of consistency, which is caled the minimum-
bias criterion to estimate the balance of structures, is computed according to the formula
Ths = S, (3" — $5)%. The criterion requires that the model obtained for the subset A (%)
differs as little as possible from the model obtained for the subset B (3%). If the criterion
has severa equal minima (balances), then we have to apply some method of regularization.

In self-organization clustering, the data sample is discretized into different numbers of
levels according to the coordinates of the points for obtaining subsets A and B. It is then
sorted among the hypotheses as to the number of clusters for each of the subsets and the
results compared with one another. The optimal clustering corresponds to the minimum of
the consistency criterion; usually its zero value resembles the balance of clusterings on both
the subsets.
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Figure 5.13. Maps of location of consistent clusterizations
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Figure 5.14. Discretization of the coordinates x, and x» at the levels of (a) five and (b) eleven
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Levels of discretization

Figure 5.14 illustrates the different levels of discretization of the coordinates of the points
x) and x, according to Widrow's recommendations. It is suggested that the number of
discretization levels of the multiples correspond to obtaining the false zeros of the criterion;
for example, here itisNy = N=1land N, =N/2 ~1=5 levels.

In computing the criterion of consistency or balance of discretizations, one has to carry
out a special procedure of superimposing square matrices of interpoint distances. The
following matrices are obtained according to the 11th and 5th levels of discretizations.

1234 5 6 7 8 91011
0241013131610 13

1 13 16
2 028 111114 8 1111 14
3 06 99126 9 9 12
4 0336 87 9 8
5 023 9 8109
6 0376 87
7 0 8 7 9 8
8 0 336
9 02 3
10 0 3
11 0
1234567891011
10004556455 6

2 004556455 6

3 04556455 6

4 0112435 4

5 021546 5

6 01324 3

7 0435 4

8 o011 2

9 021

10 01

11 0

The following matrix shows the inter-cluster distances of clusters from both of the above
tables. The table for five levels does not differ essentially from the table for eleven levels.

1,2,3 4,5,6,7 8,9,10, 11

1,2,3 0 6 6
4,5.6,7 0 6
8,9,10, 11 0

Calculation of the criterion

The criterion of balance of discretization is calculated in a specia way, which is very
convenient for programming. This is done at each step of the construction of hierarchical
aees for sorung nypotneses as to tne numober of clusters. The points that make a cfuster
are marked with indices (vertices) in a space of N x N matrices for subsets A and B. The
criterion is computed as
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(k= Ak

BL k ’

(5.21)
where k = N? and Ak is the number of coincidence points or indices on the marking spaces.

The final values are trivial and always hold good. It gives B; = O for the optimal clusters,
which corresponds to our human impressions when looking at the given arrangement of
points.

Regularization

If in the interval from k= 1 to k = N/2 several zero values of the criterion B, are formed
(excluding ends of the interval), it is necessary to determine which of the "zeros' are false
and which are true. This can be checked by repeating the construction of the sorting tree
for the hypotheses from some intermediate number of levels (for example, seven or eight if
it was checked for 11 before). The whole procedure does not cause any specia difficulties
for larger number of points and levels.

Example 6. Optimal clustering using the criterion of balance of discretization.

The data is given in Figure 5.14b for the attributes x\ and X2 at the discretization level
of 11. The table of interpoint distances for the entire sample is measured as given in the
matrix

1234567 89
lo12799178
2 016881078
3 06871067
4 022 454
5 02276
6 0354
7 076
8
9
10
1

=
o

onvwwuhrN~NOBER

02
0

ONNNOOWN OO

The dipoles are constructed so that they start with the shortest until al the points are in the
subsets A and B without repeating them. The following dipoles are obtained and formed
into subsets A and B.

subset A: 12144558 8 9 10

They are addressed as 1,11, 11,1V, V, VI VII, VIII IX, X, XI. The matrices of interpoint dis-
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tances are compiled for the subsets A and B separately as below:
ranmivvyvivivil IX X XI

A121 445 5 8 8910
I 1010779 9 7 789
nm 2 01 668 8 7 789
mnr 1 0779 9 7 789
v 4 002 2 5 5417
vV 4 02 2 5 547
VI 5 0 60 7 768
vil 5 0 7 7638
vl 8 0 022
X 8 022
X 9 02
Xl 10 0

rnmmwvvviviivill Ix X Xi

B233 566 7 9 101011
I 2011 888 10 8 9 910
nm 3 00877 10 7 8 89
mur 3 087710 7 8 8 9
vV 5 022 2 6 8 87
V 6 00 3 4 6 6 4
VI 6 0 3 4 6 6 4
vir 7 0 4 773
vil 9 0 2 2 2
IX 10 0 0 2
X 10 0 2
X1 11 0

Two hierarchica trees of sorting hypotheses as to the clusters (figure 5.15) are built up
using the compiled interpoint distance matrices. The criterion of balance of discretization is
calculated at each step of constructing the hierarchical trees. The vertices of the dipoles are
combined in the tree into a cluster. The elements of the clusters are marked with indices
or circles in the matrix form as mapped out in Figure 5.16. Superimposition of the matrix
constructed for subset A on the matrix constructed for subset B makes it possible to compute
the criterion B, = (k — Ak)/k, where k = N*> = 121 and Ak is the number of cells that are
coinciding in the matrices.

The "zero" values for the criterion are found for k), = k& = 1,3,5, and 11 by comparing
both the trees.

If there are severa "zero" values of the criterion, then one has to "invert" certain dipoles
and calculate the overall criterion of consistency or one has to repeat the procedure with
the different number of levels of discretization.

The examples described in this chapter show that sorting according to the differential
criteria (having the properties of the external criteria), consistency, and balance of discretiza-
tion can replace a human expert in arriving at subjective notions regarding the number and
composition of points of the clusters.

5 FORECASTING METHODS OF ANALOGUES

In the traditional deductive methods of modeling, specifying the output and input variables
is usually required. The number of variables is equal to or less than the number of data
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measurements. In regression analysis, there are additional limitations, such as the noise
factor affecting the output variable, the regressor set being complete, and the regressors
not taking into account the equation operate as additional noise. The theories of principal
component analysis and pattern analysis for predicting biological, ecological, economic, and
socia systems which have proven to be possible in a fuzzy language are not new. Again,
this is based on the deductive principle that the more fuzzy the mathematical language of
prediction, the longer its maximum achievable anticipation time.

Unlike deductive algorithms, the objective system analysis (OSA) algorithm has addi-
tional advantages. This does not require an output variable to be specified. In turn, al
variables are considered as output variables and the best variant is chosen by the external
criterion. The weak point of the inductive learning algorithms is that the estimate of param-
eters is done by means of the regression analysis. The limitations of the regression analysis
cannot be overcome even by using the orthogonal polynomials. The resultant expectations
of estimators are biased both by noise in the initial data and the incomplete number of input
variables. A physical model is the simplest one among unbiased ones derived with the exact
data or with the infinitely large data sample.

Nonparametric inductive learning algorithms offer another possibility and promise to
be more effective than the deductive and parametric inductive ones. Its approach is to
clarify that in the area of complex systems modeling and forecasting where objects and
their mathematical models are ill-defined, the optimum results are achieved as the degree
of “fuzzyness” of a model is adequate to the “fuzzyness” of an object. This means that the
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equal “fuzzyness” is reached automatically if the object itsdf is used for forecasting. This is
done by searching analogues from the given data sample as the clusterizations are tracked
using a "dliding window" that moves along the data sample in time axis. For example,
the data sample for the ecosystem of Lake Baykal contains measurements over an interval
of 50 years (Figure 5.17). One can obtain 40 clusterization forms used to track how the
ecological system varies by moving a 10-year wide sliding window in order to predict its
further developement. The longest anticipation time of a prediction is obtained without
using any polynomial formulations. The objective clusterization of the given data sample is
used to calculate the graph of the probability of transition from one class to another. This
makes it possible to find an analogue of the current state of the object in prehistory and,
consequently, to indicate the long-term prediction. It follows that the choice of the humber
of clusters is a convenient method of changing the degree of fuzziness in the mathematical
language description of the object. By varying the width of the "sliding window," one can
realize an analogous action in the choice of the patterns. This approach has an advantage
over the clustering analysis given by the OCC algorithm and aso the OSA algorithm for
having a minimum number of points.

5.1 Group analogues for process forecasting

The method of group analogues leads to the solution of the forecasting problem of a mul-
tidimensional process by pattern and cluster search with a subsequent development of a
weak into a detailed forecast by the forecasting method of analogues. A sample of obser-
vations (N) of a multidimensional process serves as the initial data, and the set of measured
variables (x;,x2,- -, x,) is sufficiently representative; i.e, it characterizes the state of the
observed object and what has occurred in the past is repeated in the present if the initial
state has been analogous.

In the problems of ecology, economics, or sociology the available sample size is usually
small. The number of forecast characteristic variables ra is significantly larger than the
number of sample points N (N <« m). Nevertheless, the forecasts are necessary and are of
the basic means of increasing their effectiveness through the use of the "method of group
analogues.”

Forecasts are not calculated, but selected from the table of observation data. This opens
up the possibility of more successful forecasting of multidimensional processes.

Formulaforforecast measure

The forecasting accuracy of each variable is characterized by the forecast variation of

Ne

- OV /(e — 7 )2

6i(k) - Z(xi(kl - x’(k)) /(x’(k) x’(k)) ’ (522)
k=1

where Xiy, is the actual value of the ith variable, )‘c,-(k) is the forecast obtained as explained
below, and iy, is the mean value (for a quasi-stationary process) without taking the forecast
point into account. |If the process is nonstationary; i.e., if some of the variables have a clear
expression of trend (they increase or decrease continuously), then Xig equals the value of
the trend at each forecasting step. The above formula compares the average error of the
forecast by the analogues method with respect to the average error of the forecast as the
mean value or trend value.

The forecast of each variable is considered to be successful if the variation 6,%/0 < 1.0 (or

in percentage, < 100%). Usually, only some variables forecast well. In the best case for
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all m variables 6,2(10 = 1.0 (or = 100%). To successfully increase this percentage of forecast

variables for a short sample of initial data, one has to go from a search for one analogue in
prehistory to the problem of combining several analogues.

Forecast space of several analogues

Here x; is the point in the multidimensional (Euclidean) space of variables and %;, in the
space of forecasts, corresponds to each row of the table of initial data sample. The former
space is used for computing the interpoint distances, while the latter is used to approximate
the forecasts by splines or polynomia formulations.

The point B of the multidimensional spaces x; and %; is denoted as the output point
for forecasting. This is either the last point of the sample in time or the last one that
would be possible in estimating the variation of the obtained forecast by the last row. The
distances between the point B and all other points measured in the space x; determine the
possibility of using them as analogues. The closest point A; is called the first analogue,
the next one in distance A, is called second analogue, and so on until the last analogue
Ar (F < N). A specific forecast %; corresponds in the forecast space to each analogue. The
number of analogues are combined—either specified by an expert or determined according
to an inductive algorithm. Various methods can be proposed. Here the method based on
extrapolating the forecast space by splines is considered. It is assumed that some forecast
value, which is determined by using the forecasts at adjacent points of the space, exists at
each point of the forecast space ;.

"Combining" forecasts by splines

Here "combining" means approximating the data by splines or polynomial equations with a
subsequent calculation of the forecast at the point B. The forecast is defined with the help
of weighted summing of forecast analogues using spline equations

xi[B] = f(xi(Al}vxi(A2)7 T 7xi(AF))
(5.23)

=ap+ alx,-(Al) +a2x,~m2) +--+ apx,‘(AF).

The splines are selected such that the point B approaches the optimal set of analogues
A (1 < s < F); i.e, the difference between their forecasts decreases. The closer the points
in the forecast space %; are, the closer are the forecasts themselves at these points.

Distances between points for a short-range one-step forecast are measured in the space
x; as below:

A: A A;
d; = \/[(x(l P AP+ (x;_ - X4+ Con? V1, (5.24)
where j =1,2,3,---,F,

where d; are the Euclidean distances of the point B from the analogues 4;, j=1,2,---,F;
A, is the first analogue (closest), A, is the second more distant analogue, Aj is the third
even more distant analogue, and so on.

The Euclidean distance is a convenient measure of proximity of a point, but only for
a one-step forecast. The repetitive procedure of stepwise forecast can be used to obtain a
long-range forecast with a multi-step lead, in which a "correlative measure” is estimated
for the proximity of groups of points. The canonical correlation coefficient [104] is also
recommended as a proximity measure for forecasting more than four steps.

The interpoint distances ¢}, j=1,2,---, F are used for calculating the coefficients of the
following splines;
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1. for one analogue (F = 1):
Xip =%, (5.25)
2. when two analogues are taken into consideration (F = 2):

Rig = (d;‘f(,w + d;lfc,-(Az))/(dl“‘ +d; Y, (5.26)

3. when the forecasts of three analogues are taken into account (F = 3):

Rig, = (@7 'Ry +dy "%, +d7'R, VAT A +dTY, (5.27)

4. when the forecasts of F analogues are taken into account:

F F
Rig = O dy'%, )/ > di. (5.28)
a=1 a=1
The largest number of analogues that are taken into account is F < N. Here F behaves
like the “freedom-of-choice.”

Alternatively, one can use a parametric inductive algorithm for combining the forecast
analogues in which a complete polynomial of the form

Xig = ao+arki, +aki, +--+ark; (5.29)

Ap)
is used instead of the splines.

The following choices are to be considered to provide the most accurate forecasting
process.

* choice of the optimal number of complexed analogues F = F,,;
* choice of optimal set of features m = m,; and
« choice of the permissible variable measurement step width & = A,,,.

Method of reducing variable set size

The two-stage method given below enables us to find the optimal set of effective features.

Sage 1. Variables are ordered according to their efficiency F= 1,2, 3, ¢ ¢ (not more than
five) using the partial cross- validation criterion CVj — min, defined with the help of moving
a so-caled "sliding window" (which is equa to one line) along the data sample (Figure
5.18). For each position of the "diding line" its analogues are found in prehistory and the
common analogue forecast is calculated using the splines. The discrepancy between the
"dliding line" and the forecast analogue defines a forecast error for each variable. The error
is found for all positions of the "dliding line" in the sample. The results are summed and
averaged according to the following formulae:

Axy = [X5(B) — %j(A1, Az, -+ AR)]

N
1 . .
C‘G:N; |A%;; 1 <j<m.

N
1 .
CViin = N Z |Axij|min (5.30)
=1
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Figure5.18. Schematic flow of the algorithm corresponding to process forecasts for calculating the
cross-validation criterion CV; when two analogues complexed, where fi-current position of sliding
window, S-spline, and | A%|—absolute errors.
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where i,j are numbers of data rows and columns respectively (1 < i < N, 1 <j < m),
CVmin 1S the cross-validation criterion for choosing optimal set of input variables (features),
|A%;| are the absolute values of errors, and |A%;j|min are the minimal value of |A%;| in the
lines of sample. In general, a different series of features ordered according to the criterion
CVj are produced for different numbers F of complex analogues. This is analyzed on a
plane of F versus m.

Stage 2. The feature series are arranged as per the values of the criterion CVj. A small
number of feature sets are sdected from al possible sats for further sorting out using the
complete cross-validation criterion,

1« .
cv = — ,Zz; CV; — min. (5.31)

The ordered feature set shows which sets should remain and which should be excluded. The
complete st of feature sets is divided into groups, containing an equal number of features.
Only one s, in which less efficient features are absent, remains in each group.

For example, there exists an ordered feature series of x3xzx1x4 (the best feature is x3, the
worst one isx4); then the following sets are to be sorted out:

one set containing al four features: x3x;x x4 (all included);

one set containing three features: x3x2x) (x4 excluded);
one st containing two features: x3x2 (x1x4 excluded); and
one set consisting of one variable: x3 (x2x1x4 excluded).

The whole number of sets tested is equal to four, being equal to the number of features.

Algorithm for optimal forecast analogue

The schematic flow of mode of operation of the algorithm for optimal forecast analogue
is illustrated in Figure 5.19. The overall algorithm consists of two levels: the first one
corresponds to obtaining the optimal parameter set by using the two- stage method and the
second one corresponds to the process forecasting. Figure 5.19a illustrates the analogue
search 2 and evaluation of the forecast error 6 for each position of the "dliding window"
and the process observation. Figure 5.19b illustrates the efficiency estimation and ordering
of variables using the criterion CV; — min. Figure 5.19¢ illustrates how to obtain F,,, and
mgp With the help of the criterion CV — min. The variable sets are obtained using the
criterion CV; — min, and the complete cross-validation criterionCV — min is calculated
for them as explained above. The results are plotted on the plane of F — m, where the
minimum value of the criterion is found. Optimization of the criterion for set of variables
is evaluated as

cv CVii )
CV= + — max. 5.32
Z (Cvmin (Cvmin)min ( )

The point of the plane which gives the criterion minimum, defines the optimal parameters
F = F,,, and m = m,,, sought for.

Variable set optimization enables the so called "useful" and "harmful" features in an
initial sample to be highlighted; i.e, it makes possible the exclusion of some data sample
columns. The forecast sought for is then read out from the sample using only those optimal
parameter values. Figure 5.19d illustrates the forecast at the output position of the "sliding
window" B.
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Pattern width optimization

This concerns the choice of permissible variable measurement width #,,,. One observation
point in the data table is called a pattern—in other words, it is a complete line of expansion.
These lines of expansions can be transformed by summing up two, three, etc. adjoining
lines and averaging the result. Due to overlapping of the number of lines in each junction,
it is only reduced by unit; i.e, a sample containing twenty lines can be transformed into
a sample containing nineteen doubled lines, or a sample containing eighteen tripled lines,
and so forth. The sorting out of data sample makes it possible to select a permissible
pattern width. Thus, the amount of sorting of the ensemble variants is reduced substantially
if one succeeds in ranking the predictor-attributes (placing them in a row according to
their effectiveness) in advance. The solution for the problem becomes simple. When the
algorithm for optimal forecast analogue is used, one estimates each predictor separately
according to the forecast measure (6,-2(x,-) < 1). This simplifies substantially the problem of
choosing an effective ensemble of predictor-attributes. This means that one should identify
the pattern width which provides a forecast variance value 6,-2(x,-) less than unity for all
variables treated. To estimate the value of §3(x;), the forecast is to be calculated for the
penultimate pattern.

We conclude that, in general, the optimization of the process forecast analogue algorithm
is done in a three-dimensional space of the choices (¥, m,h) for Y = O, where F is the
number of complexed analogues, m is the number of features taken into account, h is the
data sample pattern width, and Y is the target function which is not specified.

5.2 Group analogues for event forecasting

The above procedure of process forecasting is described without specifying the output vector
Y (target function); i.e., it deals only with the data sample of the variable attributes of X.

We extend this problem to a forecasting event where the output vector Y is defined as an
event. In solving this type of problem, it is important that there be a correlation between
the columns of the samples X and Y. However, it is usually absent. For successful events
forecasting, samples X and Y must be complete and representative. In other words, the data
sample has to contain a complete set of events of al types. For instance, when a crop harvest
is forecasted, examples of "bad,” "mean" and "good" harvests should be represented in Y.
The data is complete if it contains a complete set of typical classes of observed functions.
In addition, the sample should be representative. This means that clusters of matrices X and
Y must coincide in time.

One of the tests for completeness and representativeness is that the matrices X and Y be
subjected to cluster analysis using one of the known criteria. If identical correspondence
clusters are obtained on the matrices (for example, good harvest has to correspond to good
weather conditions and proper cultivation), then the sample is representative.

The problem of event forecasting is formulated in a more specific cause and effect manner
and it has wider field of applications. In the formulation, the sample of attribute variables
Xisgivenin (N+1)time intervals, and the event factor Yis given in N intervals, if forecast
of event Y in the (N + I)st step is required. Some of the examples are:

1. sample X —observations of cultivation modes and weather conditions for (N + 1)
years.
sample Y —harvest data for N years.
It is necessary to predict the harvest for (N + I)st year.

2. sample X —design and production features of (N+ 1) electronic devices.
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sample Y —“life-time” and damage size data for N devices.
It is to predict the duration of uninterrupted operation of the (N + I)st device.
3. to forecast the result of a surgical cancer treatment;

sample Y —used as a loss vector containing three binary components; y; (recovery),
y2 (relapse), y;3 (metastases), and ys (the extent of disease, evaluated by the experts
as a continuous quality).
matrix X —includes various features (about 20), describing the state and method of
surgical treatment for 31 patients.

The results are known for 30 patients. These results are then used to predict the
surgical treatment result for the recently operated 31st patient after the operation.

These are some typical examples of the event forecasting.
In order to predict the events, it is necessary to consider the following aspects to provide
the accurate event forecasting;

* choice of the optimal number of complexed analogues F = F,,;;
» choice of the optimal set of features m = m,,,; and
+ choice of the optimal target function vector Y = Y,,.

The first two entities describe the process forecasting algorithm, whereas the latter is a
specific aspect of the event forecasting problem.

Here, the pattern width (measurement step) h - 1 should not be changed. It is strictly
equal to one line of an initial sample and the data sample cannot be transformed as explained
before. Instead it is expedient to sort out the components of the vector Y (output value).
For example, the harvest can be represented in the data sample not only by crops weight,
but also by its sort and quality. The sorting out procedure allows only those components
which give the minimal value for the criterion CV leading to a more accurate forecast to
remain.

First, it is necessary to reduce the number of feature sets involved in the sorting. This
is demonstrated in the Figure 5.20. The distinction from the method described in Figure
5.18 is that here two matrices X and Y are participating. Instead of getting the difference
between sliding line and complexed analogue forecast, the differences of the vectors Y (not
their forecasts) are calculated as

|Axij| = )C,'j(B) —xij(Al,Az,A3)|. (533)

The logic of feature choice is that the value of an effective feature at the current line and
its analogues must be as close to each other as possible. A large discrepancy in the value
means the feature does not define the output value Y; i.e, it is ineffective. The criterion
CVj is calculated as the difference of feature values of the line, and the analogues averaged
over the sample columns.

N
cv;= %} Z} |Ax;j| — min. (5.34)
Analogues are searched to find the matrix Y. At least one component of Y must be measured
continuously and accurately for a unique analogue. However, if the analogue is not unique
as defined, then the two components of a target function, which are derived from the
Karhunen-Loeve algorithm, are added to the vector Y.

The schematic explanation to the algorithm is exhibited in Figure 5.21. Here "d' is the
analogue choice, “b” is the calculation of the partia cross-validation criterion CVj — min for
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ordering features, “c” is the calculation of values of the complete cross-validation criterion
SOV = (g + cyia—) — max . with the purpose of defining the optimal values of
Fop and myy;. 1 is the forecast of the event corresponding to the (N+ I)st sample line under
optimal algorithm parameter values.

Note that matrices X and Y are used in one direction (anti-clockwise) at the optimization

stage, and in the opposite one (clockwise) at the forecast stage.

Otherfeatures

Use of convolution for an analogue choice in sorting out the vector components of Y.
One can use a convolution of components in the target function instead of calculating the
analogues in the multidimensional space. This helps the modeler to include components
which lead to more accurate forecast. The analogues will be the same, but the calculations
are simpler. The target function Y must have a continuous scade for a unique definition
of the analogues. Thus, when at least one of the components of Y has such a reading
scale, it is recommended that the convolution of the normalized component values Y =
VO3 +y3+---+y?) for analogue searching be used. If all components are binary variables
(equal to 0 or 1), it is necessary to expand the component set by introducing one or two
components of the orthogonal Karhunen-Loeve transform (for the joint sample XY).

Y= VO +yi+- -+ + 2 +22), (5.35)

where 2\ and z; are components of the artificial target function [137]. Sorting out of the
target function is meant for excluding some items from the expression.

The complete sorting of variants of criterion values CV — min is carried out in a three-
dimensional space of (F,m,Il) as h = 1, where F is the number of complex analogues, m is
the number of feature sets, and / is the number of components in the target function.

Correlation measure of distances berweenpoints and “Wroslaw taxonomy. ”  The simplest
measure to calculate the distance between the points of the multidimensional feature space
is the Euclidean distance for continuous features and Hamming distance for binary ones. If
the data are nonstationary, for example, values will show an increasing or decreasing trend.
The trend is then defined either as an averaged sum of normalized values of the variables
or each variable trend is found separately (by a regression line in the form of polynomial
of second- or third-order). Deviation of the variable from its trend is read out individually.
The correlation coefficient of the deviation of each of the two measured points serves as a
correlation measure of distance between them.

When the distance correlation measure is used, it is logical to apply the "Wroslaw
taxonomy" algorithm for feature-ordering according to their efficiency. This algorithm is
based on the partial cross-validation criterion CV; — min and makes it possible to order
features according to their efficiency, and then excludes them one by one in the optimization
process of the events-forecasting procedure to find the optimal feature set and the optimal
number of complexed analogues.

The "Wroslaw taxonomy" algorithm is applicable only when the target function is defined
in the problem. For this reason it is useful only in event forecasting, but not in the process
forecasting.

Once the system is trained for a specific problem of event forecasting, it can be considered
as the algorithm for recognition of new images. Thus, the event forecasting algorithm is
treated as a particular case of the more general problem of image recognition; i.e.,, when
recognizing the (N + I)st vector of the target function Y is necessary.



Chapter 6 from the book

"Inductive Learning Algorithms for Complex System Modeling",
Madala H.R. and Ivakhnenko A.G., 1994, ISBN: 0-8493-4438-7, CRC Press;

Chapter 6
Applications

Inductive learning algorithms, called Group Method of Data Handling (GMDH) were de-
veloped using the principles of self-organization modeling. Self-organization of modeling
is the process of finding the optimal structure of mathematical description of a complex
object by sorting many variants according to a certain ensemble of external criteria. Unlike
the traditional modeling approaches which are deductive in character, the inductive learning
algorithms are based on the sorting of models according to the external criteria agreed on by
experts. The inductive approach does not eliminate the experts or take them away from the
computer, but rather assigns them a special position. Experts indicate the selection criteria
of a very general form and interpret the chosen models given by the criteria as the best.
They can influence the result of modeling by formulating new criteria. The overall approach
of the expert becomes that of an objective referee in resolving scientific controversies. The
improvement of man-machine (ergatic) systems is based on the gradual reduction of the
human involvement in the process. The automated systems become more mechanized; i.e.,
they are not only automated but are fully automatic as well. The human element often
involves errors and undesired decisions. One of the examples is the process of specifying
the objectives, or determining the set of criteria. Future development might lead to sequen-
tial decision-making algorithms that include an automatic setting of selection criteria, their
sequential determination, freedom-of-choice, and so on—almost without having to involve
experts to solve important problems. This means that the involvement of human element
will be reduced.

At the present state of development, experts specify external criteria and consider results
without interfering with the optimization processing. In case of disagreement, the experts
can utilize higher levels of criteria (noise stability criteria), so that controversies are quickly
resolved. The problems of nonlinear identification and of long-range forecasting of complex
processes are solved by the computer.

Two-level prediction schemes of learning allow one to leave the choice of the model to
the computer, significantly increasing the lead time of forecasting. The objective character
of the modeling speeds up the understanding of the object, allowing us to avoid false
subjective selection.

The following features of inductive approach allow us to improve the quality of self-
organization modeling and to give the procedure an objective character [32].

1. The minimum-bias criterion agrees that models obtained with the use of two different
sets of data be identical. Such a model leads to a physical model that is isomorphic
to the mechanism of the object under consideration. In self-organization modeling, a



physical model is used only to determine the composition of the set of output variables
subject to forecasting, Knowing this, we proceed to self-organization of nonphysical
models.

Nonphysical models differ from physical models in the composition of the argu-
ments used and in the external criteria. The step-by-step prediction criterion assumes
great importance. Nonphysical models can be constructed in various mathematical
languages that differ in the degree ol prediction accuracy which is measurable by
the correlation time [44]. The nonphysical models can use two- or three-dimensional
time readout. All this is important because the limit of informativeness of a forecast
is determined by the degree of blurredness of the modeling language.

Nonphysical models are used in the self-organization modeling of two-level sche-
matic predictions—Tfor example, annual and seasonal predictions for which the balance-
of-predictions criterion allows the increase in the lead time of detailed (seasonal) pre-
dictions. The usage of an auxiliary criterion like prediction criterion is necessary to
curtail the volume of sorting 1o the reasonable number of annual and seasonal models
and to ensure the uniqueness of the choice of predictions according to the prediction-
balance criterion. The balance criterion serves as the choice of both short-term as
well as long-term forecasts.

- The class of the equations and the form of support functions are selected by sorting
many variants of models according to the selection criteria. For example, a system
of finite-difference equations are formed for use in self-organization modeling of
ecological systems. In traditional approaches, the physical equations are considered
and their discrete analogues with variable coefficients are formed to represent the
object, but ultimately it ends up with poor predictive characteristics.

. The third feature of the inductive approach is the selection of the set of output and
input variables, and of the “leading” variable among them. The objective system
analysis allows us to obtain the least biased system of equations according to the
system criterion of minimum bias.

The inductive algorithm for OSA allows us to sort out all possible systems of
equations consisting of one, two, three, and so on equations and to select the most
unbiased model of system of equations. This determines the structure of the object
and the set of output variables. The best output variable which forecasts better than
all others is called as the “leading” variable.

The variables that are interested may not enter into the set of output variables
during OSA and have to be predicted as a supplement in terms of the functions of
the output variables according to the two-level prediction scheme in time.

. The self-organization modeling allows us to obtain models with optimal complexity
even in case of incomplete information; i.e., without having the data of many important
arguments. This is an antithesis of the idea of increasing the information basis up to
some universal measure. The inductive learning approach, however, demonstrates the
success of such modeling; for example, for predicting winter wheat harvest more than
50 arguments are required to have—the use of fertilizer, method of tillage, periods
of irrigation, and so on. All available arguments are very important. Nevertheless,
in self-organization modeling, only two to three arguments participate for sufficient
accuracy of forecasts (this is further explained in the given examples). Although the
connections among the arguments made during the self-organization modeling remain
unknown to us, these may be taken into account for an accurate forecasts.

. The self-organization modeling is possible with noisy data. The inductive learning
algorithms obey the laws valid in the communication theory—particularly, Shannon’s



second-limit theorem for transmission of noisy signals.

The inductive algorithms allow us to restore the physical model of the object under
study even in the case of noisy data exceeding three to four times the regular signal
[63]. The methodologies used in the communication theory and the pattern recognition
theory allow us to raise the noise immunity of the algorithms. This means that the
accurate models can be obtained with an incomplete information basts and noisy data
in the same way as the accurate signal 18 restored under the noisy conditions and
distortions of various kinds.

The overall modeling 1s object-oriented because all problems are solved according
to the agreed selection criteria. The final results of modeling may not coincide with
the ideas of the modeler about the object being modeled.

1 FIELD OF APPLICATION

The inductive method is an empirical method and is intended for self-organization of math-
ematical models based on measured data. The object of the modeling is identification
and prediction of the object. The usual methods of regularization (for example, regression
analysis) are mathematically elegant but inexpedient external additions.

In self-organization theory, an entire series of more apt criteria arc proposed—regularity,
minimum bias, prediction and others oriented towards satisfaction of the practical users
of the models. These criteria are applied sequentially one after another, to eliminate the
difficulties of normalization (choice of the coefficients) of the critcria, Multicriterial choice
of the model is one of the foundations of noise immunity of the inductive algorithms.

Godel’s incompleteness theory is fulfilled by the problem being concerned with the choice
of the ensemble of external complements, and its composition and sequence of application
at different levels is solved by sifting a number of variants. The upper level criteria is based
on:

noise

1. criterion for noise stability: 0 = signal

— max,

lead time
observation time

2. criterion for maximizing the lead time of predictions: @, =
and

— Max,

3. criterion for minimizing the amount of computational time: ©3 = computer opera-
tional time — min.

The ensemble of criteria is to better ensure the required value of the pair of criterta
©, and ©,. The objectivity is based on the choice of the set of criteria.

The field of application of the inductive learning algorithms is shown in Figure 6.1, This
is widely spread on the plane with the coordinating values of @, and ©,, and @3 = 3 hours
of operational time {usually on minicomputers).

The modeling of optical systems requires application of single-level models with a usual
time reference, accurate initial measured data, and the complete information basis. Two-
dimensional time readout (in terms of seasons and years) in case of noisy data is required
in predicting certain agricultural productions, river flows, and so on. Two-level forecasting
with two-dimensional time readout with incomplete information basis is used for economet-
ric models, modeling of climatic changes, and ecological systems. Some of the practical
examples corresponding to these are given in the preceding chapters. This chapter 1s ex-
tended further for more specific examples in the areas of weather modcling, ecosystem
studies, economical systems modeling, agricultural system studies, and solar activity.

We hope that the reader will get an overall idea of how to approach to this type of model-
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ing. However, the reader must keep in mind that more complex modeling problems with very
high noise levels require development of new algorithms using special mathematical formu-
las, new external criteria, and criteria with canonical forms. The field of self-organization
modeling is open to receiving and providing further technological achievements.

2 WEATHER MODELING

Self-organization modeling requires the presence of two components: a generator of variety
of models (combinatorial or multilayer) and some sensibly chosen ensemble of external
criteria to evaluate these models. A relatively short data sample is needed to estimate the
parameters of the models and to compute the values of the criteria. A general description
of the equations comprising the system to be formed may be known to the modeler. So,
a composite approach is frequently the optimum approach, whereby a general description
specified a priori as a reference by the human author and remaining analysis is done by
computer sorting in accordance to various criteria.

2.1 Prediction balance with time- and space-averaging

The problem of identification of complex objects based on the emperical data is treated
as an ill-posed problem, in as much as a unique solution always requires the use of some
external information or an external supplement according to Godel. This means that it is in
principle impossible to obtain a unique model in optimal complexity without regularization.
In addition to the basic criteria like regularity and minimum-bias, the following are some
criteria are convenient to use for cylindrical polar coordinates of meteorological field.

Interpolation balance criterion

The difference equation pattern has only six nodes (Figures 6.2 and 6.3). During the training
process the patterns are moved vertically upwards in the time axis at one-day steps. Each
position of the pattern yields one conditional equation. All models are trained according to
the inductive algorithm. The expression is

I
q;j = 1(‘1?+1j+4§—1j+f15j+| ‘”ﬁj_]), (6.1

which, from the theory of difference equations, can be used to construct the criterion of
interpolation balance. If N is the number of pattern positions in the interpolation region,
then the criterion is written as

N
1 4
b= E lg; — Z(‘I§+1j + Gy + G *+ g1 6.2)
i:‘

Balance criteria

Balance-of-variables and balance-of-predictions criteria are used when several variables are
predicted simultaneousy. The former requires that some relationship that exists between the
variables at a given time should also exist in the future, whereas the latler should be used
in an ensemble with the predicting models.

As given before, the prediction balance criterion with time averaging of variables (av-
eraging over a season and over a year) which is used mainly for cyclic processes can be
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Figure 6.2, Application of interpolation balance criteria with averaging a) in space (average of eight
predictions is balanced to the average over entire area of the ring), and b) in time and space (average
of 8 x 4 = 32 predictions is balanced to the prediction of the average over entire volume of the tube
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written as
2 5 [ A ~ = 12
b* = l(Iyear - E(QW + Asp + dsu + qf)J i
B* = b} — min, (6.3)
iEN

where ¢, 4sp. 4w, and gy are predicted average scasonal values of the winter, spring, sum-
mer and fall variables correspondingly and §y.., is the predicted average annual value. N
is the number of years covered by the prediction.

Prediction balance criterion with space averaging of variables

The prediction balance criterion can be applied in a similar way with the averaging over
the area of a ring, which can be written as

| . .
bt = [g(‘h Fhn b+ 08) — ol

B’ = Zb? — min, (6.4)

ieN

where ¢y,4»,- -+, gg are predictions obtained for eight patterns which form a ring around
the axis of a cylinder (Figure 6.2), §o is a prediction of the variable averaged over the entire
area of the ring, and N is the number of steps at which the prediction is checked on the
time axis.

Prediction balance criterion with time and space averaging

Here time intervals are, for example, days and 4-day period and space intervals are one
pattern and the area of the ring; this can be writlen as

1

b ==

[8

e A L.
{Z(QI+Q2+Q3+Q4)I+Z(Q]+Q2+Q3+Q4)2+"'

s 12
...+Z(ql+q2 +Q3+Q4)3} — ¢l

B* = > b} — min, (6.5)

N

where go is the predicted value of the variable averaged over the entire volume of the pipe
consisting of four rings.

Normalized combined criterion

_7]b.v — Nbsmin )2 + ( A(C) - A{C)miL )2 4 ( b— bmin

—— ™ 32 min (6.6)
Nbspame — TBSmin A(C)max - A(C)min bmux - bmin

c6® = (

Alternatively, normalization can be avoided by using the criteria ngs — min, AYC) —
min and b*> — min in a sequence one after the other.

To ensure the needed freedom of choice is the goal of every sequential decision making
procedure; first F; models are selected from total of Fy models using the first criterion,
from this F, are selected by the second criterion, and finally the third criterion is used to
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Figure 6.3. Positioning of implicit patterns on three daily charts in cyhlindrical polar coordinates p
and ¢; a) plan, and b} axonometry

select a single model of optimal complexity Fo > Fy, > F» > F3 > 1. The sequence of
application is

Fy — mp,(F)) — AXONF,) — b(1). (6.7)

To optimize the freedom-of-choice, F; and F, are chosen to select several identical models
on the basis of 77, and A%(C). A single optimal model is selected from this group using the
balance criterion. The number of models tested by the balance criterion can be increased
depending on the computer capacity—usually F3 < 8.

Sequential application of the criteria does not require the normalization of their values
and also there is no need of introducing criterion weighting coeficients.

2.2 Finite difference schemes

Self-organization modeling requires one to indicate the list of variables containing a large
access, an appropriate emperical data sample, and a reference function. The computer selects
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Figure 6.4. Explicit elementary patterns: (a) for the point problem g(r), (b) for the two-dimensional
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the ensemble of most effective arguments, finds the optimum structure of each equation, and
estimates the coefficients. The depth of minimum of the selection criterion is the measure
of the modeling.

Fields of meteorological parameters (temperature, pressure, humidity, etc.) are usually
described by the linear partial differential equations. The linear finite-difference ¢quations,
which are discrete analogues of the linear differential equations are suggested as reference
functions; these equations can be expanded by introducing nonlinear terms into them.

The following equation is an example of a point problem:

d’q

d
A + al‘(g +aoq = f1). (6.8)

By using the forward finite-differences of Ag= (g — ¢~ ") and A2g=(4' —¢" ) — (¢ ' -
g ~?%), this equation has the following finite-difference form:

¢ -2 ' +¢d D +ailg — ¢ DH+ag = f(D) (6.9)

The elementary pattern corresponding to this equation represents the arguments ¢~ ! and 4’ -2
which have an effect on the output ¢'.

q = [ +HG g, (6.10)

where f;(#) is the so-called source function or trend function.

To construct the system of conditional equations, the data collected by moving the pattern
step-by-step along the time axis (Figure 6.4a) are arranged in the table form with the columns
of 1,¢',g" !, and ¢'~2. Each position of the pattern corresponds to onc row of the data
table which is divided into different parts. The prediction is obtained through step-by-step
integration by moving the pattern inte the region of future time.



Two-dimensional time-readout

A significant improvement in accuracy can be achieved in modeling of cyclic processes by
using the bivariate time scale; for example, months and years or seasons and years, hours
and days, etc. The pattern shown in Figure 6.4b indicates that the output ¢; ; is influenced
by the arguments ¢, r,¢,—27, and ¢, r_1. This pattern can include not only the output
variable but also the auxiliary variable like x as

g7 =S T) + ol 1 G271 G 11 G20 s

X T Xy 1 Ty X2 T Xe T ]y - ) (6.11)

The patterns related to the (x,y) and (x,r) planes can be identical to the patterns with
bivariate time scale (r, T) (Figure 6.4¢).

Similarly, the patterns related to the planes (x,y, ), (x,y,z), or {x, ¥, 2, 1) (Figure 6.4d)
are represented for spatial problems having number of delay arguments along each axis.

Implicit patterns in cylindrical coordinates

In self-organization modeling, the physical fields are identified on the basis of different
reference functions; algebraic, harmonic, or finite-difference equations. Usually the finite-
difference equations arc preferred because they have additional advantages. They are linear
in coefficients and nonlinear in variable parameters. But sometimes they may create some
serious problems like providing unstable predictions. In such cases addtional measures are
taken in achieving the convergence of step-by-step predictions such as

e decreasing the sampling interval of variables;
e simplifying the patterns and functions (not considering the nonlinear terms):
¢ changing from “explicit” to “implicit” patterns; and so on.

Let us see the concept of implicit patterns; they are realized on a closed curve and
are moved simultaneously by one step. This yields a simultaneous system of equations.
The most promising are the finite-difference models realized by implicit patterns that arc
constructed n cylindrical-polar coordinates (f, g, ¢) (Figure 6.3). The differential equation
of diffusion in this plane contains a linear sum of derivatives of not higher than the second
order

0y 0%y Py dy Jdy Jy
Ay +a,—5+ar—= +a +a +a =f(t,p, 0 6.12
052 YAgS 2 5% Yot T4, Sd) =f{t, p, ), (6.12)
where ap, a;,as, - -, as are the constants and (¢, p, ¢) is the source function.

The following finite-difference analogue can be replaced considering one additive trend
equation.

rooL Jg-1 =2 1 J ! Ry
yij - fl(z-: 2, (,75) + fz(},j 1 y[.} ?}'j+]j+l 1)’[—]j+l ryfAljf-l 7.\[+1j7| »

N R 1 ! i
Tipr T 5T Tidjels Tt s Tty 15 Tintj— 1 ) (6.13)
where f1(1, p, ¢) 1s the trend function, y is the predicted variable, z are the variables which
are correlated with the predicted variable, and i and j are the indices of p and ¢ coordinates.
The table of data sample is prepared for each position of the pattern along the closed
circle that is achieved by placing the patterns along circular layers of the cylinder in such
a way that the adjacent patterns have two common points. The patterns are trained using
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the part of the data in one region and are used for step-by-step predictions in the other
region. The meteorological factors are predicted for the first layer near the central axis of
the cylinder making it possible to determine the weather in the second layer, and then the
third layer, etc. for the entire region included in the cylinder.

For example, Figure 6.3 shows the placement of eight patterns on one of the three layers
of the cylinder. The eight pattern equations can be written for the first layer as

r—Zk I—lk tk rL r]‘ lk =0 6.14
Qotaigy -~ +axq; ¥ axgigjeg Y Oadio A5G0 Y asgi gy = (6.14)
where k = 1,2,---,8 and the coefficients ap,a,- - -, a are estimated using one of the in-

1—2

k k
ductive learning algorithms. While predicting, the values of all g; ~ and qu_i are known

#

as these were positioned in the past and the values of qi1j—) and q,fl:]jb, are determined
with a separate prediction because these are located near the cylinder axis. Pattern cou-

B . —1 C+1
pling equations ‘Iﬁu—l = qﬁi,jﬂ or qffk_,jﬂ = q;‘_U_, hold for qﬁi]jﬂ and qf’:]jﬂ. Thus, 16

necessary and sufficient equations are available for determination of 16 variables (eight
qgf-ljﬂ and eight Qi1j+1)-

The equations are obtained for the second and third layers of the cylinder; the only
difference is that the values of qﬁ] j—1 and ‘151‘71171) are determined from the data of the
previous layer, not by a separate prediction. This means that a separate prediction is
required only in the region located near the cylinder axis.

The self-organization theory offers the additional means for improving the convergence
of step-by-step prediction:

1. By using the finite-difference equations with variable coefficients; these have simpler
palterns than the equations with constant coefficients.

2. By using the step-by-step prediction criterion (i*) in the ensemble of the external
criteria; this criterion selects from the set of possible models those that have adequate
convergence.

2.3 Two fundamental inductive algorithms
Combinatorial algorithm

Since the original differential equation is idealized, the nonlinearities in the system are taken
into account by expanding the finite-difference analogue (reference function) with higher
ordered terms. For example, for a point problem we can have

q = [+ @+aig " +arg  +asg T vang ¢ v asg g R

-2 1-3 & +agq’_22 +agq’_32)., (6.15)

tasq T g +arg”
where f1(z) is the trend or coarse model. This is usually obtained in advance by applying
the least squares method through the experimental data or by using an inductive algorithm
with the minimum-bias criterion as an external criterion. The purpose of this model is to
decrease the number of arguments of the difference part, lumping together some of them
into a separate term. In weather forecasting this model can correspond Lo a climatic forecast
averaged over a long time. The remained difference part of the model refines this forecast.
The combinatorial inductive algorithm enables us to evaluate the “structure of functions”
obtainable from this equation on the basis of minimum-bias and regularity criteria. Therc
are 10 terms in the difference part of the above equation and the total number of equations
to be tested is 2'°.
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Multilayer algorithm

If the difference part of the above polynomial reference function contains more than 20
terms (varies according to the computer capacity), the multilayer algorithm with linearized
terms is applied. The linearized version of the reference function is

g = fi+(ap+awi +azwa+ -+ dmWn), (6.16)

where m > 20 and w represent the terms ¢.

The multilayer algorithm determines the complete linear polynomial as a superposition of
partial polynomials with two-variable of type (§x = aw +anw;+axyw;, where k indicates the
unit number; i = 1,2,.--,m; j=1,2,---,m; and i #j). This algorithm realizes the method
of incomplete induction by omitting some partial polynomials during sorting and is never
tested against the criteria. This is done in a multilayer feedforward network structure. The
result of self-organization modeling is the output model with an optimal complexity. The
computer selects the structure of the model, its nonlinearity, and the content of its arguments.
During the processing the ineffective terms of the reference function are discarded.

2.4 Problem of long-range forecasting

The method of analogues is one of the interesting methods considered in the literature
for reliable long-term weather forecasting. The idea of analogues is based on finding the
interval whose meteorological characteristics are tdentical to those presently observed in
the measured data and the future of this interval which is measured in the past is the best
forecast at the present time, Although the idea is so simple, attempts to apply this idea
always produce results that are not very convincing because with a large number of observed
variables it is not possible to find the exact analogues in the pre-history data. The self-
organization method based on the inductive approach can be interpreted as an improved
method of group analogues in which the analogues of the present state of the atmosphere
are selected by using special criteria to produce the most probable forecast.

The problem encountered is how to estimate, at least approximately, the achievable
prediction time. The maximum achievable prediction time 7, of a one-step forecast is
determined by the coherence time 7, of the autocorrelation function A,(7). The maximum
allowed prediction time of a multiple step-by-step forecast is equal to the coherence time
multiplied by the number of steps (7, = 7..n). This means that prediction error increases
with each integration step that imposes a definite limit on the step-by-step forecast. This
leads to seeking of the maximum capabilities of multiple step-by-step prediction, assuming
that they are determined by the coherence time in the same way as they are for one-step
prediction. However, studies of autocorrelation functions of meteorological parameters 10
determine maximum prediction time have not yet been completed. The expected results
should be similar to the studies of autocorrelation functions for other complex systems.
It turns out that averaging of variables in time increases the coherence time. Ongc has to
remember that it also depends on the physical properties of the process being predicted as
well as on the quality and characteristics of the mathematical apparatus. This corresponds to
the extreme variations from predicting “purely” deterministic objects like motions of planets
to “purely” random objects like games of “lotto.” The actual physical problems are always
located in between these two cases.

The autocorrelation function of a process contains some information on its predictability
(the degree of determinancy or randomness). According to studies it is evident that by
increasing the averaging interval of variables in time or space shift the process from the
region of unpredictability into the region of long-term calculability—i.e., ceniennial averages
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and global averages of pressure, temperature, or humidity can be predicted a thousand years
in advance. At the same time the predictions based on the daily avearges cannot be valid for
more than 15 days. Nevertheless, it is possible to overcome the predictability limit by the
following suggested possibilities that are applicable in predicting some weather variables
like temperature, pressure, etc. at the surface layer.

2.5 Improving the limit of predictability

Here we discuss the possibilities of increasing the time of weather forecasts in the self-
organization method.

1. The first potential contribution of the self-organization method in improving the pre-
dictability is in the mathematical apparatus and objective synthesis of the system of
equations; the structures of the equations are selected by the minimum-bias criterion.

The proposed equations are to be valid not only in the training region of the data
sample, but also in the testing region. This is precisely what is done by the minimum-
bias criterion. This means that the computer sorts out the number of equations for
each specified output variable separately and finds out a system of equations that is
invariant in time. This is the objectively evaluated system of equations based on the
empirical data,

2. The second potential contribution of the self-organization theory in improving pre-
dictability is the composite use of different averaging of variables in time and space
with the help of the prediction balance criteria. The balance criterion provides a ref-
erence point in the future, allows one to perturb the divergence of solutions which is a
typical property of the hydrodynamic equations, and from there increases the entropy
of predictions.

In predicting the average daily values, the reference point in the future can be the
forecast of average monthly values. Similarly, in predicting the variable of average
over an area, the reference point of a forecast at a specified point on the surface of
the earth can be the forecast of a sum of variables at several points. This means that
when the space averaging is used, the forecast ability of variables averaged over large
arcas becomes higher. The forecast validity time based on short averages is pulled
up toward the validity time on a large regions.

3. The third possibility provided by the self-organization theory is a significant widening
of the complete set of arguments (input variables). It is followed by selecting the
most effective of these arguments, It is reasonable to include the connected patterns
that realize the long-range effect inserted with appropriate delays in time in the use
of moving average sums of variables, which are analogous to the integral terms of
hydrodynamic equations. If the proposed arguments turn out to be ineffective, these
will not be included in the ensemble of predictor arguments.

Example 1. Self-organization modeling of air pressure and temperature at a point located
on the cylindrical axes [58].

The possibilities mentioned for improving the limit of predictability in the self-organization
method, which uses implicit patterns in cylindrical coordinates, allow one to compute future
values of the meteorological parameters. These parameters are already predicted one-step
(day) ahead at nodes of all patterns located on the cyldrical axes. The problem requires the
one-step prediction of the parameters at one point on the surface of the earth. This can be
obtained by using the multilayer algorithin which is demonstrated in this example.
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Figure 6.5. A sample weather chart

The example shows how one can find the optimum structure of equations which ex-
press the variation of temperature and pressure fields as a function of time. To determine
the models used for predicting pressure (P) and tempcrature (7), the metcorological data
charts (Figure 6.5) are divided into clementary cubes and average daily values of the me-
teorological parameters are prepared in each cube. These charts are stacked on time axis
as a parallelopiped-space of given observations as shown in Figure 6.6. This consists of
6 x 10 x 10 unit cubes with the units of measure 5120/6 km along the x-axis, 8400/10 km
along the y-axis, and 1 day aleng the time axis.

Six shapes of even paiterns which are tested in the example are given in Figure 6.7 and
the corresponding finite-difference models in otimal complexity with the estimates of their
accuracy are listed in the Table 6.1. (Here P and T are the average values of the arguments
for the four nodes.) The equations of the complete pattern have the following general forms:

Pt = £, y)+f2(PfJ,Pf LR T T TR )

T = Alx, )+ T T T2, P P PR ) (6.17)

i

The data are collected according to each pattern from the parallelopiped-space of the
observed data and arranged in the tables in relation 1o the output and input variables;
the data are normalized. The data are divided into sequences of A,B, and C, where
W=AUB=280%, and C = 20%. The data sequence C is used as a separate sequence for
checking the models. The system of equations corresponding to each pattern are selected
on the basis of the combined criterion (¢32 = nZ, + A*(()). All equations are compared
with each other on the basis of the relative error on the sequence C. The results show that
the system of equations corresponding to the fifth pattern (Figure 6.7¢) is the most accurate,
The relative error is measured as

(Sp = \/ENLC ZZ Z}’(P - p)zj/(Pnlax - Pmin) — min
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Figure 6.6. Parallelopiped experimental data for ten days (training and testing data) and of predictions
for seven days; ‘*’ indicates the point of interest, a location on the earth

. 1 A9 ;
o = \/[N_C Z Z Z)’(T - T)A]/(Tmax = Tipin) — mun, (6.18)
rox

where P and T are the actual values, P and 7 are the predicted values, P and T;,,, are
the maximum values, and Py, and 7, are the minimum values of the pressure and tem-
perature, correspondingly; N¢ is the number of data points in the sequence C.

For Nc =7 (, i.e, for a seven-day forecast,) the relative prediction errors on pressure
and temperature are dp = 0.3709 and 4y = 0.3043, correspondingly. Figure 6.8 shows the
curves of predicted temperature and pressure for the axial point shown in the parallelopiped-
space of data. The system of equations corresponding to the pattern V (Table 6.1) is used
for this purpose. The system is adaptive—i.e., the forecast is updated everyday as new data
are received.

The example given above is conducted on an experimental basis. In this example, neither
prediction balance nor an objective synthesis of system of equations are used. This means
that the possibilities of improving the accuracy of the forecasts have not been exhausted.
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Table 6.1. Optimal models for different patterns

No. | System of equations Nps AO) c3
I P"“ = —1.0083 — 0.10997 + 0. 3920T’J +0. 8809P' 0.021138 | 0.276223 | 0.277031
+0 OO47P’ T’ +0. OIZIP' P’ +0. 0001771)’ T'
rf” =1 7269 +0.141 u + 0 93347’ 0.201362 | 0.290929 | 0.353817
| P’” = 6.0649 + 0. 2355;»* —0. 00%487*3 ) 0059P%, Pf ! 0.022273 | 0.289461 | 0.290317
+o 0047P] P! +0. 010591“ ‘T’ +0.00503P], P, + o 00405P" T
Tf+1 = —0. 6725 +0. 9838T’ +0. 00172P’ ‘ﬂ ! 0.176932 | 0.352216 | 0.394159
11 P’j =4.0505 — 0. 00734P’ 240 46821’" +0.00745pt P! 0.121926 | (1362449 | 0.382407
+0. 0124P‘ -’-P’ 2 +000566P‘"f ! 00026513‘ 57‘}
Tt =1, 6%42 + 0 49087" Z4 0 501 97’ —0. 0000”56}” ‘Pf 2 0.079602 | 0.233970 | 0.247141
N Z0.0031 PP o 0030977~ TL ?
IV | P! = ~3.6239 +0.69611 +0. 8436P‘ +0.2970P 0.057442 | 0.352762 | 0.357409
+0 2335, +0. OUSISPfHJP:” 0 0000759:+ JTjH
+0. oozsspf le y+ 0 ompf ]Tfj
T'+' =1 28603 +0. 4706T‘ it 0 3847'7"“ . 0.186287 | 0.197606 | 0.271572
v P”‘ =5.06+0.3648P_ + 0,007871"6.4 — o‘oosaspgjrfm y 0.080550 | 0.235598 | 0.248988
+0 01848PLUP: ) — 000572277} _yto 00002522 “'P;J.
T”' = —(.8886 + 0. 2417?” +0. 28341’ i+ 0 27121’" . 0.038617 | 0.235150 | 0.238300
+0 00961!’;“!7“' !
VI P’” = 5.056 + 0. 572P’ - 0. 00234P' 27‘ ! 0.190290 | 0.198452 | 0.279023
+0 owsp’ ' j+0 0069‘3113’ 1Tf
T'*” =3, 9901 + 0 642T’ j+0. 221 57‘ ! 0.046587 | 0.298915 | 0.302524

+0 003696F" 7‘ ‘—0 0002287*1’—

2.6 Alternate approaches to weather modeling

Here are some other suggestions on how to use the inductive approach in solving the weather
forecasting [60].

The self-organization method is of a heuristic nature. Its main idea is to generate a
large variety of variables and functions connecting them, and to choose the best structure
in optimal complexity according to an external criterion, The following proposals are made
for better predictions:

an autonomous system of homogeneous difference equations (for short-range predic-
tions) is proposed to describe the change in instantaneous as well as the averaged
values of the variables and to include any source function and external disturbances;
the use of two-level predictions on the basis of several balances (for example, year-
season, and year-month);

a two-level algorithm (for medium-range predictions) to use with several balance
criteria;

the use of correlational models for predicting weather in movable coordinates;

the use of ecological variables in a combined system of weather-climate equations to
increase prediction accuracy and prediction time; and
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Figure 6.7. Different pattern schemes considered

e the use of a method of group analogues (for long-range predictions) that 1s based on
objective clustering of the weather into number of clusters (not specified in advance)
with averaging of the predictions of the variables one by ong; the set of significant
variables can be set up objectively by the objective system analysis algorithm.

The meteorological variables that determine the weather (air pressure, temperature, wind
force, humidity, etc.) oscillate continuously around a mean climatic value (or a trend)
in a random manner. The trend is usually known and can be predicted rather accurately.
This means that the problem of weather forecasting is reduced to predicting the random
deviations of the variables from the trend. These deviations are called the “remainder.”
One should note that all of the variables referred below correspond to such meteorological
variables.

The suggested approaches are described below.

Weather modeling in fixed coordinates

The first approach suggests including the variables of external disturbing influences with
the averaged, delayed, and higher-ordered arguments into the reference functions under
consideration. The candidate variables usually used are in the original equations; that is,
g1 = u, the projection of the wind velocity onto the north-south axis, g2 = v, the same
onto the east-west axis, ¢y = p, the air density, and g4 = A, the air humidity are introduced
along with the variables g5 = P, the pressure, gs = T, the temperature, and 7,x, and y are
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Figure 6.8. Performance of the system of equations trained based on the optimal pattern structure for
pressure and temperature for pressure and temperature at the point of interest; the full line indicates the
actual measured data, the broken line indicates the pattern training based on the measured data from
the point of interest, and the dotted line indicates the pattern training based on the whole parallelopiped
of data

the time-space coordinates. The variables of external influences can be the parameters of
distant points of the geosphere; for example, the temperature or pressure of air at the centers
of the Atlantic ocean (minimum and maximum values), etc.

Using the implicit form of the pattern (Figure 6.9), the following equations can be formed
for each of the variables listed.

(a) autoregression equations (k=1,2,.--.6):

—1 -2 —3 .
Gy =00 " G G o Gy, (6.19)

(b) multivariate equations (k=1,2,---,6: I=1,2,---.6: k # 1y

r_ -1 =2 -3 t t t
Qe = h (le-j iy Gy T D by Qk,-j_)
I =t -2 -3 ¢ H ' t
+ ; 6.20
fz(q’fj’ql'ij 7ql"j 7q.[‘-j ’q’i—lj’qll'ij’qlij— ) QI-- )’ ( )

! ij—2
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{c) equations with source functions (k=1,2,---,6)

By = Hi A5y (6.21)
(d) equations considering the external influences (k=1,2,---,6):
quj = fi +fo +f3 4+ falur, uz, ). (6.22)

Two-level predictions

In one-level weather predictions, either instantaneous values of the variables or the variables
averaged over the same interval of time are used. In two-level predictions, these calculations
are made for two time intervals (for example, season and year). The balance criterion enables
one to choose a pair of seasonal and yearly predictions. For regularization purposes one
uses the balance criteria set up for other time intervals or space regions. The prediction
time in the averaging of the variables tends to the prediction time of the variables averaged
on a long time interval or a large space region. We recall that balance criteria can be either
temporal or spatial.

The descritization step of the data in time is chosen for both the components in relation
with the extrema of the corresponding correlation functions.

Two-step algorithm

The two-step algorithm 1s used for solving the system of difference equations and to obtain
the model in optimal complexity.

At the first step of the algorithm, the multilayer algorithm is used with the regularity
criterion to obtain only the effective candidate variables and their estimates.

At the second step of the algorithm, the reference function includes the higher ordered
arguments (product terms to the order of three) tor the effective variables selected in the
first step. This uses the multiplicative-additive and non-linear functions. Depending on
the number of arguments, either combinatorial or multilayer algorithm is applied with the
minimum-bias or regularity criterion to obtain the optimal structure.

With the “implicit” patterns (Figure 6.9), each of them is trained up along the time axis
by estimating the coefficients. The output variables are found by solving the simultaneous
system of nine equations for all patterns located at the corners of the square. The stability
of the step-by-step prediction is increased with this procedure. For each candidate variable
the implicit patterns are used. This means that there are nine equations for each variable,
and for the external influences and source function, explicit patterns are used to obtain
a single equation. Ultimately, an autonomous system of finite-difference equations are
obtained in which the outputs are the averaged system variables and external disturbances.
The solution of such a system serves as analogues corresponding to find the free motion of
some closed system and, hence, it does not need any special orthogonalization such as the
use of Chebyshev series. Predictions are obtained by step-by-step integration of the system
of equations. Here it is assumed that the external disturbances change in the future as they
have in the past.

Weather forecasting in movable coordinates

In meteorological problems, the equations of motion of a cyclone or anticyclone are uncou-
pled into an equation of motion of the center or a system of equations describing the motion
around the center. The center is defined as the point corresponding to the two-dimensional
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correlation function formulation. The most accurate prediction is given by a method using
the weather satellites’ data. The modeling is done by using synoptics and that is why
it is subjective and why it depends on the experience of the modeler. For example, in
determining the position of the center of a cyclone (about 20 to 40 km/hr) for a prediction
time of 24 hrs, the average error in determining the speed of displacement is 6, = 300km/hr
and the average error in determining the direction of motion is 6, = 12°. This leads to
an average error of 6, = 200km for the position of the center. This is because the pictures
taken from the satellites do not show the wind at high levels when there is no cloudiness.
This leads to unexpected motions of the formations [81].

In place of subjective forecasting, one has to use mathematical modeling, particularly
the inductive approach which is based on objective reasoning.

Atmospheric formations like cyclones exist for only a short time. This means that
only few points of observations arc available within that short interval of time. Under
such conditions, the inductive algorithms work very efficiently to study the situation. For
example, the model that can be obtained from the above two-step algorithm consists of a
system of two finite-difference equations (one equation for each coordinate}. This can be
integrated for step-by-step predictions of several steps ahead.

Prediction of the change in the atmospheric formations

It is convenient to locate the coordinate origin at the center of an atmospheric formation
such as the center of a cyclone. This means that the problem is predicting change in the
shape of the formation around the coordinate origin. The two-step algorithm 1s based on
the use of finite-difference equations with the implicit form of the patterns. The pressure at
a definite point in the x, y- plane which moves together with the center of the cyclone over
the surface of the earth, can be predicted using its delayed values and the pressures at the
neighboring points located at the corners of the square (Figure 6.9).

!
i+1j

= AP PP P Py, (6.23)

1

r_ r—1 r—2 r—3 !
Pl-j—ao+a1P,.j +a2Pl-j +a3P,-j- +--'+b]PJ-7]j+b2P

where the time axis ¢ is located at the center of the square as shown.

Use of correlational models

The 1sobars shown on the meteorological charts can be considered as random functions in
the space coordinates and time. They can also be represented as a two-dimensional spectrum
and a two- dimensional correlation function of the surface.

We assume that the self-organizing correlation function (its numerator) is stable; ie., it
holds the same characteristic in the prediction region as in the interpolation region. This
condition enables us to obtain an optimal nonphysical nonlinear model according to the
combined criterion of minimum-bias plus prediction.

The advantage of the correlation models is that they can become multifactor models in
a simple manner and that they take into account several meteorological variables and their
delayed arguments.

Use of graphs with binary transformation [55]

The problem of predicting the shape of a cyclone (in mobile coordinates with its center)
can be simplified by considering the shape of isobar curve as a representative of binary
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discretization of the pressure (for example, for P = 1000 mm, the pressure in the region
close to the center (Figure 6.9) is taken equal to £ = —1 and outside the isobar it is £ = +1).
Such a binary approach decreases the requircments on the number of cobservations and
increases the prediction accuracy and its time.

The algorithm consists of three parts: (i) training on the graphs of prehistory, (ii) adapta-
tion of the graphs as per the predictions (ensuring the stability of step-by-step predictions),
and (1ii) selection of the best graph according to the criteria.

The field is partitioned into small squares in which the pressure is either +1 or —1.
Four adjacent squares provide a single input for the graph. The training is conducted by
calculating the number of transitions of the output variables to +1 and —1 (Figure 6.10).
The adaptation is done by changing the graphs with cach step in the prediction such that
the number of transitions on the entire prediction interval is equal to their number in the
observation interval; accordingly, the number of transitions in the graph is decreased by one
at each step.

The graphs can be considered with the preceding states ( the last value or the last two or
three values of the pressure in time). All the graphs are used for predictions and the best
one is chosen according to the combined criterion.

Use of ecological variables

Usually, prediction of climate involves the prediction of variables measured with a large
siding time averaging or moving average interval. Many ccological variables result from av-
eraging different influences activating in the process—first, meteorological variables; hence,
there is considerable correlation between the ecological and the meteorological variables.
One can refer to the work of Lebow et al. [80] for such practical examples.

The possibility of using ecological variables for predicting weather is debated. The ob-
Jective system analysis algorithm often yields a set of significant variables that include both
ecological and meteorological variables. For example, a model obtained for the ecosystem
of lake Baykal includes the variables (yearly average values): gj—the water transparency,
¢3—the biomass of the plant life in the water, g4—the biomass of zooplankton, and u,-—the
water temperature at the surface layer. These are effective output variables in studying
the ecosystem. Corresponding models are obtained for each of these variables. They are
used for step-by-step predictions to the year 2000 to study the changes in the system. This
means that one meteorclogical variable like water temperature can be predicted by using
the ecological data.

The equation obtained for the temperature in the system is not a physical law, but is
merely a tool for predicting the temperature. For extrapolation or prediction of a variable we
can use the selected model, whether it be a finite-difference equation or an algebraic equation
treated in the same way. For example, Figure 6.11 shows the autocorrelation function of
temperature and the cross-correlation function of temperature and biomass of zooplankton. It
shows the presence of considerably higher frequencies in the temperature than in the process
of interaction between the temperature and the biomass of zooplankton. The correlation time
of the remainder of the first process is less than that of the second. Hence, the prediction
interval of the variable temperature when using an ecological variable is greater because
the limiting attainable prediction interval is proportional to the correlational interval. This
means that the ecological variables help in the process of predicting meteorological variables
by increasing accuracy and the prediction interval.

In this example, the ditference equations used for the ecological variables in predicting
the temperature are treated as approximations of their variation. Similarly, the difference
equation used for temperature in predicting the ecological variables should be treated as an
approximation of its variation with time.
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Figure 6.10. Graphs of the number of transitions: upper graph with allowance only for the last state
of the field and the lower graph with allowance for the last several states of the field
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Use of objective clustering

Let us suppose that the computer has selected four out of six variables to use in the
system of autonomous equations listed for characterizing the weather. Any point in the
four-dimensional coordinate space represents the weather at a given time. Similar points
constitute a cluster of “good” or “bad,” *dry” or “rainy” weather. The number of clusters
can be found by self-organization clustering with an algorithm of objective clustering of
multidimensional space into an unknown number of clusters. A more accurate and de-
tailed representation of the input information helps to find more weather clusters. Here the
threshold values for the clusters are not necessarily specified.

Method of group analogues

According to the method of group analogues, when using prehistory data one has to find
several situations of the weather (in some interval of time) that is very similar to the present
weather conditions under consideration. The duration of a situation is equal to the correlation
interval of the anamoly. Then, prediction of the weather can be obtained by averaging all
similar situations. This is the foundation for contemporary long-range prediction.

The selection of an analogue for a given synoptic situation or pattern is a common
operation in synoptic practice, particularly in long-range weather predictions. To avoid the
subjective choice of thresholds for distinguishing situations, one can entrust this operation
to the objective clustering algorithm. Here the more extensive prehistory data the computer
can examine, the closer to each other will be the situations associated with a single cluster.
However, there is a limit to the length of the data sample. Beyond that limit the number
of clusters does not increase. Thus, the inductive approach can help in comparing many
candidate cases and in finding the optimal number of clusters which can help predict the
near future. Usually, the computer chooses several noncontradictory clusterings differing
from each other in the number of clusters and in the set of variables. It is expedient to
choose from these a single clustering which corresponds to the longest correlation interval.
This can be done by further regularization as described in the previous chapter.

Long-range weather prediction

There are at least five different types of atmospheric circulations known in the northern
hemisphere. If one type of circulation exists more often than the others, that is called the
prevailing circulation. The change from one type of circulation to another 1s a purely random
process and is not subject to prediction (like the result of flipping a coin—"head” or “fail”).
However, the change of prevailing circulation from one type to another does lend itself to
prediction like any averaged variable, because the correlation function of the process of
change of prevailing circulation must be rather broad. Each cluster of the non-contradictory
clustering enables us to obtain a long-range weather prediction.

3 ECOLOGICAL SYSTEM STUDIES

Here the performance of the multilevel algorithm along with the objective systems analysis
described in the second chapter will be demonstrated in the study of ecolegical systems.

Let us briefly discuss various stages of this algorithm.

The first srage is to divide the set of variables into three subsets: the output variables,
the input variables, and variables which have no substantial effect on the subsets. This is
the first level of the multilevel algorithm (also called as objective system analysis) used in
detecting the relationships among the variables.
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The next two stages belong to the two-level analysis of the algorithm; the purpose of the
first level 1s to divide the set of predictions of the average annual values of the variables
(those not discarded during the first stage) into “good,” “satisfactory,” and “unsatisfactory”
predictions and to select the best predictions (one for each variable). The purpose of the
second level 1s to predict the average seasonal values of the output variables on the basis
of a series of sets of seasonal models.

3.1 Example—ecosystem modeling

Example 2. Self-organization modeling in the Lake Baykal ecological system.

Lake Baykal was thought to be exposed o so-called anthropogenic perturbations because
of industrial waste, tourism, etc. The views of scientists on this are diversified. Finding an
objective method for predicting the condition of the lake is desirable. The inductive learning
methods based on the principle of self-organization are good candidates for exploring the
objective characteristics of the system.

The list of possible variables is given by biologists. The seasonal and annual values of
the following parameters for a 23-year period are used in this example;

g1 — the transparency of the water in meters,

g2 — the biomass of the phytoplankton in mg/m?,

g3 — the biomass of the small plants(Melosira)in mg/m?,
g4 — the biomass of the zooplankton in mg/m3,

gs — the biomass of the epischura in g/im?,

u) — the surface water temperature in°C,

u, — the water level in meters, and

u3 — the number of hours of sunlight.

Small letters denote the seasonal values and big letters denote the mean annual values.

Here the problem identifies a point physical model that represents the ecosystem. This
is solved by using the multilevel iterative algorithm which has the levels of the objective
system analysis to identify the characteristic variables of the system and the two-level
scheme to select two nonphysical models (annual and seasonal) for long-range quantitative
predictions,

Objective system analysis

This level is used to synthesize a model in the form of systems of {rom one to five equations.
The primary variables are used to form the polynomials in the form of finite-difference
equations.

First fayer. The finite-difference models of the form given below are used for each of the
five variables (g; — gs).
g = ap+ayul +aud T+ asul  +aqul T +asulT?

— —7 — -
+a6u5 + a7ur2 ! + agutz T+ agut2 3 +a10u’2 4

+a”u5 + alguffl + (113.“.;'2 + a14ug_3 + 01514274

-1 t—2 1—3 1—4
taeq;  +apg; T +awgg, C +aeg; . (6.24)
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Second layer. At the second layer, there are C3(= 10) systems of two equations of the
form as given below:

t H —1 -2 -3 t—4
q; = ap+auy +azu  +as T+ aquy T+ asiy

+agih + aziy '+ aguh E + agul 7 + ajoul !

+£1“M3 + algug_l + {1131113_2 + a14u3_3 + 015H5_4
—1 -2 -3 —4
+aieq;  tang; +aisg  +dg
~1 —2 -3 —4
-le()q} + dy) qj- + (Izg(]} + a23q} + a24qj'- . (6.25)
In the third and fourth layers, Cg(: 10) systems of three equations and C‘;*(: 5) systems of

four equations are used correspondingly. In the fifth layer, a single system of five equations
which contain 40 terms is used;

— — 3 _
g = ap + ay) + axd " + a7 + agu ™ + asu T
+agu + a-,;u’z“1 + agu'z"z + agu'z"3 + amu'z”4

+anu3 + algug_] + (l]}llg_z + (.'14.54{(3 + a15ug"'4

t—1 =2 -3 t—4
+d16q; +aizq; " tdgg; T +a)peq,;

t —1 r—2 —3 r—4
taxqg; +ang;  tang; T tang T taug +

r 1—1 =2 -3 r—4
+azsq; + g,  +dyg, T tdigq, " +dieqg; . (6.26)

The computational volume can be reduced at the higher levels by discarding the terms that
are not effective at the preceding layers.

The F best models are selected at each layer by using the system criterion of the minimum
bias. In this selection, a system with at least one equation having n,; > 0.01 is eliminated
from the sorting. The optimal mode! is selected according to the step-by-step integrated
prediction accuracy of the prediction criterion on the total points V.

From the above analysis, the following system of equations containing the variables
3 and g4 is obtained as the optimal one with the limit of 7, < 0.005.

gy = 22.4042 — 10.0977u® + 1.8842u, >
—2.4647157 — 0.16734,
g, = 58.9093 +0.0233u] % — 0.1382u5"
—0.0425u, % — 0.0325u; * — 00132444
—0.0386u577 — 0.00624"* + 000064, *. (6.27)

The characteristic vector of the system includes the variable g; aleng with the variables
¢3 and g4.

Two-stage scheme

There are different ways for solving the two-stage scheme of long-range quantitative predic-
tions of this problem [48], [50]. The latter work is proven to be the best heuristic approach
for this scheme. We present here both approaches for giving an idea of using different
heuristics.

First approach: Examining the above system of equations, one can easily establish that the
vector of output variables consists of g3 and ¢4, and the vector of inputs is g1, u;, w2 and us.
The variables ¢» and ¢s are excluded from further consideration,
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The two-stage scheme comprises of identifying the average annual models and the system
of seasonal models and the optimal system of equations to be selected from the both using
the prediction balance criterion.

In the first stage, for identifying the average annual models for the variables Qs, Qu, 1,
Uy, U, and Us, the harmonical and the single layered combinatorial algorithms are used.
The harmonical algorithm is recommended when a large number of data points are available,
while the combinatorial algorithm is recommended for a small number of input variables.
The finite-difference scheme with the delayed arguments considered in the combinatorial
algorithm is

QE(T) =dyt alQi(T—t) + agQi(T—l) oot ainrT—m)’ (6‘28)

where T denotes the number of the year.

Harmonic models have shown better performance than the finite-difference models ob-
tained from the combinatorial algorithm for the variables Q. 04, and U; with five, ten,
and eight harmonic components in the trends, correspondingly. The predictive models ob-
tained for the variables @3, U, and U5 are insufficiently accurate; variables U/; and U5 are
excluded from the future consideration. Along the four variables O, Oy, ), and U, con-
sidered, the variable Q4 is called the leading variable because of its better annual predictions.

In the second stage, the combinatorial algorithm is used to obtain the seasonal models
for the variables g3 and g4 having the following type reference functions:

X = a[)+¢111,\’1”7h.1.‘J + arx) + ds3x; + 4.X

. t-2.1) r=3,1 a.T—n
+a5x2(r,7‘) + aﬁxz(lfl,T) * a7x2(:—z,T; + asxzu—s,’n + agm(! T-n
+a10X2(T' + a“Xg(T_” + a12X3(.I.)
+ai3Xs . +aul, +as Ui, (6.29)
where 1 and T denote the season and year; x| = g3, X3 = g4; Xoq, = Qag» X3p, = Q1 and

Uy, are the average annual values at the year T.

Similarly, the reference function for the variable x; is considered. The reference functions
can be expanded further with the trend equation of two-dimensional time read-out and with
the variables of x3 = ¢ and u; and with their delayed values according to the data points and
allotted computer time. The equations containing the variables x, o7, and xp 7, neans that
during the step-by-step predictions both equations must be mtegrated jointly—the system
of two equations use their estimated values.

Here, for cach season five best models are selected for the leading variable x; and one
model for the variable x; according 1o the criteria minimum-bias and prediction. Using
the prediction balance, the optimal system of equations is selected for each season. This is
done by using the seasonal models of the output variables one after the other in step-by-step
predictions.

The balance-of-predictions criterion is used for selecting the system of scasonal equations
for variable x; on the total data sample.

b; = Z()Cz(m +X2(;P, + X250 +XQU,J),- — Xi2().n
1

Ci = Z('r2|}v) +‘x2(§p) + x’Z(gul + lef )I +X12ﬂ,r|

N N
i=1 =1
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where Xa,,,, X2p)» X2, a0d x2 , are the predicted values of the variable x; for winter, spring,
summer, and autumn, correspondingly; and Xj; ,, is the predicted average annual value of
the variable X,. There are a total of 5* (= 625) formations of system of equations evaluated
for their predictions. The optimal system which is found to be better has the value of the
criterion By, pin = 0.06.

The balance of prediction criterion for both the variables x; and x2 is evaluated using
the criterion as a system criterion

= /(B3 +B}), (6.31)

where B,, is computed the same way as the variable x;, but only on the interpolation interval.

Second approach: In the first stage, an algorithm similar to the objective systems analysis
is used for sorting the systems of equations only for those variables 0y, O3, and Q4 that
appear in the characteristic vector. The trend component is included into the equations. The
complexity of the models is increased by replacing the addition of polynomials in the right
side with multiplication. This means that it indicates switching to nonlinear equations or
equations with variable coefficients.

Three layers are necessary for comparison because of the three variables. The multilayer
algorithm is used to select the best models at each layer because of the large number of
input variables.

The first layer consists of three equations with 9 x 5 = 45 terms in the right side of each
equation.

o 2
Q’(T) ={gp+unT+aT+ ag.U](T) + a4U1tT7”
as UZ(T; + af,Uz(T_” + (17U3(T) + agU3(T_”)

(A +a9Qip  +awQip_, +anQiy_, +anliy ). (6.32)

The second layer consists of three systems of two equations containing the 8 x 3 x 3 =72
terms in the left side of each equation;

Qi(T) = (au +a1T+a2U3m +(13U1(Tu“

a4U2m + as Uzdln + aﬁU3J) + a3
(D +agQi, | +asQiy )
(@10Qq, +anQiy_ +anl;i; ). (6.33)

(Tfl))

The third layer is a single system of three equations, each of which contains 8 x3x3x3 =216
terms on its right side;
Q’}T) =(ap+a; T+ azUl(T) + aj Ul(T—l)

ay U2(T) +asl/y + dg U3(T; + 4y U3(T., ”)

T-1n
(] + agQil,T*l) + agQiLT——?))

‘(amQj{ﬂ +an leT—lJ + aan'(Tq))
(a3Qup +auli,  +asQiy ) (6.34)

If the total number of data points permits, one can introduce the moving average terms
as inputs into the equations. Here another difference from the objective systems analysis
is that the optimal model is chosen using the system criterion of prediction based on its
step-by-step prediction accuracy. If the prediction error of any equation of a system is above
5%, then that system is eliminated from further sorting.
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The optimal system obtained has two equations for the variables Qs ., and Q47

The predictions of the annual values of the variables 03 and Q4 are obtained by step-
by-step integration of the optimal system of equations obtained above. Stability of the
integration is ensured by the explicit form of the pattern used; this means that the delayed
arguments identical to the output variable used in the equations. In doing the step-by-
step predictions, the future values of the external influences /), U/>, and Us are needed.
Harmonical algorithm is used successfully to obtain the optimal harmonical trends of these
variables. The predictions using the harmonical trends which have the prediction errors
< 0.05, are used for step-by-step integration of the system of equations. If the harmonical
trends of the external influences are poorly predicted (> 0.05), then they are treated along
with the variables Q3 and Q4 and the order of the systems of equations is increased with
those external influences.

In this example U; has achieved better predictions with the harmonical model with
the norm (< 0.05). The other two disturbances U> and /3 could not achicve the norm.
The system of difference equations in the output variables are Q; 1> Qa7 Uz and Us .
Harmonic predictions of U; and step-by- step predictions of {/; dnd U helpcd in predlclmg
the Q5 and Q4 to the year 2000. The variable (4 is chosen as the leading variable becausc
of its better performance than the other two output variables and the best F =10 models for
the leading variable are selected by using the prediction criterion.

When we are sure that the statistical characteristics of the predictions are stable, we can
use the statistical crileria of stability of moments or the stability of correlations to select the
best F =3 models out of the 10 selected models of the leading variable,

At the second stage the nonphysical scasonal predictive models are identified. Here the
two-dimensional time-read out is used in constructing the models and the arguments of the
models include both seasonal and annual values. The objective systems analysis is used with
a general form of the additive type descriptions of the three output variables ¢y, g3, and ¢4.
The two-dimensional time trend is considered in the descriptions.

In the first layer, there are three first-order systems, one for each output variable with
18 terms on the right side of the quation,

Giy, = Qo+ art+ wl + (1312 + m,T2 +asu, , + aﬁU](T

+a7us +ag Uz(.‘,-.J + agli3 1 +appl/a

(Ve
tanQip +angi,  p +ang, o, +aaQip

alsqi(r,T—u + amq‘-u.Tﬂ; + a”Qi(T—z)’ (6‘35)

it, 1)

where i = 1, 3, and 4; and ¢ and T denote the season and year, correspondingly.
In the second layer, there are three systems of second-order equations with 26 terms on
the right side of cach equation as shown below:

_ 2 2
Giy 7, = ap+ait+axT +axt” +a4T +a5u1(,'T}+aﬁU]'T)

+a7u; + Qg UQ(T, + agu_;um + amU_ng)

. T

+allQi('I'1 + a12q1~([71_r, + 611361,'“”2‘7,1 + a14Qi:T—1)

aisqiy r_,, T 06di, 7, + A11Qi

+algqi-(t.?") + angj(T) + azoqf(z—l.T) +an qfﬂ--2,T| + azzQJ‘(T-l.

anqj, r_,, * a2adj, p_, t @250, (6.36)
where i,/ = 1,3, and 4; i #j. Similarly, one can write another equation of the system for
the output varlable T

Consecutively, 1he third layer has a single system of three equations with 34 terms in
each equation.
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The best models are selected for each season separately in the form system of equations by
using the prediction criterion. The seasconal predictive models for the external disturbances
are identified as it was in the case of annual models. Using the prediction criterion, the best
F =10 systems of equations are selected for the leading variable g.

Next, the complete sorting of the annual and seasonal models are made and evaluated
by the balance-of-predictions criterion,

1
b; = [Qun — 7 (@on ¥ Qi + deawy + alis

N,
B* = > b} — min, (6.37)

=N

where b; is the balance relation for the ith year and B is the total balance on the interval
N o Na,

The overall sorting on the selected models from the annual as well as seasonal models
involves 3 x 10 predictions. The optimal system of equations for the leading variable g, is
selected according to the balance of predictions criterion.

A measure of success of the modeling is the global minimum achieved on the balance
criterion; the error must not exceed 5%. If it exceeds, the freedom-of-choice of models at
both the stages needs to be broadened to increase the volume of sorting and the divergence
can also be reduced by including more input variables in the descriptions.

3.2 Example—ecosystem modeling using rank correlations

Example 3. Modeling of ecosystems of Kakhovka and Kremenchug reservoirs using the
rank correlations [62], [66].

The objective systems analysis (OSA) used in the multilevel iterative algorithm which is
described in the above example serves for singling out the least biased systems of equations
by establishing the relations of the modeled object. This determines the set of characteristic
variables of the object and its simplest physical model which is suitable for a short-range
forecast. This set is used to find a nonlinear model of the object which improves the
forecast. In case of a large amount of data, it would be easy to take into account more
delayed values of the arguments, and to obtain dynamic and nonlinear models.

The best structures of the individual equations are obtained by using the single-layered
combinatorial algorithm. Although the inductive learning algorithms are developed for use
with a very short data samples, there are limitations in using the single-layered combinatorial
algorithm. Experiments spread over time and experiments spread over space are assumed
to be equivalent to increase the number of conditional equations. This means that the
observations that are spread in space (over the stations) and the observations that differ in
season number possess equal validity. The variables of the object are selected from the
general set of variables indicated at the start of the investigation of the hydrobiological
experimentations and are usually very large in number. If all the variables are considered
along with their delayed arguments in space and time, it increases the computational volume
of the combinatorial algorithm. A rank correlation method is used to classify the initial
variables. A modified version of the OSA algorithm allows one to eliminate the arguments
whose rank correlation is of modulus unity. The equations with high collinearity between
the arguments are eliminated and the ill-conditioned matrices are avoided.
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The modified objective systems analysis was used independently for analysing the ecolog-
ical systems of Kakhovka and Kremenchug reservoirs. Here we present briefly the general
procedure used in the analysis. The averaged seasonal values are calculated from the data
obtained at six stations in the middle and lower part of the reservoirs. The initial data
obtained on the avearge seasonal values of 37 state variables and four external influences
in spring, summer and fall of a year has of 18 years. The following notations are used for
some variables;

X2 — chromaticity (degrees),

Xs — oxygen content (mg/liter),

xg — bichromatic oxidizability (mg/liter),

X9 — suspended particles (mg/liter),

X1; — nitrates (mg/liter),

Xj2 — nitrites (mg/liter),

X1 — soluble iron (mg/liter),

xj7 — total phosphorus (mg/liter),

x31 — zinc (pglliter),

X35 — organic phosphorus (mg/liter),

x27 — biomass of blue-green algae (mg/liter),

x30 — number of phytoplankton (millions of cells/liter),
x31 — number of blue-green algae (millions of cells/liter),
uy — water temparature (°C), and

u> — effective sun’s energy

For calculating the rank correlation, all seasonal mean observations are given three values
of rank {1 for the minimum value, 2 for the medium value, and 3 for the maximum of the
three values). The paired rank correlation coefficients are determined from the Spearman’s
formula [72],

65(d?)

ij,xk =1-
where S(d?) = Zﬁx d?, d; is the difference of ranks of the corresponding pairs of observations
of the variables x; and x, and N is the number of observations. All variables can be divided
into three groups (classes I, I and III) with respect to the existing three points (spring,
summer, and fall).
The delayed values of the arguments are not taken into account because of the small
amount of data. According to the modified OSA, the complete equations from which the
sorting of systems of equations is generated belong to one of the following forms:

xl = dy +a|,\J" + agx"’ + szl + aqhyp
)C” bu+b|x1+b2x’”+b3ul + byitr
= co+ o) + oo + ey + e, (6.39)
where x', x”, and x/" are the variables from the first, second, and third classes, respectively.
The single-layered combinatorial algorithm is used with the symmetrical criteria of Mbs
and A{C) to select the set of possible system of equations with various composition of the
output variables. For example, the following optimum system of equations is obtained in
case of Kremenchug reservoir.
Xy = 78.0 — 2.57“1,
17.0 — 0.4u,,
12400 — 166x2; 17, = 0.006, (6.40)

{l
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where x3,x6, and x3; belong to the classes I, 11, and III respectively. We use the notation
x=xy, X" =x,, and x = x3y further.

Based on the prediction errors, the variable X' is chosen as the leading variable which
is predicted better than the other two.

The two-stage scheme. In constructing the forecating model of mean annual values, the
following linear form of the complete equation 18 used,

! 'l { 'l 'l
‘X(T) = dp + a1X(T_1) + a2X(T72) + a3X(T) + a4X(T_1) + a5X{§~_2)
11 Tl 11
+a6X(7) + a7X(T7]) + agx(T__z) + do U](T; + ayn UQ(T) +aT, (64—1)

where upper-case letters denote the mean annual variables; 7 is time in years; and the
equations for X(}, and X{{, are analogous.
These three equations are integrated step-by-step jointly to obtain the yearly forecast.
In obtaining the seasonal average forecasting models at the second stage, the following

complete descriptions are used.
i 1 7
Xy = G0+ @IX(_y gy + QX gy + @3 poyy + AsX{n +asXG_y 7y
7 I 7 1 i 7]
Ha6¥(;_2, 1+ @7X{ 1y + AsX 71y + QX {7y + 10X 11y + NGy
i H i
+a12xf,,n + a13x{,’r__l) + a14Xm + asiy + a1z, (642)
where 1 and 7" denote the season and year, correspondingly: equations for x{} ,, and x{[';, are
written analogously.
The system of mean seasonal equations are integrated season by season to obtain the
forecast.

For example, the following system of equations for annual model of Kremenchug reser-
voir is obtained as one of the best:

X!y, = —18.0 + 0.00147X(7, + 5.58U,
X0, = 7.78 +0.284X[;_ |, — 0.00052X(7_,,
X[ = —817 — 67.5X(, + 214U, + 0.811T. (6.43)

Similarly four more sytems of equations are selected for future evaluation; i.e., F = 5. The
vilues of the external disturbances are taken according to the given scenario.

By the combinatorial algorithm, the seasonal forecasting models for the reservoirs are
found; there are three equations in the system for each season. A total of five systems of
equations (F = 5) are chosen for each season. The best one among them is given below for
the Kremenchug reservoir:

(1) winter:

Xy = 0.00926x01 | - — 2.59x() 4y +0.729x(, 7, + L15X(7, — 26.1us,
Iy = 1.06X(5, +0.706u,,
o = —0.0155x, 7, +0.108x{] ;, — 0.185x]_, 1,
—0.0223x{"_ |, — 0.00002X7, +0.769uz;

|

(i) spring:

Xy = —4.02x ;) — 00839, +0.243x(,_ 1, + 1.15X{r, +2.61uz +7.06,
= 2.02x) | 1, +0.834X(,,
M = —0.501x,_y ¢ — L1, 5 — 2.75x(" 1

~0.0432x1 . — 0.0543X £ 23 1y — 10.1us;
77— (T
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255 APPLICATIONS
(iii) summer:

X(,.. n = —2. 351‘([! 1,nt 0.0267 (, 1.t 0.584){{,’7‘_1) + 1‘04X(IT)’

Xy = 0.0669x(,_, 7, +0.482X17,

= —13.8%( 1) — 332 _, 1 +2.93407 |
~0.0906x(,r_ 1y +2.68X(7, + 48.81) — 13.1uy;

(iv) fall:

X7 = —0.00205x{"y, +0.834X/,,,
O = 0002287, +0. ’591Xm,
o = 4.95x, T)+ 15.6x(, 1, +62.0x"_, 1,
+0.32x(L | 7y — 033350, ) +0.892X/% + 298 0us. (6.44)

In the next step, the balance criterion is used in sorting the forecasts of the leading
variable X/,

T
1 : .
bi = Xi = S0 + X+ Xao + X))t BY =Y bT — min, (6.45)

where T, is the anticipated time.

It is necessary to use different schemes as applied above in obtaining the annual and
seasonal forecasts; i.e., the annual forecasts are obtained by a one-dimensional linear schere,
whereas the seasonal forecasts are obtained with a two-dimensional time readout.

In evaluating the balance criterion, a total of 25 variants of forecasts (5 seasonal and 3
annual) are carried out and the optimal annual and seasonal models are obtained for the
leading variable.

Overall we can say that the calculation of the rank correlation coefficient of data helps
in eliminating the collinear factors and thus allows the reduction of computational volume
substantially.

4 MODELING OF ECONOMICAL SYSTEM

In economical system modeling, variables are divided into exogenous or external; i.e., those
specified outside the model and introduced into it, and endogenous; i.e., those obtained
within the model. This means that the input variables are exogenous, while outputs and
state variables arc endogenous. Sometimes, one variable may be exogenous lo a particular
model and endogenous to another. In the beginning of the experimentation, it is often
not known which variables will be selected for inclusion in the equations; and it is worth
adopting a technique to distinguish the varaibles. The ratio of the variables exogenous to
endogenous and their participation in the model determines the extent to which the model
1s open or closed,

The objective systems analysis (OSA) makes it possible to find an autonomous system of
linear algebraic or finite-difference equations that is optimal for the given objective criterion
assuming that all variables are the system (internal) variables, the “status quo” scenario.
The exogenous variables are not indicated a priori at the beginning of the analysis. This
technique avoids the a priori resolution of the difficult and the controversial question: what
extent is a variable exogenous. Specialists select the exogenous variables from the set of
variables that figured out in the system of equations picked by the computer.

34



MODELING OF ECONOMICAL SYSTEM 257

Step-by-step integration of such an autonomous system of equations yields short-range
predictions without any special control of the system. This first level scenario often proves
useful for showing the use of control 1o get better processes in the chject being modeled, or
to get a better estimate for the near future. To proceed with other scenarios, the variables
need to be divided into endogenic and exogenic variables or output and input variables.
Furthermore, the input variables are to be divided into external disturbances and control
variables. This separation of variables is usually done on the basis of physical considerations,
which contain the element of subjectivity.

Here various examples of economical system modeling which represent different sce-
narios in obtaining the optimal systems of equations are presented. They correspond to
the modeling of British economy and USA economy based on the studies conducted by
Ivakhnenko and his coworkers [40], [41], [38], and Klein, Mueller and Ivakhnenko [76].

In the first example {(Example 4, modeling of British economy) the descriptions are
considered with linear static elements described by algebraic equations. It was proven that
the possibility of changing the control actions is severely limited in such systems.

The second example (Example 5) is the continuation of the first one with an introduction
of finite-difference equations with one delayed argument. It is proven that the modified
systems analysis is useful in identifying the macroeconomic variables for long-range pre-
dictions of up to 10 to 15 years. The predictions of these variables can serve as a basis
for estimating other economic indices used in macroeconomic modeling of a country. A
solution for the problem of control action promises to design more efficient systems based
on the control criteria and control actions.

The third example (Example 6) is meant for briefing the idea of modeling US economy
by extending the delayed arguments in the descriptions. The selected system of equations
1s used to measure the prediction accuracy on the average quarterly values.

The fourth example (Example 7) is the result of extended studies on British economy to
adopt a special procedure that measures the causc-ctfect relationships among the variables.
The degree of exogenicity of the variables is defined on the basis of a harmonic criterion.
Here the external influences are included in the descriptions for studying the possible changes
in the system.

4.1 Examples—modeling of British and US economies

Example 4. The OSA at the level of trends for modeling the British economy.
Usually, a stationary process is represented as the sum of low-frequency and high-
frequency components;

m

g =/ + > _(A;coswit + B; sinw;), (6.46)

=1

where the low-frequency part f(z} is called the quasistatic part or the trend, and the high-
frequency part is called the dynamic remainder. The former is represented as polynomials
or sums of exponentials, whereas the latter is expressed as a finite-difference equation or a
harmonical trend. The structural complexity of these functions is uniquely determined by
the inductive learning algorithms. One should understand the uniqueness of the selected
trend as a single completely defined optimal structure of the equation of the trend and that
this uniquely determines the dynamic remainder.

In the sense of objective systems analysis, a system of algebraic equations describing the
trends of the output variables is used at the level of trends, and a system of [inite-difterence
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equations is used at the level of the dynamics. These both results of analyses are different
because they are related to different mechanisms of statics and dynamics. The coefficients
of the former give the interrelationships among the variables, whereas the latter give the
interrelationships among their differences.

Frequently, the object itself suggests the type of analysis required. For example, the
activity of an aquatic ecosystem is not determined by the level of just one variable like
the biomass of phytoplankton, but rather by the rate of its change under the action of
external influences. This means that the analysis of dynamic interrelationships is important
for ecosystems. For economical systems, it is more important in analyzing the coarse and
interaction of the variables.

In general, the operation of the basic inductive learning algorithms is very similar in
obtaining the optimal trends and the dynamic remainders. In a given set of multivariables,
a nonautonomous physical model in a state space that does not contain the time coordinate
is obtained with any algorithm. In case of multilevel algorithm, objective system analysis is
used as a first step to obtain a set of output variables characterizing the object and then the
two-stage approach is used in time space to obtain an autonomous nonphysical predicting
model of the trend or remainder.

The general scheme of the multilevel algorithm at the level of trends is discussed below:
(i) the table of initial data sample is supplied, (ii) objective sysiems analysis with linear
algebraic equations (not including the time coordinates) is conducted and a characteristic
sel of output variables is determined, (iii) by the objective systems analysis, the best F,
mean annual models are identified vsing the systems of nonlinear algebraic equations in-
cluding the time as an argument (7, 72, - - -) for the output variables, (iv) the best Fa(< F))
systems of equations are selected from the above annual models using the stability crite-
rion of multiple correlations, (v) by the objective systems analysis, the best F; quarterly
systems of nonlinear equations including the time coordinates (¢, T, 1%, 72, - - -) are identified
for the output variables, (vi) the balance criterion of predictions is evaluated by sorting the
predictions of the F> annual models and the F3 quarterly models, and (vii) the system of
equations with optimal complexity is given with their predictions.

The notations x and « denote the quarterly values, X and U denote the annual values of
the variables and of the external influences, and ¢ and T denote the quarterly and annual
time coordinate values. The data table should at least contain the data of one external
influence variable to maintain the static stability of the system of linear equations. This
rigid necessity does not arise in case of nonlinear equations. The data is separated into
three sets A, B, and C.

The single layer combinatorial algorithm is used to select the best structure of each
equation at each layer of the objective systems analysis according to the minimum-bias 7,
and regularity A(B); and the system criterion of minimum- bias Tlsg, 40d prediction criterion
A(C) are used in further analysis of the equations. Keeping in view the drawbacks of the
modeling such as multiple values of the predictions and the presence of noise in the data,
a confidence level D is fixed so that Ts e, < D. Usually the confidence level is kept below

the value of 10~*. This explains why the algorithm chooses an optimal system with the
least noise having the most complete informational basis with the necessary state variables
and the external disturbances. In an ideal data (without noise) the algorithm indicates that
all systems of equations with complete information are of equal value.

Identifying the process of inflation in case of British economy

The following mean annual values of 26 variables are:
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X — the national product in million pound-sterlings,

X, — the energy consumption in million tons of conventional coal,
X3 — the steel production in millions of tons,

X4 — the automobile production in thousands,

Xs — the companies’ revenues in million pound-sterlings,

Xs — the individuals revenues in million pound-sterlings,

X7 — the savings in million pound-sterlings,

Xg — the capital investment in million pound-sterlings,

Xy — the capital investment in the public sector in million pound-sterlings,
X1 — the capital construction in percentages,

X1 — the index of industrial production in percentages,

X2 — the wholesale costs for materials and fuel in percentages,
X113 — the volume of retail trade in percentages,

X14 — the index of retail costs in percentages,

X5 — the registration of new automobiles in thousands,

Xjs — the purchasing value of the pound in percentages,

X7 — the avearge wages in percentages,

X135 — the number of unemployed in thousands,

X139 — the number of employed persons in millions,

X2 — the number of employement vacancies in thousands of working places,
X371 — the labor productivity in percentages,

X — the exports in million pound-sterlings,
X>3 — the imports in million pound-sterlings,
X5y — the current balance in million pound-sterlings,

X>s — the money supply (group 1) in million pound-sterlings,
X>6 — the money supply (group 2} in million pound-sterlings,

)y — the tax rate on the company’s revenues,

/s — the tax rate on the individual’s incomes,

Uz — the government expenditure in millions of pound-sterlings, and
Us — the cost of oil in percentages.

Data that covered 15 years (1964 to 1978) were used from the “Economic Trends: Annual
Supplement of 1980 Edition, London.” The data 1s divided into three sets as A+ B+ C =
6+6+3.

The results of the OSA and the best systems of equations obtained as a result of the
chosen confidence level are given below:

The system of equation at the first layer is

(D

X4 = 33.11 — 63.880; + 1.575Us; (6.47)
Ny, = 0.0002534

The other number of systems obtained below the confidence level are:

(II)

Xe = —22.28 +3.9060/; + 1.198X 14,
X3 = 18.7 — 3.4370 + 0.8334X,, (6.48)
X3 = —1.89 +0.2259X;

s, = 0.0000225;
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(1D

Xe = —22.28 +3.906U, + 1.198X1,,
Xz = 4729 + 1.967U, +0.4364X5 — 0.2653X 4, (6.49)
Xia = 187 —3.437U, +0.8334X;;

Msps, = 000003024

The system [V consists of the equations for X and X4 as they are in the above systems.
The systems II, III, and TV have achieved the limits of confidence level in this analysis; the
system IV has attained the giobal minimum. The drawback of using this system is that it is
statically unstable and it is admitted in the later works that the selection of control actions
applied in the system to make it statically stable is not quite correct. Further developments
of the modeling of British economy is described in the Examples 5 and 7.

Example 5. Modeling of the British economy using one delayed argument and without
specifying the external influences.

This example illustrates the extension the use of the OSA in modeling the British economy
with the following features:

(i) It is assumed that the study consists not only of linear static elements described by
algebraic equations, but also of links with one delayed argument, which is also called the
first-order linear link.

This can be more generalized by considering the second- and higher-ordered links which
can be replaced by a sequential combination of first-order links.

(i1) The exogenous varaibles are not indicated a priori at the beginning of the analysis.

(ti1) The delayed arguments in the equations enable the selection of equations on the
basis of the prediction criterion i or A(C), where / indicates the step-by-step prediction
integration and A(C) indicates the error on an examining set C:

o (x — &)
ANC) =) i <10, (6.50)

VI
= (x — X);

where x, X, and ¥ indicate the actual, estimated and average values of the variable x.

The selected equations satisfy the objective characteristics of both the criteria of minimum-
bias and prediction; this means that the system criteria are used wherever applicable in the
analysis of the systems of equations.

The data and the data separation are the same as in the previous example.

The OSA algorithm is given as below:

The algorithm consists of several layers with gradual increase in complexity of the
equations. The single-layered combinatorial algorithm with the two criteria described above
1s used at all layers. During the selection, the equations with A(C) > 1.0 are excluded from
the search as they contain false information.

The following general form of the polynomials are considered:

(i) the first layer, the equations with not more than three terms of the form

X;

T =G0t a1 X

iy * T, (6.51)

where T is the time coordinate in years;
(i) the second layer , the equations with not more than five terms of the form

Xf(TJ =dot alXicT B + azT + a3XJ(T) + a4Xf(T—1); (6'52)
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(ii1) the third layer, the quations of not more than seven terms of the form
XE(T) =dy+ (I]X,'(T_U + azT + a3leT) + a4Xj(T_“ + a5Xk(T) + af,Xk‘Tf 1 (653)

and so on until the number of terms not exceeding 18 to 20 as the limit of the combinatorial
algorithm or the layers are extended while there is at least one equation among all in the
last layer satisfying the condition n,, < D, where D is a certain “confidence level” chosen
on the basis of experience.

Systems of equations for prediction and control

The above OSA is applied in modeling the British economy. In addition to the 26 variables
used in the previous example, an additional four economic indices are used as input to the
algorithm. The indices picked by the computer are

X37 — the budget deficit in million pound-sterlings,

Xzg — the trade balance in million pound-sterlings,

Xz9 — the current balance in million pound-sterlings,

X3 — the overall government expenditure in million pound- sterlings,
X31 — the tax on private income in million pound-sterlings, and

X3; — the corporate tax in million pound-sterlings.

At the first layer, one equation below the confidence level (D < 107%) is selected,

Xng =—1.017+ 1.293X2, s (6.54)
s = 0.00004062.

At the second layer, ten equations are selected and the best among them is

XZZ(T) = —1.032 + 1'297X22(T—-1) - 0.003908)(29‘“, (6.55)
ps = 0.00002226.

At the third layer, eight equations are selected and the best among them is

Xiaq, = 18.64 + 1.064X, ; — 0.2526X,,. | +0.0653X2, . (6.56)
Tbs = 0.0000376.

The selection is terminated further because the minimum-bias begins to increase from the
fourth layer onward.

The important feature of the algorithm is that the variables selected at the previous layer
are refined by supplying additional output variables and arguments at the successive layer.

In the example given here, the most representative output variables Xy, Xg, X1, X4, X7,
and X; are selected at the first and second layers. At the third layer, variables X4, X53, and
X3p are added to this list. The best equations with least minimum-bias from the three levels
are obtained as below:

Xig, = —10.99 +0.145X, ;. +0.002955X25 . +0.001323Xz,_ ;
ps = 0.8902F — §,

Xog, = —16.76+ 1.033X,4, +0.4645X;3  ;
s = 0.1.524E — 5,

XS(T; = —8.381 +D.002038X25(T”h;
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Mpe = 2.78E — 5,
X]] = 2587+ 07407X1]
Tps = 6.936F — 4,

T-n’

147, = 18.64+ 1.061X, , — 0.2526Xe ,  +0.06531X53; ;
Moy = 0.376F — 57
X174, = —5.045 — 1.518T +2.159X ;, — 0.02077Xy3 ;,
+0.06109X27,;. 5
Tps = 2.568E — 5,
Xn(T) = —1.032+ 1-297X22(7-7” - 0'003908X29(T);
Nps = 2.226F — 5,
Xp3gp, = —3.392 — 0.007218X53,, , + 1.013Xx; ;. — 0.09933Xag.,.;
X3ﬁ(-n = 56+ 0001638X26(7 71);

The algorithm has yielded a system of nine equations with 14 variables. Values of five
variables Xos, Xo6, X207, X28, and X, are to be selected based on the nature of the problem
or by using auxiliary equations. The time variables in some of the equations, primarily of
those selected from a set of arguments are assigned by specialists for prediction of norms.
The equations are tested for their stability; the roots of the characteristic matrix equation lie
within the limits of the unit circle. Step-wise predictions reveal that the processes converge
rapidly with the trends exhibited by them. This means that the obtained system of equations
can be used for identifying the system structures and for short-term predictions.

Here we are not presenting the two-stage approach used for long-term quantitative predic-
tions as used before, but the solution of a control problem specified in the current example.
Usually in solving the economic control problem, experts indicate not only the variables
related to control actions, but also their number and interrelations in the form of objective
criteria.

Solution of a control problem

Control variables are chosen by the specialists either from the set of characteristic variables
from the OSA or from the variables that correlate fairly with the characteristic variables.
This is checked according to the values of the external criteria for the auxiliary equations
formed for these variables. It is also necessary to check that the selected control variables are
adequate to satisfy the controllability conditions (according to Kalman). These conditions
might require expansion of the control variables or a change in the control objective.

For example, let us assume that the variable X>; (budget deficit) is chosen by experts as
the control action and the control objective is defined as maintaining the ratio of the retail
price index to the average wages (X|4/X}7) at the year 1978 level. The following basic
system’s equations are used to build up a closed system with the selected control variable
X»7 as one of the arguments.

Xl(?') = —10.99+0. 145X1(T" b + 0'002955)(25['[; + 0-001323}(26(1—_”;
s = 0.8902E — 5,
Xi7,, = —5.045 - L5187 + 2.159X, , — 0.02077Xz,,, + 0.06109X 27, :
Ths = 2.568E — 5,
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XM(T) = O'6Xl7lT)’ and
Ay, —=06AX7,. (6.58)

The ratio is given as 0.6; that does not mean that wages rise faster than prices. The fact is
that the British economic statistics take the year 1975 as the base year for computing the
average wage. If the same base year were to be used for the control problem, then the ratio
would be 1.56; this means that the price rise outstrips the average wage as compared to
1976.

The system of auxiliary equations 1s obtained using the combinatorial algorithm with the
minimum-bias criterion and the prediction criterion. The reference function considered in
the algorithm takes into account all the variables with one delayed argument.

Xip =a+aT+aT +asXip |+ X, +cXi,,), (6.59)
i D
where i =25,26,27; and j = 1,11,14,17,23,26,27.
The system of equations identified are

Xosg, = 2729+ 0.4277X0s | +131.4X, ;. — 47.79Xy4 . +58.27X)7 ,,
+0.1648X26 ;, — 0.4907X36,_ i 1 = L.258E — 3,

Xos g, = 6024 +0.9666X,_ +566.7X1, —310.3X4,,
—611.2X14 7 +2.315X0s5, +24.77X07 5 1y = 9.29E — 4,

X4, = 88.29 + L188T" — 1.61X17, + 1.304X17 . | — 0.013Xo5,
+0.009885X,5 . | — 0.004399X2 ;5 7y = 4.306E — 1. (6.60)

The resulting closed system contains six equations with six variables. Kalman’s controlla-
bility conditions are satisfied. Step-wise integration of the system yields the predictions to
achieve the ratio ( X14/X,7 = constant) through variation of budget deficit X,; (Figure 6.12).

Prediction of variables other than the characteristic variables.

Out of forty variables fed into the computer while modeling the British economy, only 14
were selected as the characteristic variables. All other variables were rejected as unsuitable
for modeling continuous consistent features, both as output variables and as constituents of
a set of arguments. This does not mean that the rejected variables are impossible to identify
using the inductive learning algorithms; this can be done as a supplementary analysis. They
can be predicted as a function of time and the variables selected by computer. For example,
the following full polynomial can be used in predicting the number of unemployed:

X18(1-, =aqo+a, T+ azTZ + a3X13(T7“ + (14X13(T”2]
Y BXy, +eXp AKX ) j=1011,14,17. (6.61)
J
The combinatorial algorithm with the criteria minimum-bias and prediction selected the
following equation:

Xigg =238.9-05211X5, , — 10. ISXI(T_) + 26.55X1(T7U;
s = 0.0989. (6.62)

The suggested aproach of OSA described in the example affords a novel approach to
select a system of indices used at various layers of aggregation. Conventional models
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Figure 6.12. Prediction and control action in achieving X,4/X,7 = const. through variation of budget
deficit X_?_’;

normally use many variables and equations describing their interrelations, The system of
indices in a national economic model usually is included with 17 to 130 variables depending
on the extent of process elaboration. For instance, in the project headed by L.P. Klein
(University of Pennsylvania, USA), the model for British economy contains 226 equations,
206 for the USA economy, and 183 for Canadian economy.

Case studies of the design of the control system have shown that the method described
here can be used to design more efficient systems based on other control criteria and
control actions. This opens up a vast area of research. It would also be of interest to
stimulate control criteria of the form X4/X;; = 0.6 + K(T — 15), where T is the time
coordinate in years (7T(j973y = 15), and assigning different values for the coefficient K =
woe,—0.2,-0.1,0,0.1,0.2, - - - to determine the effect of economic processes of relative rise
or drop 1n prices.

One can note that in the proposed method of OSA, prediction and control is also appli-
cable in studying other complex systems.

Example 6. Self-organization modeling of US economy.

The objective systems analysis 1s used in obtaining the system of finite- ditference equa-
tions. The multilayer algorithm is used to identify each equation. The variables are chosen
using the system criterion of minimum-bias and the number of equations is chosen with the
prediction criterion using all data. The data used in the algorithm is quarterly data from
1969 to 1974 [76] tor the following variables:

x; — national product,
x; — real national product,

x3 — national income,

42



MODELING CF ECONOMICAL SYSTEM 265

X4 — personal income,

x5 — deflation of prices of the national product,
xs — deflation of personal prices,

X7 — consumer price index,

xg — whole sale price index,

X9 — private production in man-hour,

Xjp — earnings per man-hour,

Xy — rate of unemployement,

X2 — net running export,

x13 — money supply M1,

X14 — money supply M2,

X15 — rate of 3-month treasury notes,

X165 — usage rate of corporate funds,

x17 — rate of 6-month commercial paper,

x1g — rate of general growth of corporate funds,
X190 — rate of personal savings,

X30 — pre-tax corporate earnings, and

x21 — federal surplus.

The data is separated as even and odd points for the roles of sequences A and B and used
in calculating the minimum-bias criterion.

The OSA algorithm is realized in the example below.

At the first step of the algorithm, the finite-difference models of all variables are synthe-
sized using the minimum-bias criterion.

8 21 8
x:. =qay + Z ajx;*j + Z Z bkj,¥]i~j. (663)
=1

k=1(kz1y j=0

All variables are measured with eight delayed values. Each equation is synthesized using
the multilayer algorithm. In the first layer of the multilayer algorithm 780 partial models
are generated, of which 30 of the most unbiased models are allowed to proceed to the
next layer. The selection continues (from 435 models, 30 models are selected) until the
minimum-bias criterion ceases to decrease. The number of layers never exceeds ten for any
model.

At the second step, further selection of system of equations continues from among the
obtained models of first step. Here the models that yield a good prediction have priority in
the selection process; i.e., the models are selected according to the step-by-step prediction
criterion. From among the models obtained from the first step, eight models corresponding
to the output variables x|, x3, x4, X5, X¢, X1, X3, and x4 are selected and considered as the
sought system, the model of the US economy.

The selection threshold is established such that the obtained system of equations would
be autonomous and convenient for step-wise predictions. After the selection, the estimates
of the equations are adapted using the whole data sample. The system of equations are
given below.

xp = —114.86 + 0.894x]" +0.05625x,° — 2.3476x, 7 + 23.587x,7°
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—18.275x57 + 5.376x57 — 5.5217x7 — 0.8283x7;

Xy = —451.37+0.2563x, 7 — 1. 3502xf;7 ~ 3 231x° +8.1061x,
—140.92x5% — 236.96x,> + 87.045x57 +3.5427x' !
+2.8526x32 +l.2499x’13 + 1.1724x']36,

X, = —238.64 — 84.163x]; + 82.507x," +3.7134x 3% + 0.6916x°,%;

xi = 11.895+ 1. 088xg '~ 0.00551%7% +0.293x, ¢ — 0.2725x 73
—0.086x7;" +0.03914x',7 — 0.00515x",¥;

xh = 5.585+ 0.1306xg 2~ 0.01343x7 — 0. 00243x§;3 +1.2604x%!
—0.2224x57% — 0.04754%,3° — 0.2118x13° + 0.0876x'7%;

xXjp = 0.19596 + 0.6092x,5% + 0. 3788x’ *4+0. 1746x’ 57 —0.34245x8
—0.00001x5% +0.000145x3" —~ 0.00242x/3°
—0.000319%,° + 0. 003319x14 ;

X3 = 67.893 +0.0645x) " +0.0465x,> — 1.0195x5 % + 1.1876x.7°
~0.6898x,7" +35.405x7;7 + 19.755x),7 — 0.4934x13°
+0.18827x)37 — 0.15198x(,8;

xig = 43623 + 1.0298x; " — 18.541x)," + 15.657x);7 + 45.187%57

—0.4316x]3" — 0.4448x,% + 0.1071.¢'°. (6.64)

The prediction accuracy is checked for each equation in the system on the data of the years
1975 and 1976. The range of the residual sum of squares vary from 0.28% to 6.87% for
one year and from 1.23% to 11.44% for two years.

Example 7. Modeling of the British economy for restoration of the governing laws in the
object.

The variables participating in the modeling of a complex object are assumed to have
some degree of exogenicity. In this example, the degree of exogenicity of the variables
15 defined on the basis of a special criterion that is used to find more objective ways of
dividing the variables. The objective system-analysis algorithm makes it possible to find an
autonomous or closed system of algebraic or finite-difference equations that is optimal for a
given criterion by assuming that all the variables in the equations are endogenous or system
variables. If we remove those equations from the closed autonomous system whose output
variables have proven to be exogenic with the greatest degree, then a governing principle
is obtained in the form of an underdetermined system of equations or an approximation
of such governing principle, which is suitable for short-range predictions (a “status quo”
scenario). Further studies on the system yields a number of other scenarios that are useful
for analyzing the object. Obviously, the corresponding equations are not physical laws
reflecting the mechanism of objective modeling, but they make it possible to study the
possible changes by introducing the external influences with respect to an objective control
criterion.

The OSA algorithm is given below:

The choice of equations at each layer is made on the basis of two criteria; the minimum-
bias (1,) and prediction (/). The equations with the criterion value of ;> > 1.0 are eliminated
from the preliminary selection as the equations providing disinformation.

First layer: Equations of the following form containing not more than four terms on the
right side are evaluated.
Xi

=ag+mX;

T hT—n + a2X"\'T72> + a3X"[T~31‘ (6‘65)
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Second layer: Systems of two equations of the following form whose right sides contain
not more than eight terms are evaluated.
X;

= 4ap+ a]X,'(T_]J

+asX; . +asX;

+ azx"(sz)

) * aﬁXj(ﬁ- 2

+ (I3X,‘(T

VB -3

+ a-"XJ-(T—a) .

(6.66)

T—1

Third layer: Systems of three equations of the following form containing not more than 12
terms are evaluated.

X

i = qap + alXi(Tfu + GQX,' + a3X,' + a(,Xj

(T2
) + angm + agXy

T=3 + a4Xf(T) + a5Xj

ta lOXk(T_ 2

T-n
+(,111Xk

T -z

+ar Xy (6.67)

3 T—u (T—%"

All the systems of equations obtained are autonomous; i.e., the number of variables in them
is the same as the number of equations. This enables us to make step-by-step predictions
in the system. The layer by layer procedure continues until it reaches the limits of the
self-organization modeling according to the basic algorithms used in them. The end result
is that one chooses some of the non-contradictory systems of equations, which are attained
below the confidence level set for this purpose.

The minimum-bias criterion as a criterion of exogenicity of the variables:

The original data of the variables exhibit information regarding the changes in them. One
considers two competitive hypotheses to decide which of two chosen variables X; and X; is
cause and effect: hypothesis H) says that X; is effect and X; is cause, and hypothesis H,
says that X; is cause and X; is effect.

These hypotheses can be lested using the single-layered combinatorial algorithm with
the criteria of minimum-bias and prediction; one finds two dynamic optimal models using
the following complete descriptions:

for H;,
Xf(T) = dg+ a]Xj(T_l) + GQX[(TA . + G3Xi.7‘73.
+a4){j(1'_1 + aSXf(Tﬂ) + aﬁXj(T-—Z) + a7X1‘:T73);
for Hs,
Xf(T) = bo + leJ}T—n + bzXf(T—Z) + b3XjaT73;
+b4Xi(T| + ij[‘(T_“ + béXi(T—D + b7Xf(T_3) . (668)

This means that for each hypothesis one finds a model of optimal complexity. The hypothesis
is true for finding which minimum-bias c¢riterion is deeper than the other. This procedure
is suitable only for the variables of dynamical systems—it works without an error with a
sufficiently large sample of experimental data.

A harmonic criterion of exogenicity of variables

Considering each variable in turn as an output variable, let us look at the above dynamic
models. By compiling tables of data approximating the change in the two variables, one
can make expert evaluations on the models obtained earlier. The problem is reduced to
considering one pair of variables as cause and effect, or the other way around.

The peried of the lowest-frequency component of each variable [11], [73] is found using

N—IN-—v

N
S(w) = ; S XO+2) Y X - XO0GE+v) — X)cosew) [ . (6.69)

i=1 =1 =1
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Figure 6.13. Spectrograms of the variables x; (solid curve) and x; (dashed curve) for determining
the lowest frequency

where N is the number of measured data points of the variables Xi(f), k = 1,2;X; is the
average of X;(¢) on N points,

Assigning a sequence of frequencies O < w < m, spectrogram S(w) is graphed until the
first local maximum is obtained. This gives us the period T and the frequency wys of the
lowest harmonic. The period of this harmonic should be the same for the two variables
(Figure 6.13). The phase of each of the harmonic components is then identified by using
the regression equations of the following form;

X; =ap + (a; sinwyt +ar cos wyt) = ag + A sin(wyt + 8,);

Xj = by + (by sinwyt + by cos wyt) = by + Bsin(wyt + 8));

¢; = arctan ﬂ; f; = arctan ﬂ, (6.70)
o> bl

where wys is the frequency corresponding to the first local maximum of the spectrogram.

The criterion of exogenicity for the two variables is given as AE = 0; — ¢;. In dynamical

systems, the cause cannot overtake the effect in regard to phase, and consequently, the

hypothesis H; 1s chosen if AE > 0 (the cause is X; and the effect is X; ), and H; if AE < 0

(the cause is X; and the effect is X; ).

This type of analysis of cause and effect makes it possible to eliminate those equations
formed with the output variables that are formally causes rather than effects. Ultimately, the
determinate system of equations becomes underdetermined, because the number variables
exceeds the number of cquations.
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The results of modeling of the British economy

The above described OSA algorithm is applied for modeling the British economy. All 26
variables participating in the algorithm, both the endogenic variables X and the four exogenic
external disturbances U are treated as equally significant. For the description of the variables
and the data, refer to Example 1. The following autonomous system of equations and the
values of criteria are obtained as below; the values of the prediction criterion i belong to
the set

= —0.5739+0.5197X, ;_ +2.766Xs . — 15.17U;
ng,=1389E—3 and i =2.821E - 1;
Xeq, = —0.5937+2.518Xg  +3.104X5, | +38.74U,
=539V, — 64.54U2; |,
1, = 1.590F — 3 and i = 2.331E — 1;
Xg, = 0.4487 +0.02953X, ;. +0.2508Xs  — 0.555X;
—4.606U,,_, +1225U,, |
n, =4.176E — 4 and i = 5.838E — 2;
Xizy, = 4076 +5229Xs, | +2294U,,  —33.22U,,_
+86.97U,, , — 54.13U,. ., ©671)
N = 4.694E — 4 and i = 3.014E — 1; '
= —5.769+0.03826X, ;. , — 0.2461X,, +2.814Xg
~17.69U,, , +7.553Uy,
N, = 2.902E — 2 and i = 8.91E — 2;
Uiy = 02981 — 0.01838X, . +0.01304X, . +0.006959Xs ,_,
~0.8259U;
M, = 1.893E£ — 2 and i = 2.123E — 3;
Usg, = 0.1425 - 0.01253X, ;. +0.03903Xs, = —0.00358Xs,
+0.005462X 14, 023250, .,
”r]is =3442FL — 3 and i = 8.210F — 4.

-

D
(T—2

2)

T-1

The step-by-step predictions of the variables are checked to the year 1981 without taking
into account any hypothesis to control the system for improving it.

The degree of exogenicity

The degree of exogenicity is used in the search for boundaries in dividing a significant
variable into endogenic and exogenic variables. This is measured for each variable by
= Z}:] AE;, i = 1,7, i #j. The harmonic criterion of exogenicity is analyzed for the
variables of the above system and the results are tabulated in the Table 6.2.

According to the rank of the degree of exogenicity, the variables U and U, proved to be
the most exogenic. By removing the corresponding equations from the system, it becomes
an underdetermined system of equations or governing principle of the system under the
requirements that: (i) it is necessary that the selected candidate models be the result of true
reference functions of the system and (ii) it is necessary that the initial data be sufficiently
accurate. If the first requirement is not true, then the system of difference equations ob-
tained is only an optimal approximation of the governing laws under consideration. With
reference to the second requirement, it should be noted that with the increase of noise in the
nitial data, the OSA algorithm chooses systems with fewer equations. Thus, the physical
model corresponding to the object can be obtained with the minimum-bias criterion only
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Table 6.2. Results of the analysis on harmonic criterion of exogenicity

Varia- AE E Rank

ble X Xa Xz X114 X2s [ Uz

X, - 0 0,123 0.033 0.19 0.2 -0.097 0.449 5
X5 0 - -0.036 0 -0.38 0.092 | 0.0066 | 0.0245 4
Xg -0.123 0.036 - -0.22 -0.05 0.83 -0.081 0.492 6
Xia -0.033 0 0.22 - 0 1.04 0.3 1.527 7
X2 -0.19 0.38 0.05 0 - -1.51 0.031 -0.234 3
U -0.2 -0.092 -0.83 -1.04 0.51 - 0.247 -1.405 1
Ua 0.097 -0.0066 { 0.082 -0.3 -0.031 { -0.247 - -0.4056 2

in exact data. In the presence of noise in the data, the algorithm gives only the optimum
approximation of these laws under the given conditions.

The underdetermined system of equations representing the governing laws or their opti-
mal approximation can be used for constructing other scenarios for short-range normative
predictions that are of interest to us.

Principles involved in short-range and long-range predictions

In the above analysis, when the term “governing law™ is used, it refers to some mathematical
description ensuring a sufficiently accurate short-range predictions of one to three steps
ahead. This means that it is interpreted as an approximation of the characteristics of an
object in a narrow sense. To restore such a governing law, the inductive approach is used
with the minimum-bias criterion.

To restore a governing law in the broad sense and ensure exact long-range prediction with
the inductive approach, one uses the minimum-bias and balance-of-predictions criteria. The
originality of the multilevel approach is indicated first of all by the fact that these criteria are
used at different levels of the analysis. No one mathematical language can exactly express
the true physical or other governing laws that are suitable for long-range predictions. A
single language can be used only for obtaining a physical medel using exact data for short-
range predictions. This is substantiated by the existence of a limiting attainable prediction
time for ali individually accepted mathematical languages. Only multilevel algorithms based
on the balance criterion ensure long-range predictions; i.e., these can be applied for obtaining
the governing laws of an object in the broad sense.

The governing laws corresponding to an economical system should be sought in the
form of a consistent system of annual and quarterly models that ensures an exact qualitative
long-range prediction.

5 AGRICULTURAL SYSTEM STUDIES

Various studies [65], [74] on agricultural systems reveal that fulfilling agricultural production
torecasts, particularly in large irrigation systems remains a difficult problem. Difficulties
arise which seemingly cannot be overcome by conventional modeling techniques.
Problems concerning the control and planning of urigated forms are divided into three
basic groups:
The first group of problems is related to the selection of varieties and hybrids of farm
products that can be cffectively cultivated in soil irrigated with a controlled quantity of
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water, and the optimum planning of the structure of irrigated areas for the entire crop
rotation cycle.

A crop or a hybrid is assumed to be superior if it provides a maximum average yield (¥)
on an observable series of meteorological factors {X = (x;,x2,- -+, x,)} for standard values
of the vector of control variables {U = (uy,u2, -, u;} and a specified limit (4) imposed on
the standard deviation (s) of the yield:

5= L5°0 viX, Uy — max,

s= 25 Vo -9 <6, (6.72)

where T is the number of years in which the meteorological factors are observed and y; is
the crop yield calculated from the meteorological factors of the ith year.

The second group is of problems dealing with crop rotation cycle on each field for
maximizing the production with the given limitations of water and fertilizers. The task of
this group is to maximize the gross yield of a crop-rotation area in hundred-kilograms of
grain (y,) for a known structure of the sowing area:

Ym = Z}{,’(X, U) — max, (6.73)
j=1

where m is the number of fields included in the crop-rotation area; y; is the yield of crop
J» and X{x;,x2, ---,x,) are predicted values of the meteorological factors. The structure of
the optimal model contains the sclected arguments from the vector of controlled variables
(U) for specified crop-yield planning intervals.

The third one encompasses operative production control/ planning of the irrigation-crop
rotation system with the effective use of fertilizer, water, climatic, and technical resources.
Here the goal is to determine the optimum distribution of water resources, fertilizers, and
other yield control factors (U;) that can be used during the ith interval:

1

yi = Z)‘ﬁ(xi,Ui) — max, (6.74)
J=1
where i = 1,2, 3 1s the control interval number (intervals between watering), j=1,2,---,m

is the field number included in the crop-rotation area; and y;; is the yield model of crop j
during control interval i.

On each control interval, a separate yield model is used and the vector X consists of a
combination of measured and predicted climatic factors. The conirol intervals are selected
to be compatible with the phases of development of various crops, but are not longer than
the period between the waterings.

Each of these problem groups requires different arguments of the yield model, con-
trol intervals, and allowed accuracy of solutions. These requirements are usually non-
contradictory, requiring one to synthesize a complex of yield models for each group of
problems. Solving these problems on the basis of the experimental field data and by using
trial and error methods yields no guaranteed solutions to the problem of effective use of
irrigation systems for a given period. But these problems can be adequately solved by
using the production models synthesized on the basis of experimental data obtained from
soil and climatic conditions of a specific irrigation system. This is adressed in the work
of Khomovnenko and Kolomiets [74] by the use of inductive learning algorithms. In this
work, the self-organization modeling is described for modeling of winter wheat productiv-
ily. Various problems arc organized independently to model them with partial models using
small groups of arguments. The experimental data used in this study is collected from one
of the agricultural experimental stations located in Ukraine during 1967 to 1975.
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5.1 Winter wheat modeling using partial summation functions

Example 8. Modeling of winter wheat productivity. Agricultural production depends on
the number of natural factors and on the agro-technology used in the process; i.e., on
the possibility of selecting the control factors. Natural factors can be divided into soi]
and climate factors. Soil factors are mechanical composition and depth of profile (which
characterize mechanical strength, speed of infiltration, water conductivity of unsaturated
soil, and the characteristic of waier retention), aeration, fertility, salmity (which influences
structure, weight potential, and toxicity), temperature, and water levels of the soil. Climatic
factors are temperature and humidity of air, sedimentation, wind, light intensity, length of
the day, and length of the growing period. Some of these factors are independent and the
changes in some make changes in others. These factors influence the soil-climate zone
and determine the possible selection of varieties and hybrids of plants in the irrigated plant
cycle. They have various effects on the production of agricultural products depending on
the period of vegetation.
Three main situations in irrigated soil management are pointed out below:

(i) photosynthesis is limited by factors not related to water delivery, but the water is
limited by water reserves. An increase in water use due to sprinkling either does not
increase the harvest much or has no effect on it;

(i) if both the photosynthesis and water consumption are limited by water supplies, then
the harvest increases with an increase of water use, and sprinkling is most effective;
and

(iii) photosynthesis is affected by factors other than water supply; the water consumption
is not affected by the water supply in the soil. In this case, it is necessary to use
other methods of controling crop production; for example, by increasing the mineral
feeding.

In this example of modeling winter wheat, the following identifiable phenophases of
development are considered:

I — from planting 1o sprouting,

2 — from sprouting to the beginning of tilling,
3 — period of wintering,

— from the end of tilling to stem formation,
— head formation,

— milk formation,

— waxy milk formation,

— waxy formation, and

— complete ripeness.

L= BN N SRT N N

The model of winter wheat harvest is represented in a general form of output and par-
ticipating input variables as

y = f(B,Q,H,N,P,K. T, h1C,
Wl,---,Wg,tl,--—,tg,Tj’,---,T(}’,t?,---,tg,
S};"',Sg,Eu'“,Eo,Rl,'",R9,Nm"',Nm,Nh“"',th,

NG NG IRy B ), (6.75)
where y is the wheat harvest in 100 kg-units (220.462 Ibs)/ hectare: B is the index of the
predecessor; Q is the soil fertility; W is the water in the soil; F is the amount of seed:
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C is the period of planting; N, P,K are the amount of nitrogen, potassium, and calcium
introduced into the soil; 7}, is the sum of minimal temperatures below —10°C during
wintering; £ is the depth of frost in the soil; / is the amount of snow cover; ¢, is the length
of the phenophase; 77 is the sum of effective midday tempeartures during the phenophase;
17 is the average daily air temperature; S; is the number of sunshine hours; E; is the sum of
evaporation from the water surface during the phenophase; R; is the amount of rainfall; N,,
is the number of rain days; N, is the number of days having a relative air humidity of less
than 30%; ty,, tp,, Ix; are the periods of fertilizing; and i = 1,2,---,9 are the index numbers
for indicating the phenophases.

The factors considered in the general form are regularly observed variables at the farm’s
experimental station and the standard observations made by the national meteorological
network. One can also include other factors into the model [64]. The above general form
is analyzed for various aspects of the modeling given below. All models are obtained using
the single-layered combinatorial algorithm.

A special aspect of this modeling is that the described model is replaced by a sclection of
partial models, cach of which is either linear or a quadratic polynomial with small number
of arguments. The action of the remaining factors is averaged and used in representing the
precision of the model. The importance of this approach is indicated by the demands of
the problems under study and also of the availablity of measuring factors in determining
the productivity of crops. The major advantage is that it is simple and considered carrying
experiments 1n accordance with the theory of planning experiments.

Modeling of wheat harvest (v) as a function of the time of planting (C) and the rate of
seeding (H)

The data used in this modeling is obtained during 1967 to 1971 for five years of 525
experiments. The seeding rate was maintained as H = 1,2, --..,7 million seeds per hectare
and the planting time C was from September 25th to October 25th with three variants of
water use; without sprinkling, watering of 1200 m*/ hectare, and watering plus vegetational
sprinkling assuring soil moisture not lower than 80% of the least capacity.

The combinatorial algorithm is used with the combined criterion of minimum-bias plus
regularity. All 525 data points are used in the analysis. The best mode! obtained is given
below:

y = 24.7+4.9H — 0.584% + 0.03HC — 0.0056C* (6.76)

The quadratic character of the model indicates that the model achieves the maximum value
of the optimal norm of planting and periods of planting guaranteeing a maximum harvest.
However, the large bias term and the mean squared error (¢) of 33% on all points indicate
the influence of other factors like the water regime and the climatic factors that are not part
of the model.

To determine the degree of the effect of the water regime, the experimental data points
are divided into three sets of 175 points each and partial models are identified for three
separate water systems:

v = 6.32H — 0.51H* +6.96C — 0.17HC — 1.09C*, =, = 41%,
6.89H — 0.70H* + 15.01C — 0.22HC — 2.46C?, &, = 31%,
11.88H — 0.98H" + 12.37C — 0.49HC — 1.83C%. &3 =27%, (6.77)

»2
y3

where the model for y| is constructed using the data on without sprinkling; the model for y;
is with one watering in the fall; and the model for y5 is under conditions with optimal water
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supply as suggested by agrotechnology. One can see that the accuracy of models increases
from 41% to 27%.

The optimal norm of seeding A and periods of planting C have achieved the above model
for maximizing the harvest with

H1 = 573, Cl = 267,
Hy =5.16; () =3.43;
Hy =537, (3 =2.64. (6.78)

Here the rate of seeding is given in millions of seeds per hectare and the time of planting
in days counting from September Ist multiplied by 0.1. In this way, the optimal period of
planting for wheat without sprinkling and with an optimal water supply is September 26 to
27, and for wheat with one initial fall watering is October 4 to 5. The maximum harvests
of winter wheat for different watering systems are

=27.66; y3,.. =41.13; and ys,, =48.29. (6.79)

Ylmax

Using these values of maximurn harvests for various watering systems, one can construct a
function Y. = f(W), where W is the quantity of water in thousands of m® per hectare lost in
sprinkling. The following water losses are accepted for each case as (i) without sprinkling,
0.1 (moisture supply to assure germination); (ii} one initial watering, 1.2 thousand m* per
hectare; and (iii) total losses to maintain soil dampness not lower than 80% of the moisture
capacity, 3.0 thousand m? per hectare. The second ordered function is considered and the
estimated model is obtained as

Ymar = 26.02 + 16.14W — 2.90W°. (6.80)

This medel is useful in planning the yield depending on the water supply of the sprinkling
system, and also in determining the specific losses in obtaining the quantity of agricultural
production.

Modeling of wheat harvest (y) as a function of the rate of fertilizing (¥, P) and the water
supply (W)

The experimental data observed during the years 1969 to 1972 are used; altogether 168
experiments with 14 different mineral feedings and three types of water supplies were
conducted. The mineral feeding consists of nitrogen (N = 30, 60, 90, 120, 150 acting
units), and phosphorus (P = 30, 60, 90, 120 acting units).

The data points are divided into three sets; each set consists of 56 points for each water
supply. The full description of second-order is used for cach water system and the best
models are selected according to the combined criterion of “minimum-bias plus regularity”
of the form:

vy = 18.1+ 1.2P — 0.069P7 + 0.98N, 2 = 49.3%,
y; = 23.8+ 1.76P — 0.105P* + 1.12N, 2 =9.8%,
yi = 27.0+2.24P — 0.115P? + 118N, ¢2 =12.2%. 6.81)

The lower accuracy of the model of y; with experiments without watering indicates a strong
influence of other factors which are not taken into consideration in the model. Among them
are the fluctuation of natural soil moisture and other controlling and disturbing actions whose
influence is reduced because of improved water delivery in the other models. The increase
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in the values of the coefficients in response to the improved water delivery indicates the
increase of intensiveness of the mineral feedings introduced into the soil.

Considering that the harvest models for three watering systems have the same structure
of the form,

Yi = dio +apnP — a,:PZ + a,-3N, I = 1,2, 3, (682)

and that the effect of water supply on the production is nonlinear, a second-ordered function
is selected for constructing the dependence of coefficients of the above model on the water
supply. The general form of such a dependence is given as

a,j=bU+ijW+d,jW2, i= 1,253; j=0»1a253' (6.83)

After finding the dependencies of all coefficients a; as f(W), the general model of the wheat
production taking into account the water supply and fertilizers used is found as

y = (18.1 +6.7W — 1.17W?) + (1.13 + 0.62W — 0.84W>)P
—(0.065 — 0.05W — 0.011 W?)P? + (0.96 + 0.17W — 0.032W>)N. (6.84)

This model can be used for predicting the harvest depending the nitrogen and phosphorus
additives and also on the water delivery system. One can study the effectiveness of using
water resources for all periods of the watering season under the conditions of deficient water
supplies using the analogous models for crops in plant rotation as functions of fertilizers.

Modeling of wheat harvest as a function of various climatic factors

The data corresponding to the 60 field experiments conducted during 1973 to 1975 are
used; the experiments are aimed to define the effects on the harvest of the amount of seed
planted and the quantity of nitrogen fertilizers used with an optimal water supply. The
meteorological data are obtained from the meteorological station located within a distance
of one kilometer from the experimental fields.

(1) Models based on the duration of phenophases. To determine critical phases of devel-
opment in winter wheat and dominating meteorological factors, the models are constructed
by taking into account the dynamics of separate meteorological factors in the main phases
of vegetation.

Keeping in view the limited quantity of data points, including those obtained under
conditions of good wintering, the models for phenophases are synthesized. Linear models
which characterize the dependence of the main quantitative characteristics of the harvest
are considered on the duration of development phases in days:

v = 47515 — 1.9615 + 1.294; — 2.8315 — 2.7819, £, = 15.6%,
vz = 75849391 — 25.6t5 — 45.119, £ =9.1%,
ya = 37.5—=0.0761, &3 =4.8%, (6.85)

where y; is the harvest in 100 kg/ hectare; y; is the weight of thousand seeds in grams; and
y3 is the number of seeds in a head.

The selected models serve only for characterizing the tendency toward a decrease in
wheat harvest (y;) with an increase of the length of the milk (%), waxy (#g), and complete
ripeness (7}, at the expense of a decrease in kernel weight (y;). Similarly, it is better to
mention that an increase of harvest (y,) with the milky wax degree of ripeness (#;) occurs at
the expense of an increase in kernel weight (y»). This is because of the positive coefficients
of #7 in the first two models for y; and y,.
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(11) Models based on the number of sunshine hours. The purpose of extending the above
modeling is to find the climatic factors that exert more influence than the duration of the
phenophase on the production. Linear models are synthesized depending on the amount of
sunshine S during the different phases. The optimal models are obtained as below:

vy = 38385 - 031356 — 36557 +0.88S9, £1 = 10.5%,
y2 = 42.8 — 0.31355 — 0.68557 + 1.1148y, =2 =3.2%,
y3 = 1.5155 +0.0565, + 0.4748y, €3 =11.1%. (6.86)

According to the length of the phases and the amount of sunshine from the above models,
one can state that the amount of sunshine is the essential element in the harvest. Sunshine
hours during wheat head formation S5 affect the quantity of kernels in the head y;. It is
also correct 1o state that an increase in S5 means a slight decrease in the weight of the 1000
kernels ys.

(111) Models based on the temperature. Models are constructed for the sum of effective
temperatures for the phases in the winter wheat development. Additional arguments are
included into the models for determining the effect of the early phases of development in
wheat production. The resulting models obtained for y; and y; have the form

6.35Ls + 1.7612 — 0.07T¢ + 0.887%, &) = 14.6%,
2.92:2 — 0.087% +0.445T3, &, = 2.5%, (6.87)

Y1
y2

where 17 and 77 are the average dally air temperature and the sum of effective midday
temperatures during the ith phenophase, correspondingly; Ls is the degree of development
of leafy surface during the phase of head formation (for the April 9th).

These models take the second place to the models depending on the duration of sunshine
hours. Here also the strong dependence of productivity on the conditions of head formation
1s evident.

(iv) Models based on the water evaporation. The evaporation capacity of the atmosphere
1s an important indicator of the conditions of an agricultural production. One can use
various meteorological indicators such as the relative and absolute humidity of the air, its
temperature, atmospheric pressure, air dryness, evaporation from the water surface, and
various combinations of these and other indicators in constructing the models (also unified
into one model with the variable coefficients using the inductive learning algorithms) for
climate zones with appropriate adaptation for each irrigated field.

Here the variables concerning the total and midday evaporation from the water sur-
face of the standard evaporation tank are used in models for each phase of winter wheat
development. The following models are obtained:

v = 12.3Es — 8.71E; — 8.83Ey, =, = 10.1%,
Y = 113.5 — 0464E5 — 309E5 — [O.3E9, Ea = 2.[%,
V3 3.54Es — 0.368E9, 1 =9.3%. (6.88)

According to the structures of these models, these are analogous to the models that represent
the dependence of the harvest using the number of sunshine hours. These models also trace
the relationship with E£s during the head formation. One can draw the conclusion that the
number of kernels is established during the period of head formation, and that an increase
in evaporation causes an increase in the number of kernels and better harvest.
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Models with respect to the end of the head formation phase.

From the above modeling results, it is clear that climatic factors affect the wheat harvest
and its characteristics mainly prior to the stage of head formation. This makes it possible to
build up a good prediction model for the wheat harvests for the end of the head formation
phase using the amount of evaporation from the water sutrface (£5), the number of sunshine
hours (S5), the duration of the phenophase (#s5), and the relative air humidity (es).

The linear models obtained are as foliows:

y1 = 5.9185 — 2.06t5 + 11.13e5 — 3.65E5, &) = 10.1%,
Y2 = —0.5655 + 0.12¢5 + 16.198‘5, Exr = 2.6%,
y3 = 05115+ 6.2665, £3=5.1%. (6.89)

The models can be used for the evaluation of agricultiral-climatic resources of a specific
irrigation system for determining the possibilities of raising a particular crop for which the
model is identified. In this case, the observed data can be averaged to the available series
of years. The same models can be used for predicting the future harvest with known factors
of crop development for the end of the head formation phase or earlier—for example, after
wintering with a favorable prediction of the sunshine, evaporation of water surface, and
length of the head formation phase.

It is necessary to supplement with certain appropriate biological indicators for a more
objective prediction of wheat harvest after the beginning of spring growth. The variables
such as the degree of development of the leafy surface L and the quantity of dry matter V
at the beginning and end of the head formation are used in constructing the second-order
polynomial models; the optimal models have the form

yi = 17.6Ls +0.39V, — 1.29L% £ = 6.7%,
yo = 77.5+0.006V3 + 3.19Ly — S.85L4Vy, &2 =4.7%,
y3 = 37.6 — 0.00066V3 + 0.0065L3, &3 = 4.7%; (6.90)

v = 40.55 — 0.0023Vs +0.086VsLs — 0.325L3, £ = 13.6%,
yo = 43.17 = 0.06Vs + 1.12Ls, &3 = 6.7%,
y3 = 37.69 — 0.00003V? + 0.0014VsLs, e3 = 4.9%. (6.91)

The latter which is a more precise model of the harvest specifies the dependence of wheat
production on the degree of development of the leafy surface at the end of the stalk formation
phase. The dependence of the production on the quantity of dry matter and the amount of
leaf surface at the end of the head phase decreases because of biological changes occurring
in the head stage.

This means that it is sufficient to indicate the amount of leaf surface and the amount of
dry matter at the end of the the stalk formation phase for building up the prediction models.
The linear models that consider the climatic factors during the head stage have the form

yy = —77.5+2.89L, +3.07S5 — 0.032t5 — 0.13%5 + 17.19E5, ; = 6.8%,
vy = 0.048V — 0.503S5 + 0.079Ls + 16.05E5, &3 = 2.5%,
vy = 32.94 — 0.061V, +0.563¢5, €3 =5.1%. (6.92)

The inclusion of the variables of biological indicators of development at the end of stalk
formation permit a higher degree of accuracy in the models. The variable corresponding to
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the amount of dry matter is discarded by the computer in the model of wheat harvest (y;)
and the variable corresponding to the surface of green foliage is left in the model.

The above selected models can be used effectively for predicting the wheat harvest
since the measurement of foliage area can be carried out with high precision by indirect
methods—for example, with the aid of aerial photography.

The studies on agricultural productions with irrigation are related to a large number of
meteorological and agro-technical factors. The majority of the factors are cross-correlated
and the construction of one universal model for studying various aspects of agricultural
preduction is inadequate. This study indicates that as a result of directed selection of partiai
models constructed for a large group of arguments, it is possible to get models of production
corresponding to certain practical considerations.

Example 9. Adaptation of yield models to crop regionalization,

The principal sources of model error in the above example are the limited usage of the
variables. Here is a trial to further extend modeling of the yield of agricultural crops in
adapting to regionalization. The organization of the modeling process objectively takes into
account the expansion of input variables. The modeling errors depend on the noise in the
experimental data, assumptions made in the design of the complete model (i.e., the maximum
complexity of the model and correspondence to the physical process), the method used to
divide the experimental data into sets, the choice of control intervals (averaging periods of
input variables), the criterion of model selection, etc.

A particular feature of crop rotation-structure planning to solve the different groups of
problems in adapting yield models to crop regionalization is addressed in the work of
Khomovnenko [75] with the exclusive use of predicted input variables. The intermediate
yield models are developed with the use of calender (monthly, seasonal, or average of
several months) values of climatic factors.

For example, considering the modeling of wheat harvest as y = f(H, C), 20 more variables
which characterize the climatic conditions are supplemented to the original list of variables
H and C; average daily temperatures t; ;, precipitation R;_;, sunshine hours S;_;, and
lack of air humidity e;;_; are summed over the period from ith to jth month and vused as an
input in the model (when i = j, only one subscript is used).

The meteorological data used in modeling is collected during 1945 to 1974 by one of
the agricultural weather stations that is located about 100 km away from the experimental
farm fields. This a situation in which time and spatial extrapolation of input variables could
be used.

The data is divided into four sets: training (A), testing (B), and two examin sets
(C1,C2, and C = C, U (). The second examin set is produced from the sequence of
meteorological data, measured in the region for which the yield model is to be used. The
regularity criterion A(A U B) is the squared error measured on the training and test sets,
A*AUB) = ZieAUB(y — j’);?' < 0.02; A(C)) is the squared error measured on the first
examin set, and A{C,) is the squared error measured on the second examin set. The model
accuracy 1s improved further by an appropriate choice of averaging intervals of the input
variables—for example, by making these intervals equal to the development phases of the
crop, and the model adaptive with respect to the climatic conditions of the irrigation sys-
tem. To adapt the model, the step-by-step correction of equations is used by excluding
the extremum test data points. The algorithm with orthogonalized complete description (a
generalized algorithm) is used [112] (also refer to Chapter 2).

In the first case, the criteria used in estimating the potential effectiveness are the aver-
age annual yield (¥) and the mean square deviation A(A U B). A complete sifting of all
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intermediate models yields the model

y = 53.41 — 0.000203¢s, 155, — 4588.8 +0.048R5_s), (6.93)

H 6(3,5)

which is the optimal yield model for winter wheat; the average annual yicld computed from
this model is y = 23.25 100- kg./hectare and the error A(C) = 0.004. In computing the
criterion error, the variable y 1s replaced by ¥.

Similarly, in the second case the yield models used for annual planning of water dis-
tribution have different lists of input variables that characterize watering and fertilization
schedules and climatic factors. The models obtained are as:

S 105, 165 S
» = 69.1 - 0.0000023°F 45511 0002300~ o5

o) fia) Py, iy

1 1
= 30.9 +0.0000079R 122 N Sy 1%, — 57.7 - — 0.94 :
¥2 (12-2) ) s NS Rz
L

3 = 31.91 +0.007N Segy +0.33N R_sy — 0.022 o + 1.72 (6.94)

NzR(y,f_s) NZ S(3)‘

The models for v, and y3 are obtained as optimal and acceptable solutions, but the inter-
mediate models for y; do not yield any acceptable solutions due to the limited nature of
the experimental series. However, in order to illustrate the potential effectiveness of the
above selected models for yy, y2, and y3, which characterize different irrtgation schedules,
the yields are simulated for a period of 30 years (1945 to 1974).

The results of the investigation of the models prove to be physically sound and agree
with the experimental results conducted by various scientists. A further increase in accuracy
can be achieved by optimizing the average intervals of the input vanables.

6 MODELING OF SOLAR ACTIVITY
Model as a sum of trend and remainder

The random processes being modeled can be represented as the sum of trend and a remainder.

¥y = Q) +4(), (6.95)

where Q(1) = ﬁ EL"{ v(#) is the moving average about the center of the averaging interval
and g(r) is the remainder (called “anamoly” in meteorology). Both are modeled using one
of the iductive learning algorithms. The process averaging interval 7, gradually increases
until the sum of the prediction errors of the trend and of the remainder decreases. The
global minimum of the sum is the optimal value of 7,,.

Additive-multiplicative trend

Alternatively, more complex is the additive-multiplicative trend of the form

y(1) = Q1) + O20)q1 (1) + Q3(Dg3 (D), (6.96)

where 1, @2, and Q3 are polynomials in time with the dimensions of the moments of
a random function—the mathematical expectation, the variance, and the third moment,
respectively. Such trends are first of its kind in the literature to be used.
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The limiting admissible prediction time with respect to a trend is estimated on the basis
of the averaging interval; 7, < T,,, where T, is the averaging interval of trend. Usually
this interval is sufliciently large. For autoregression single factor models of the form ¢, =
fAgi—1,q,—2,---) the limiting admissible prediction time of the remainder in the case of a
single-level prediction does not exceed the correlation interval 7,,,, < Ty, where T, is the
averaging interval used in the remainder part.

To determine the limiting admissible prediction time for multifactor models of the form
G =fG@r1,Gi—2, -t 11, - - -), 1t is necesssary to choose according to the larger of the
autocorrelation and cross-correlation intervals.

Multistep prediction as a transient process

Long-range multistep prediction has many features of transient process. In the prediction
region of a random process, the predicting model shifts from a steady state regime of
continuous step-by-step renewal of information (regime of observation) into another steady-
state regime for which no new information of the object is being fed in (regime of prediction).
As in the theory of tracking systems of servomechanisms, the predicting model can be
represented as the sum of two components—the trend and remainder.

In the interpolation interval, the prediction differs only slightly from the actual data since
it is based on the minimization of the mean-square error of the residuals. In turn, in the
prediction interval, it is convenient to represent the remainder in the form as a series

q(1) = qi(N) + g2(1) + g3(1) + ga(1), (6.97)

where ¢,(7) 1s the exponential component of the remainder, ¢2(¢) is the attenuating transient
error, g3(7) 1s the nonattenuating component of the remainder, and ¢4(f) is the constant
component,

After singling out the trend Q(r) from the actual data, it is expected that harmonic
components exist in the remainder with the same frequencics as in the trend because only
nonattenuating oscitlations of given frequencies are singled out in the trend. The presence
of nonattenuating component gs(f) in the remainder is the result of imperfection of the
algorithm for singling out the harmonic trend; in an ideal case ¢3(r) = 0. In long-range
predictions, there is a small steady state angular tracking error (# = const ) by which the
prediction ditfers from the trend. As in the servosystems, this can be determined without
integrating the differential equations of the model, but by substituting the steady state forcing
function such as Q(r) = sinwrt and the response, y(1) = A sin(8+wt) for determining the angle
0.

The analysis of steady-state regime is simple in a single-frequency trend and complicated
n several frequencies. In particular, one needs to solve nonlinear equations to determine
the tracking error without integrating the equations. But it is simpler to first integrate the
equations of the predicting model and, thus, find the tracking error and all other components
of the prediction. Once the angular tracking error is determined, then it is easier to determine
the quality factor of the predicting model as a ratio of the angular frequency of the trend to
the tracking crror.

Correlation interval of the transient component

Correlation function of a typical non-steady-state process can be represented as a sum of
steady-state and transient components:

y(t) = y.ﬁ‘.'»‘(t) +ytr(t)7 (6.98)
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where

Vss(t) = QO + g3() + qa(r) and y, (1} = g1 (1) + g2(8).

The corresponding autocorrelation functions can be found for the three terms in the above
equation as

Ap(T) = Ay(T) + Ay(7). (6.99)

The basic part of the steady-state component is the trend and the remainder is the transient
component,

If we construct a correlation function of steady-state process, we will notice that the
prediction time of a steady-state process does not exceed the length of its corrclation interval;
T, < 7., where 7. is the coherence time (refer chapter 2).

The time interval throughout which the correlation function exceeds the value of the delta
function, 6 = 0.05. The value of A,, = 0.05 is taken from the experiments of “tossing a coin.”
The correlation interval for a purely random process is given as less than unity—r7, < I;
this means that the prediction is impossible from observations. From these experiments, we
can conclude that the steady-state component can achieve infinite prediction time and the
transient component can achieve the prediction time of less than or equal to unity with the
help of the best inductive learning algorithms.

An example of modeling solar activity

The basic steps in the algorithm for predicting oscillatory processes are listed as follows:

spectral analysis of the process,
singling out the harmonic trend and the remainder,
calculating the steady-state and transient components,

sl

obtaining the optimal difference equation of the transient component using an induc-
tive learning algorithm,
predicting the process as the sum of the steady-state and transient components, and

o v

. determining the accuracy of the prediction in case of prediction time equal to the
correlation interval of transient and evaluating the results.

Here the problem of predicting solar activity characterized by Wolf numbers is considered.
The data are taken for the years 1700 to 1978,

1. Spectral analysis of the process. The spectral analysis on the series of data reveals that
it contains a sharp harmonic component with period Ty = 11.2 years, multiple har-
monics with periods 7', = (1/2)(11.2), T = (1/3)(11.2), T3 = (1/4)(11.2), and T, =
(1/5)(11.2) years, and also low frequency harmonics with periods T_; = 2(11.2), T_, =
3(11.2), T_3 =4(11.2), and T_4 = 5(11.2) years.

2. Singling out harmonic trend and the remainder. The optimal harmonic trend is obtained
by gradually increasing harmenic components until it leads to the lowering of the
approximation error on the remainder. In this example, the trend obtained using
all initial data has only a single harmonic with period Ty = 11.2 years (frequency
wp = 27 /Ty = 0.56 radians/ year).

2 2
4254008 1t (6.100)

£) = 49.9 — 8.3 si
W TR 12
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Figure 6.14. Processes being investigated. (1) the actual data of Wolf numbers, (2) the harmonic

trend Q(1), (3) the prediction with the trend and the estimated remainder Q(f) +g(r), and (4) the output
of the difference equation obtained with the inductive learning algorithm for the remainder data

It 1s aimed at preserving the possibility of checking the accuracy of long-range pre-
diction over the course of 40 years with the starting year of 1943; i.e., where ¢ = 0.

The residual data, which yields the remainder is calculated as the difference be-
tween the actual data and the trend. Figure 6.14 illustrates the trend (}(¢) and the
remainder ¢{¢). As it is expected, the remainder is of an attenuating nature. The same
frequency wp = 2x/11.2 radians/ year is found as it is used in the trend.

3. Obtaining a difference model of the remainder. Here combinatorial algorithm is used
to obtain the optimal difference equation; the complete polynomial has 15 lagging
arguments and the model is chosen in the plane of two criteria 77, — (V) with the
constraint of i*> < 1.0. The following model is obtained:

g(r) = 0.153g,_3 — 0.144q,_s + 0.526q,_1; — 0.225g,_1s. (6.101)

Figure 6.14 exhibits the approximation of the remainder by step-by-step integration
of this equation.
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4. Singling out the nonattenuating harmonic part of the remainder. 1t is proceeded by the
singling out of the harmonic trend and obtained the following harmonic trend, as in
step 2,

27

“.2:‘, (6.102)

2
g3(1) = 1.184sin Tﬂ2t+5.046003
the amplitude of which is A; = /(1.184% + 5.046%) = 5.183. A, and A, are the
amplitudes of the harmonic part of the trend and the remainder, correspondingly.
This enables us to find the angular tracking error # = 0.061 radians. The quality

factor of the predicting model is computed as G = w/0 = 0.56/0.061 = 9 year™!.

5. Determining the constant component of the remainder. This is estimated as q4(r) = 2.329
= const by using the least squares technique.

6. Predicting the solar activity. The equations are obtained for the trend Q(r) and the
remainder g(f) as well as for all four of its components g, (), ¢2(1), g3(7), and ga(1).
The ditference equation for the remainder gives the step-by-step predictions for it.
The sum of the trend and the remainder gives the single-level prediction of solar
activity without improving the prediction result.
In short-range predictions with the prediction interval of T, = 11 ycars, the ac-
curacy of prediction is 0.64 (without adaptation of the degree of stability) and in
long-range predictions with T, = 33 years, it is 1.54.

Correlation function of the transient component of the remainder

The transient component of the remainder is defined as y,, = g(f)+ g2() and its correlation
function 1s calculated from

N—T1
ATy = Y Gigur, T=1,2,---,N. (6.103)

=1

All values of A,.(+) are normalized with respect to the maximum value and construct the
correlational graph. The coherence time obtained is nine years, confirming the prediction
interval on which it is possible to increase the accuracy considerably by optimal choice of
the degree of the predicting model.

Further analysis on the problem is based on the theory of servosystems with the analysis
of the dynamic equations of a tracking system [52], and we leave it to the reader. However,
in long-range predictions it makes no sense to increase the time of transient process of the
remainder beyond the correlation interval which is approximately three time constants of
7., according to the concepts of the information theory.

Two-level algorithm

Alternatively, the modeling of solar activity is conducted through the two-level aigorithm of
multilevel objective analysis using the balance criterion. The above examined optimization
(structure and estimates of the predicting models) is performed for both levels as seasonal
and annual predictions. With regard to the compatibility of the predictions, the balance cri-
terion makes it possible to raise the prediction time of seasonal predictions to the prediction
time of annual predictions.
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Mathematical literature reveals that the number of neural network structures, concepts,
methods, and their applications have been well known in neural modeling literature for
sometime. It started with the work of McCulloch and Pitts [93], who considered the brain
a computer consisting of well-defined computing elements, the neurons. Systems theoretic
approaches to brain functioning are discussed in various disciplines like cybernetics, pattern
recognition, artificial intelligence, biophysics, theoretica biology, mathematical psychology,
control system sciences, and others. The concept of neural networks have been adopted to
problem-solving studies related to various applied sciences and to studies on computer hard-
ware implementations for parallel distributed processing and structures of non-von Neuman
design.

In 1958 Rosenblatt gave the theoretical concept of “perceptron” based on the neural
functioning [105]. The adaptive linear neuron element (adaline), which is based on the
perceptron theory, was developed by Widrow and Hopf for pattern recognition at the start
of the sixties [131]. It is popular for its use in various applications in signal processing and
communications. The inductive learning technique called group method of data handling
(GMDH) and which is based on the perceptron theory, was developed by Ivakhnenko
during the sixties for system identification, modeling, and predictions of complex systems.
Modified versions of these algorithms are used in several modeling applications. Since then,
one will find the studies and developments on perceptron-based works in the United States
as well as in other parts of the world [3], [26], [82].

There is rapid development in artificial neural network modeling, mainly in the direc-
tion of connectionism among the neural units in network structures and in adaptations of
"learning" mechanisms. The techniques differ according to the mechanisms adapted in the
networks. They are distinguished for making successive adjustments in connection strengths
until the network performs a desired computation with certain accuracy. The least mean-
square (LMS) technique that is used in adaline is one of the important contributions to the
development of the perceptron theory. The back propagation learning technique has become
well known during this decade [107]. It became very popular through the works of the PDP
group who used it in the multilayered feed-forward networks for various problem-solving.

1 SELF-ORGANIZATION MECHANISM IN THE NETWORKS

Any artificial neural network consists of processing units. They can be of three types:
input, output, and hidden or associative. The associative units are the communication links
between input and output units. The main task of the network is to make a set of associations

2RA
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of the input patterns x with the output patternsy. When a new input pattern is added to
the configuration, the association must be able to identify its output pattern. The units
are connected to each other through connection weights; usually negative values are caled
inhibitory and positive ones, excitatory.

A process is said to undergo self-organization when identification or recognition cate-
gories emerge through the system's environment. The self-organization of knowledge is
mainly formed in adaptation of the learning mechanism in the network structure [5], [8].
Self-organization in the network is considered while building up the connections among
the processing units in the layers to represent discrete input and output items. Adaptive
processes (interactions between state variables) are considered within the units.

Linear or nonlinear threshold functions are applied on the units for an additional activation
of their outputs. A standard threshold function is a linear transfer function that is used for
binary categorization of feature patterns. Nonlinear transfer functions such as sigmoid
functions are used to transform the unit outputs. Threshold objective functions are used in
the inductive networks as a specia case to measure the objectivity of the unit and to decide
whether to make the unit go "on" or "off." The strategy is that the units compete with each
other and win the race. In the former case the output of the unit is transformed according
to the threshold function and fed forward; whereas in the latter, the output of the unit is
fed forward directly if it is "on" according to the threshold objective function. A date
function is used to compute the capacity of each unit. Each unit is analyzed independently
of the others. The next level of interaction comes from mutual connections between the
units; the collective phenomenon is considered from loops of the network. Because of such
connections, each unit depends on the state of many other units. Such a network structure
can be switched over to self-organizing mode by using a statistical learning law. A learning
law is used to connect a specific form of acquired change through the synaptic weights—one
that connects present to past behavior in an adaptive fashion so that positive or negative
outcomes of events serve as signals for something else. This law could be a mathematical
function, such as an energy function that dissipates energy into the network or an error
function that measures the output residual error.

A learning method follows a procedure that evaluates this function to make pseudorandom
changes in the weight values, retaining those changes that result in improvements to obtain
the optimum output response. Severa different procedures have been developed based on
the minimization of the average squared error of the unit output (least squares technique is
the simplest and the most popular).

! 5 2
e= 35 ;(y -’ (72)

where y; is the estimated output of jth unit depending on a relationship, and y; is the desired
output of the ith example. Each unit has a continuous state function of their total input
and the error measure is minimized by starting with any set of weights and updating each
weight w by an amount proportional to de/Ow as éw;; = —a 0c/Ow;;, where « is alearning
rate constant.

The ultimate god of any learning procedure is to sweep through the whole set of associ-
ations and obtain a final sat of weights in the direction that reduces the error function. This
is redlized in different forms of the networks [29], [77], [107], [131].

The statistical mechanism built in the network enables it to adapt itself to the examples
of what it should be doing and to organize information within itself and, thereby, to learn.
The collective computation of the overall process of self-organization helps in obtaining the
optimum output response.
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X1

Figure 7.1. Unbounded feedforward network where X and Y are input/output vectors and W and K
are weight matrices

This chapter presents differences and commonalities among inductive-based learning a-
gorithms, deductive-based adaline, and backpropagation techniques. Multilayered inductive
algorithm, adaline, backpropagation, and self-organization boolean logic techniques are con-
sidered here because of their commonality as parallel optimization algorithms in minimizing
the output residual error and for their inductive and deductive approaches in dealing with
the state functions. Self-organizing processes and criteria that help in obtaining the opti-
mum output responses in the algorithms are explained through the collective computational
approaches of these networks. The differences in empirical analyzing capabilities of the
processing units are described. The relevance of loca minima depends on various activat-
ing laws and heuristics used in the networks and knowledge embedded in the algorithms.
This comparison study would be helpful in understanding the inductive learning mechanism
compared with the standard neural techniques and in designing better and faster mechanisms
for modeling and predictions of complex systems.

1.1 Some concepts, definitions, and tools

Let us consider a two-layered feedforward unbounded network with the matrices of con-
nected weights of W at first layer and K at output layer (Figure 7.1). The functional
agorithm is as follows:

Sep 1, Initialize with random weights. Apply sat of inputs and compute resulting
outputs at each unit.

Sep 2. Compare these outputs with the desired outputs. Find out the difference,
square it, sum al of the squares. The object of training is to minimize this
difference.

Sep 3. Adjust each weight by a smal random amount. If the adjustment helps in
minimizing the differences, retain it; otherwise, return the weight to its previous
value.
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Sep 4. Repeat from step 2 onward until the network is trained to the desired degree
of minimization.

Any statistical learning algorithm follows these four steps. In working with such self-
organization networks, one has to specify and build certain features of the network such
as type of "input-output” processing, state function, threshold transfer function (decision
function), and adopting technique. Overall, the networks can be comprised according to the
following blocks:

1. "Black box" or "input-output" processing
» batch processing
* iterative processing
« deductive approach (summation functions are based on the unbounded form of
the network)

inductive approach (summation functions are based on the bounded form of the
network)

« multi-input single output
» multi-input multi-output
2. Considering state functions
* linear
* nonlinear [29], [103], [132]
 boolean logic
e paralel
* sequential
3. Activating with threshold transfer functions
* linear threshold logic unit (TLU)
* nonlinear or sigmoid
* objective function (competitive threshold without transformations)

4. Adapting techniques
* minimization of mean square error function (simplest case)
* backpropagation of the output errors
* minimizing an objective function ("simulated annealing")
« front propagation of the output errors.

Some of the terminology given above are meant mainly for comparing self-organization
networks. The term "deductive approach” is used for the network with unbounded con-
nections and a full form of state function by including all input variables—contrary to the
inductive approach that considers the randomly selected partial forms.

State functions

Unbounded structure considers the summation function with all input variables at each node:

n
5= Z WjiXi + Wi, (71.2)
i=1



SELF-ORGANIZATION MECHANISM IN THE NETWORKS 289

where n is the total number of input variables; s; is the output of the node; x; are the input
terms; wyy is the biased term, and wy; are the connection weights.

Bounded structure considers the summation function with a partial list (r) of input vari-
ables:

n2
sj = Z WjiX; + Wi, (7.3)

i=nl
where (n2—n1) = r and r+1 is the number of the partial list of variables. A network with an
unbounded/bounded structure with threshold logic function is called deductive because of
its apriori fixedness. A network with a bounded structure and a threshold objective function
is inductive because of its competitiveness among the units with randomly connected partial
sts of inputs.

Parallel function is defined as the state function with the inputs from the previous layer or
iteration ’j’; whereas, the sequential form depends on the terms from the previous iteration
and the past ones of the same iteration:

r n2
5= 2 Wji—kSj—k t E wiixi + wjo. (7.4)
k=1

i=nl
The computationally sequential one takes more time and can be replaced by a parallel one
if we appropriately choose input terms from the previous layer.

Transfer functions

These are used in the TLUs for activating the units. Various forms of transfer functions
are used by scientists in various applications. The analytical characteristics of linear type
TLUs are extensively studied by the group of Fokas [19]. Here is a brief listing of linear
and nonlinear TLUs for an interested reader.

Linear type TLUs or discrete-event transformations.  The following are widely used thresh-
old logic functions in perceptron and other structures.
(1) Magjority rule
Fwy=1 if u>0
0 if u<go;
(i) Signum function:
Fuwy= 1 if u>0
-1 if u<O;
(iii) Piecewise linear function:
Fwy=u if u>0
0 if u<o;
(iv) Signum-0-function:
Fu)- 1 if u>0
0 if u=0
-1if u<0O; and
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(v) Parity rule:

Fu)y=1 if u iseven
0 if u iszeroorodd . (7.5)

This is used in cellular automata and soliton automata [19]. In al the cases u is unit output.

Nonlinear or discrete analogue transformations

(i) Here are some forms of sigmoid function ( F(u) = tanh u ) often used in various
applications. They provide continuous monotonic mapping of the input; some map
into the range of — 1 and 1, and some into the range of 0 and 1:

Fu) = (1+e™)7)

Fu) = —e s +e™) ', Fuy=1+F)*( —F);
Fau) = (1 —e 2y« (1 +e 2971,

Fu) =2+ (1+e 271 — I

F(u) = %(1 +tanh #’); and
Fu) = (¢“ — D x(e“+ 17!, (7.6)

where ' = u* g, in which g is the gain width. In all the nonlinear cases the curve has
a characteristic sigmoidal shape that is symmetrical around the origin. For example,
take the last one. When u is positive, the exponential exceeds unity and the function
is positive, implying preference for growth. When u is negative, the exponential is
less than unity and the function is negative, reflecting a tendency to retract. When u
is zero, the function is zero, corresponding to a 50-50 chance of growth or retraction.
For large positive values of u, the exponentials dominate each term and the expression
approaches unity, corresponding to certain growth. For large negative values of u,
the exponentials vanish and the expression approaches —1, corresponding to certain
retraction. Here are some other types of transformations:

(ii) Sne function:
F(u) = sin(u’).
The use of this function leads to a generalized Fourier analysis.
(iii)) Parametric exponential function:
Fu)=a+be ™™,
where a and b are the parameters;
(iv) Gaussian function:

| Wi np?
Zi TIT 52
Fu)=e i

where p is the mean value and a is the covariance term; and
(v) Green function:

Fu) =) caGluita), (7.7)

a=1

where ¢, are coefficients which are unknown, and ¢, are parameters which are called
centers in the radial case [101].
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Threshold objective functions. There are various forms of threshold objective functions
such as regularity, minimum-bias, balance-of-variables, and prediction criterion, used mainly
in inductive networks. These are built up based on objectives like regularization, forecasting,
finding physical law, obtained minimum biased model or the combination of two or three
objectives which might vary from problem to problem.

2 NETWORK TECHNIQUES

The focus here is on the presentation of emperical analyzing capabilities of the networks; i.e.,
multilayered inductive technique, adaline, backpropagation, and self-organization boolean
logic technique, to represent the input-output behavior of a system. The aspects considered
are. basic functioning at unit-level based on these approaches connectivity of units for
recognition and prediction type of problems.

2.1 Inductive technique

Suppose we have a sample of N observations, a set of input-output pairs (/1,01), (I>,02), - - -,
(Iy,on) eN, where N is a domain of certain data observations, and we have to train the
network using these input-output pairs to solve an identification problem. For the given
input (1 < j < N)of variables x corrupted by some noise is expected to reproduce the
output o; and to identify the physical laws, if any, embedded in the system. The prediction
problem concerns the given input 7y, that is expected to predict exactly the output oy,
from a model of the domain that it has learned during the training.

In the inductive approaches, a general form of summation function is considered Kolmo-
gorov-Gabor polynomia which is a discrete form of Volterra functional series [21]:

m m m

y a0+E ax,+§ E a,Jx,xJ+§ E E QXXX + -

=l j=1 i=l j=1 k=1

S
Il

= ap+ayxy +axxy; +- -~+(11|X1 +apxixy + -+ dx +a“2x%x2+---

=aptapxy+axxy+ -+ dXne +ARXp2 0+ QumXm (7.8)

where the estimated output is designated by 9, the external input vector x by (xy,xz, - - -, x1),
and a are the weights or coefficients. This is linear in parameters a and nonlinear in x. The
nonlinear type functions were first introduced by the school of Widrow [132]. The input
variables x could be independent variables or functional terms or finite difference terms;
i.e., the function is either an algebraic equation, a finite difference equation, or an equation
with mixed terms. The partial form of this function as a state functional is developed at
each simulated unit and activated in parallel to build up the complexity.

Let us see the function at the unit level. Assume that unit » receives input variables; for
instance, (xz,x5) C x—i.e., the state function of the unit is a partial function in afinite form

of (7.8):
Sp = Wyo + Wy Xy + Wpp, X5, (7.9

where w are the connection weights to the unit n. If there are ml input variables and two
of them are randomly fed at each unit, the network needs C2,(= m1(ml1 — 1)/2) unitsat
first layer to generate such partial forms. If we denote y? as the actual value and s, as
the estimated value of the output for the function being considered for pth observation, the
output error is given by

—  (peN). (7.10)
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The total squared error at unit n is.
e=) (7. (7.11)

peN
This corresponds to the minimization of the averaged error ¢ in estimating the weights w.
This is the least squares technique. The weights are computed using a specific training set
at al units that are represented with different input arguments of m1. This is redlized at
each unit of the layered network structure.

Multilayered structure is a parallel bounded structure built up based on the connectionistic
approach; information flows forward only. One of the important functions built into the
structure is the ability to solve implicitly defined relational functionals. The units are
determined as independent elements of the partial functionals; all values in the domain of
the variables which satisfy the conditions expressed as equations are comprised of possible
solutions [15], [29]. Each layer contains a group of units that are interconnected to the units
in the next layer. The weights of the state functions generated at the units are estimated
using atraining set A which is apart of N. A threshold objective function is used to activate
the units "on" or "off" in comparison with a testing set B which is another part of N. The
unit outputs are fed forward as inputs to the next layer; i.e., the output of nth unit if it isin
the domain of loca threshold measure would become input to some other units in the next
level. The process continues layer after layer. The estimated weights of the connected units
are memorized in the loca memory. A global minimum of the objective function would be
achieved in a particular layer; this is guaranteed because of steepest descent in the output
error with respect to the connection weights in the solution space, in which it is searched
according to a specific objective by cross-validating the weights.

2.2 Adaline

Adaline is a single element structure with the threshold logic unit and variable connection
strengths. 1t computes a weighted sum of activities of the inputs times the synaptic weights,
including a bias element. It takes +1 or —1 as inputs. If the sum of the state function is
greater than zero, output becomes +1, and if it is equal to or less than zero, output is —1;
this is the threshold linear function. Recent literature reveals the use of sigmoid functions
in these networks [98]. The complexity of the network is increased by adding the number
of adalines, called “madaline,” in paralel. For simplicity, the functions of the adaline are
described here.

Function at Single Element

Let us consider adaline with m input units, whose output is designated by y and with external

inputs xi(k - 1,---,m). Denote the corresponding weights in the interconnections by wy.
Output is given by a general formula in the form of a summation function:
s=wg+ Z Wi Xk, (7.12)
k

where wy is a bias term and the activation level of the unit output is
S =f(s). (7.13)

Given a specific input pattern x” and the corresponding desired value of the output y”, the
output error is given by

e =s"—y  (peN), (7.14)
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where N indicates the sample size. The total sguared error on the sample is

e=) (N (7.15)

peN

The problem corresponds to minimizing the averaged error € for obtaining the optimum
weights. This is computed for a specific sample of training set. This is realized in the
iterative least mean-square (LMS) algorithm.

LMS algorithm or Widrow-Hopf delta rule

At each iteration the weight vector is updated as
«

e |?

Wl =wP + X, (7.16)
where wP*! is the next value of the weight vector; w” is the present value of the weight
vectar; xP is present pattern vector; e is the present error according to Equation (7.14) and
|x”|” equals the number of weights.

pth iteration:
&=y W
se = §(F — 2 WPy = —x 6w, (7.17)
where T indicates transpose. From Equation (7.16) we can write
Sl = WPt P = ﬁe”x”. (7.18)

This can be substituted in Equation (7.17) to deduce the following:

ser = —x' ey
|
SV
td
= —ae’. (7.19)

It

The error is reduced by a factor of a as the weights are changed while holding the input
pattern fixed. Adding a new input pattern starts the next adapt cycle. The next error is
reduced by a factor a, and the process continues. The choice of a controls stability and
speed of convergence. Stability requires that 2 < a < 0. A practical range for a is given
as1.0>a>0.1.

2.3 Back Propogation

Suppose we want to store a set of pattern vectors ¥’,p = 1,2,---,N by choosing the
weights w in such a way that when we present the network with a new pattern vector x' it
will respond by producing one of the stored patterns which it resembles most closely. The
general nature of the task of the feed-forward network is to make a set of associations of
the input patterns x{ with the output patterns y/. When the input layer units are put in the
configuration xf the output units should produce the corresponding y;. S; are denoted as
activations of output units based on the threshold sigmoid function and zf are those of the
intermediate or hidden layer units.
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(1) For a 2-layer net, unit output is given by:

S =1 wik X (7.20)
k

(11) For a 3-layer net:
S = wid)=fO_wif O wifl)- (7.22)
J J k

In either case the connection weights w’s are chosen so that S¥ = ). This corresponds
to the gradient minimization of the average of ¢ (7.22) for estimating the weights. The
computational power of such a network depends on how many layers of units it has. If it
has only two, it is quite limited; the reason is that it must discriminate solely on the basis
of the linear combination of its inputs [95].

Learning by Evaluating Delta Rule

A way to iteratively compute the weights is based on gradually changing them so that the
total squared-error decreases at each step:

1 » -
P (7.22)
Lp
This can be guaranteed by making the change in w proportional to the negative gradient e
with respect to w (sliding down hill in w space on the error surface ¢ ).
(96
where « is a learning rate constant of proportionality. This implies a gradient descent of
the total error ¢ for the entire set p. This can be computed from Equations (7.20) or (7.21).
For a 2-layer net:

Oe dS; ax,

bwix = —a —071)71: - (Z 0S; dx; ﬁw,k
=a) —f(s’,»’)]f (sf)x‘; =ay &, (7.24)

ip ip

where s = 3, wi ¥ isthe state function and f’() is the derivative of the activation function
f0O at the output unit i. This is called a generalized delta rule.
For a 3-layer net: input patterns are replaced by zj’ of the intermediate units.

swy=a) &2 (7.25)
P
By using the chain rule the derivative of (7.21) is evaluated:
Swi=aY & wif' g = 6. (7.26)
Lp I4

This can be generalized to more layers. All the changes are simply expressed in terms of the
auxiliaryquantities 67, (51’3, -+ and the é’s for one layer are computed by simple recursions
from those of the subsequent layer. This provides a training algorithm where the responses
are fed forward and the errors are propagated back to compute the weight changes of layers
from the output to the previous layers.
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2.4 Self-organization boolean logic

In the context of principle of self-organization, it is interesting to look at a network of
boolean operators (gates) which performs a task via learning by example scheme based on
the work of Patarnello and Carnevali [99].

The general problem of modeling the boolean operator network is formulated as below.
The system is considered for a boolean function like addition between two binary operands,
each of L bits, which gives a result of the same length. It is provided with a number of
examples of input values and the actual results. The system organizes its connections in
order to minimize the mean-squared error on these examples between the actual and network
results. Global optimization is achieved using simulated annealing based on the methods of
statistical mechanics.

The overall system is formalized as follows. The network is configured by Ng gates and
connections, where each gate has two inputs, an arbitrary number of outputs, and realizes
one of the 16 possible boolean functions of two variables. The array A; (i = 1,2,---,Ng)
with integer values between 1 and 16 indicates the operation implemented by ith gate. The
experiments performed are chosen to organize the network in such a way that a gate can
take input either from the input bits or from one of the preceding gates (the feedback is
not allowed in the circuit). This means that X;” = 0 when i >j. The incidence matrices

X" and X{”) represent the connections whose elements are zero except when gatej takes its

left input from output gate i; then Xff,) =1 and Xfy = 1 isfor right input. The output bits
are connected randomly to any gate in the network.

The training is performed by identifying and correcting, for each example, a small
subset of network connections which are considered responsible for the error. The problem
is treated as a global optimization problem, without assigning adhoc rules to back propagate
corrections on some nodes. The optimization is performed as a Monte Carlo procedure
toward zero temperature (simulated annealing), where the energy or "cost" function ¢ of the
system is the difference between the actual result and the calculated circuit output, averaged
over the number of examples N4 fed to the system (chosen randomly at the beginning and
kept fixed during the annealing).

L L Ny
1
eM,X) = E € = E N E (G — aqu)*, (7.27)
=1 =1 k=1

where gy is the actual result of the /th bit in the kth example, g, (= f(A, X)) is the estimated
output of the circuit. Thus, ¢ is the average number of wrong bits for the examples used in
the training for a random network of ¢, ~ 1/2.

The search for the optimal circuit is done over the possible choice for X by choosing
A randomly at the beginning and keeping it fixed during the annealing procedure and
performing the average. The optimization procedure proceeds to change the i nput connection
of a gate according to the resulting energy change Ae. If Ae < 0, the change is accepted;
otherwise, it is accepted with the probability exp(—Ae/T), where T is the temperature—a
control parameter which is slowly decreased to zero according to some suitable "annealing
schedule." The "partition” function for the problem is considered as

Z = exp(—¢/T). (7.28)

X

The testing part of the system is straight forward; given the optimal circuit obtained
after the training procedure, its correctness is tested by evaluating the average error over the
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exhaustive set of the operations, in the specific case al possible additions of 2L-bit integers,
of which there are Ng = 2L.2L (= 22L),

L L 1 Npg .
A(B) = 12; A(B) = Izlj N ;m — quy’, (7.29)
where the quantities g, and g, are the same as those in the above formula.

The performance of the boolean network is understood from the quantities € and A(B);
the low values of the € mean that the system is trained very well and the small values
of A(B) mean that the system is able to generalize properly. So, usually one expects the
existence of two regimes (discrimination and generalization) between which possibly a state
of "confusion" takes place.

Experiments are shown [100] for different values N and N4 with L. = 8. It is found
that a typical learning procedure requires an annealing schedule with approximately 3.10°
Monte Carlo steps per temperature, with temperature ranging from 7 ~ O(1) down to
T ~ O(10~%) (roughly 70 temperatures for a total of ~ 200 million steps). The schedule
was slow enough to obtain correct results when N is large, and is redundantly long when
Ng is small. The system achieved zero errors (A(B) =0 aswell ase =0; i.e, it findsarule
for the addition) in some cases considered (Ng= 160, N4 = 224 or 480). In these cases, as
not all possible two-input operators process information, one can consider the number of
"effective” circuits, which turn out to be approximately 40.

According to the annealing schedule, reaching T ~ 0 implies that learning takes place as
an ordering phenomenon. The studies conducted on small systems are promising. Knowing
Z exactly, the thermodynamics of these systems are analyzed using the "specific heat,"
which is defined as

Oe

C = oo (7.30)

The "specific heat" C, is a response function of the system and a differential quantity
that indicates the amount of heat a system releases when the temperature is infinitesimally
lowered. The interesting features of these studies are given below:

» for each problem there is a characteristic temperature such that C, has a maximum
value;

* the harder problem, the lower its characteristic temperature; and

« the sharpness of the maximum indicates the difficulty of the problem, and in very
hard problems, the peak remains one of the singularities in large critical systems.

In these networks, the complexity of a given problem for generalization is architecture-
dependent and can be measured by how many networks solve that problem from the trained
circuits with a reasonably high probability. The occurrence of generalization and learning
of a problem is an entropic effect and is directly related to the implementation of many
different networks.

3 GENERALIZATION

Studies have shown that any unbounded network could be replaced by a bounded network
according to the capacities and energy dissipations in their architectures [18]. Here two
types of bounded network structures are considered.

One of the important functions built into the feedforward structure is the ability to solve
implicitly defined relational functionals—the units of which are determined as independent
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elements of the partial functionals. All values in the domain of the variables that satisfy the
conditions, expressed as equations are comprised of possible solutions.

3.1 Bounded with transformations

Let us assume that unit & receives variables. For instance, (xi,x.1) C X; that is, the state
function of the unit is a partial function in a finite form of (7.8):

Sk = wio + Wi Xk + wiaXgey = F(xx, Xeet), (7.31)

where w are the connection weights to the unit k. There are n input variables and two of
them are consecutively fed at each unit. There are n units at each layer. If we denote y” as
the actual value and s} as the estimated value of the output for the function being considered
for the pth observation, the output error is given by

=5 —» (peO). (7.32)
The total squared-error at unit k is
e? = Z(ellj)z_ (7.33)
peO

This corresponds to the minimization of the averaged error € in estimating the weights w.
The output s, is activated by a transfer function such as a sigmoid function F( ):

x = F(sp), (7.34)

where x; is the activated output fed forward as an input to the next layer.

The schematic functional flow of the structure can be given as follows. Let us assume
that there are n input variables of x including nonlinear terms fed in pairs at each unit of
the first layer (Figure 7.2). There are n units at each layer. The state functions at the first
layer are:

Sj = Wijp + WjiXj + WXy 1<j<n

Wijo + Wj1Xj + Wjax) j=n. (7.35)

These are formed in a fixed order of cyclic rotation. The outputs s;,(j = 1,2,---,n) are
activated by a sigmoid function and fed forward to the second layer:

5] = Wig + WX + WXy, 1<j<n
= W+ WiX +wpxy  j=n, (7.36)
where x; =F(s;),(j = 1,2,-- -, n) are the activated outputs of first layer and sj arethe outputs
of the second layer. The process is repeated at the third layer:
s]'-’ = w]/»(') + w!'-ix]'-' + wj/éx]{il 1<j<n
= Wj/(l) +wix, +wix| j=n, (7.37)
wherexj'-’ = F(s)),(=1,2,---,n) ae the activated outputs of the second layer fed forward

to the third layer; s* are the outputs; and x;” are the activated outputs of the third layer.
The process goes on repetitively as the complexity of the state function increases as given
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Figure 7.2. Bounded network structure with five input terms using a sigmoid function

below. For example, the state function at the unit & of the third layer with the activated
output of x;”" is described as:

x¢" = Flwiy + wiixi + wioxiy) = FIFG, % ))
= F(s)
= F(F(s;), F(s341))
= FE(F(si), F(ska1))s F(F(Sk1), F(5142))) (7.38)
= F(F(F(f (i, xi01)), F(F (o x042)))s FOUE(f (X1, X042)), FF(xia2, X043)))),

where sy, si+1, Sr+2 a@re the unit outputs at the first layer evaluated from the input variables of
(xk, Xk, X42, Xk+3) C X. The optimal response according to the transformations is obtained
through the connecting weights and is measured by using the standard average residual sum
of squared error. This converges because of the gradient descent of the error by |east-squares
minimization and reduction in the energy dissipations of the network that is achieved by
nonlinear mapping of the unit outputs through the threshold function, such as the sigmoid
function.

3.2 Bounded with objective functions

Let us assume that unit; at the first layer receives variables. For instance, (xz,xs5) C X; i.e,
the state function of the unit is a partial function in a finite form of (7.8):

Si = wjo + WXz + WisXs =f(x2,x5), (739)

where w are the connection weights to the unit j. If there are ml input variables and two
of them are randomly fed at each unit, the network needs sz,(z ml(ml — 1)/2) units at
the first layer to generate such partial forms. If we denote y” as the actual value and sf as
the estimated value of the output for the function being considered for pth observation, the
output error is given by (7.28). The total squared error at unitj is computed as in (7.29).
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This corresponds to the minimization of the averaged error £ in estimating the weights w.
Each layer contains a group of units, which are interconnected to the units in the next layer.
The weights of the state functions generated at the units are estimated using atraining set A
which is a part of N. An objective function as a threshold is used to activate the units "on"
or "off" in comparison with atesting set B which is another part of N. The unit outputs are
fed forward as inputs to the next layer; i.e., the output of jth unit—in the domain of local
threshold measure—would become input to some other units in the next level. The process
continues layer after layer. The estimated weights of the connected units are memorized
in the local memory. A global minimum of the objective function would be achieved in
a particular layer; this is guaranteed because of steepest descent in the output error with
respect to the connection weights in the solution space, in which it is searched according
to a specific objective by cross-validating the weights.

The schematic functional flow of the structure can be described as follows. Let us assume
that there are m1 input variables of x, including nonlinear terms fed in pairs randomly at
each unit of the first layer. There are C2, units in this layer that use the state functions of
the form (7.35):

x, = flxi, %)
= Wi + Wi Xi + WX, (7.40)
where x/, is the estimated output of unit n, n=1,2,---,C2%,; i,j=1,2,---,ml; i #j; and
w’ are the connecting weights. Outputs of m2 (< C2,) units are made "on" by the threshold

function to pass on to the second layer as inputs. There are C2, units in the second layer
and state functions of the form (7.35) are considered:

1 /
xn = f(-xiax_;)

o "1 "ol
= Wy WX + wnZ'xj’ (741)

where x” isthe estimatedoutput, n=1,2,---,C%,; i,j=1,2,---,m2; i #j; and W' are the
connecting weights. Outputs of m3 (< C%,) units are passed on to the third layer according
to the threshold function. In the third layer C2; units are used with the state functions of
the form (7.35):

X = 65

= Wy +Wx] +winx!, (7.42)

where x””' is the estimated output, n = 1,2,---,C%5; i,j = 1,2,---,m3; i #j; and w"’ are

the connecting weights. This provides an inductive learning algorithm which continues

layer after layer and is stopped when one of the units achieves a global minimum on the

objective measure. The state function of a unit in the third layer might be equivalent to the
function of some original input variables of x:

x' = fd, xj/-')
= f(f (g X3, f (s X))
= fUF(xp, x9), f Kpy X)), f(F (g, X7), S (x5 X))
= f(Xp, Xgy Xry Xus X)), (7.43)

where (x{',x!) C X" and (xg,x;,x;, %)) C X' are the estimated outputs from the second and
first layers, respectively, and (x,, x4, x-, x4, x,) C X are from the input layer (Figure 7.3). A
typical threshold objective function such as regularization is measured for its total squared
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Figure 7.3. Functional flow to unit » of third layer in a multilayered inductive structure

error on testing set B as.

A¥B) = Y o =i (7.44)

seB

where y is the actual output value and x!’ is the estimated output of unit n of the third
layer. The optimal response according to the objective function is obtained through the
connecting weights w, which are memorized at the units in the preceding layers [90]. Figure
7.4 illustrates the multilayered feedforward network structure with five input variables and
with the selections of five at each layer.

4 COMPARISON AND SIMULATION RESULTS

The major difference among the networks is that the inductive technique uses a bounded
network structure with all combinations of input pairs asit is trained and tested by scanning
the measure of threshold objective function through the optimal connection weights. This
type of structure is directly useful for modeling multi-input single-output (MISO) systems,
whereas adaline and backpropagation use an unbounded network structure to represent a
model of the system as it is trained and tested through the unit transformations for its optimal
connection weights. This type of structure is used for modeling multi-input multi-output
(MIMO) systems.

Mechanisms shown in the generalized bounded network structures are easily worked
out for any type of systems—MISO or MIMO. In adaline and backpropagation, input and
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Figure 7.4. Feedforward multilayered inductive structure with ml = 5,m2 = 5, and m3 = 5 using
threshold objective function

output data are considered either {—1,+1} or {0, 1}. In the inductive approach, input and
output data are in discrete analogue form, but one can normalize data between {—1,+1} or
{0, 1}. The relevance of local minima depends on the complexity of the task on which the
system is trained. The learning adaptations considered in the generalized networks differ in
two ways: the way they activate and forward the unit outputs. In backpropagation the unit
outputs are transformed and fed forward. The errors at the output layer are propagated back
to compute the weight changes in the layers and in the inductive algorithm the outputs are
fed forward based on a decision from the threshold function. The backpropagation handles
the problem that gradient descent requires infinitesimally small steps to evaluate the output
error and manages with one or two hidden layers. The adaline uses the LMS algorithm
with its sample size in minimizing the error measure, whereas in the inductive algorithm it
is done by using the least squares technique. The parameters within each unit of inductive
network are estimated to minimize, on a training set of observations, the sum of squared
errors of the fit of the unit to the final desired output.

The batchwise procedure of least squares technique sweeps through all the points of the
measured dataaccumulating de/dw before changing the weights. It is guaranteed to move
in the direction of steepest descent. The online procedure updates the weights for each
measured data point separately [131]. Sometimes this increases the total error <, but by
making the weight changes sufficiently small the total change in the weights after acomplete
sweep through al the measured points can be made to closely and arbitrarily approximate
the steepest descent. The use of batchwise procedure in the unbounded networks requires
more computer memory, whereas in the bounded networks such as multilayered inductive
networks, this problem does not arise.
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Figure7.5. Bounded inductive network structure with linear inputs using threshold objective function
(only activated links are shown)

Simulation experiments are conducted to compare the performances of inductive versus
deductive networks by evaluating the output error as a learning law [91], [92]. Here the
above general types of bounded network structures with inputs fed in pairs are considered.
One is deductive network with sigmoid transfer function tanh (y x ug), where u, is the
gain factor and another is inductive network with threshold objective function which is
a combined criterion (¢2) of regularity and minimum-bias. As a specia case, sinusoidal
transformations are used for deductive network in one of the studies. In both the structures,
the complexity of state function is increased layer by layer. The batchwise procedure of
least squares technique is used in estimating the weights. Various randomly generated data
and actual emperical data in the discrete analogue form in the range {—1,+1} are used in
these experiments. The network structures are unique in that they obtain optimal weights
in their performances. Two examples for linear and nonlinear cases and another example
on deductive network without any activations are discussed below:

(1) In linear case, the output data is generated from the equation:

y=0433 —0.195x; + 0.243x; + 0.015x3 — 0.18x4 + ¢, (7.45)
where x{, - - -, x4 are randomly generated input variables, y is the output variable, and
e is the noise added to the data

(8 Five input variables (x;,x;,---,xs) are fed to the inductive network through

the input layer. The global measure is obtained at a unit in the sixth layer
(c2 = 0.0247). The mean-square error of the unit is computed as 0.0183.
Figure 7.5 shows the iterations of the self-organization network (not al links
are shown for clarity). The values of c2 are given at each node.

(b) The same input and output data are used for the deductive network; unit outputs

are activated by sigmoid function. It converges to global minimum at a unit
in the third layer. The residual mean-sgquare error (MSE) of the unit is 0.101.
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Figure 7.6.

231 182 153 115 137

Bounded network structure with linear inputs and sigmoid output activations; wyg is the

biased term at each node

Figure 7.6 gives the evolutions of the generation of nodes by the network during
the search process and residual MSE at each node is also given. “x” indicates
the node which achieved the optimum value in al the networks given.

(i) In anonlinear case, the output data is generated from the equation:

y=0.433 — 0.095x; + 0.243x, + 0.35X% — 0.18x;x; + €, (7.46)

where x;, x, are randomly generated input variables, y is the output variable, and
is the noise added to the data.

@

(b)

(c)

x1, X2, X1, X3, x1x are fed as input variables. In the inductive case the global
measure is obtained at a unit in the third layer (¢2 = 0.0453). The residual MSE
of the unit is computed as 0.0406. Figure 7.7 gives the combined measure of
al units and residual MSE at the optimum node. Table 7.1 gives the connecting
weight values (wo,w;j, and w;), the value of the combined criterion, and the
residual MSE at each node.

The same input/output data is used for the deductive network; sigmoid function
is used for activating the outputs. It is converged to global minimum at a unit in
the second layer. The average residual error of the unit is computed as 0.0223
for an optimum adjustment of g = 1.8. Figure 7.8 gives the residual MSE at
each node. Table 7.2 gives the connecting weight values (wy, w;, and w;), and
the residual MSE at each node.

In another case, the deductive network with the same input/output data is acti-
vated by the transfer function F(x) = sin(u * g), where « is the unit output and g
is the gain factor. The global minimum is tested for different gain factors of g
(= 14 71), where T varies from 0.0 to 1.0. As it varies, optimal units are shifted
to earlier layers with a slight change of increase in the minimum. For example,
at 7 = 05 the unit in the third layer achieves the minimum of 0.0188 and at
7 = 0.8 the unit in the second layer has the minimum of 0.0199. The global
minimum of 0.0163 is achieved at the second unit of the sixth layer for 7 = 0.0
(Figure 7.9).
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Figure 7.7. Bounded inductive network structure with nonlinear inputs using threshold objective
function (only activated links are shown)

layer layer 1 layer 2 layer 3 layer 4 layer 5
Wo *

103 082 05 0F7 do

Figure 7.8. Bounded network structure with nonlinear inputs and sigmoid output activations; wy is
the biased term at each node
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Figure 7.9. Bounded network structure with nonlinear inputs and sinusoidal output transformations;
wy is the biased term at each node

(iii) Further, the network structures are tested for their performances without any threshold
activations at the units; i.e, the unit outputs are directly fed forward to the next layer.
Global minimum is not achieved; the residua error is reduced layer-by-layer as it
proceeds—ultimately, the network becomes unstable. This shows the importance of
the threshold functions in the convergence of these networks.

The resulting robustness in computations of self-organization modeling is one of the
features that has made these networks attractive. It is clear that network models have a
strong affinity with statistical mechanics. The main purpose of modeling is to obtain a better
input-output transfer relationship between the patterns by minimizing the effect of noisein
the input variables. This is possible only by providing more knowledge into the network
structures; that is, improving the network performance and achieving better computing
abilities in problem solving. In the inductive learning approach the threshold objective
function plays an important role in providing more informative models for identifying and
predicting complex systems. In the deductive case the unit output transformation through
the sigmoid function plays an important role when the functional relationship is sigmoid
rather than linear. Over al, one can see that the performance of the neural modeling can
be improved by adding one's experience and knowledge into the network structure as a
self-organization mechanism. It is an integration of various concepts from conventional
computing and artificial intelligence techniques.

Table 7.1. Network structure with threshold objective function

LAYER= 1 (ml= 5)

J=1 I= 2

.411 .186 .147; c2= .138E+00, MSE= .513E-01
J=1 I= 3

.454 .145 .134; c2= .416E+00, MSE= .122E+00
J=1 I= 4

.425 .213 .120; c2= .218E+00, MSE= .657E-01
J=1 I= 5

.455 .069 .268; c2= .279E+00, MSE= .103E+00
J= 2 I=3

.434 .155 .179; c2= .907E-01, MSE= .406E-01
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J= 2 I= 4
.405 .629 -.376; c2= .215E+00, MSE= .137E+00
J= 2 I=5
.458 .052 .284; c2= .226E+00, MSE= .997E-01
J= 3 I= 4
.452 .203 .133; c2= .207E+00, MSE= .589E-01
J= 3 I= 5
.465 .073 .260; c2= .266E+00, MSE= .102E+00
J= 4 I= 5
.466 .008 .329; c2= .257E+00, MSE= .109E+00
LAYER= 2 (m2= 5)
J= 1 I= 2
024 1.097 -.151; c2= .154E+00, MSE= .523E-01
J= 1 I=3
033 2.313 -1.363; c2= .144E+00, MSE= .609E-01
=1 I= 4
-.033 .208 .822; c2= .295E+00, MSE= .527E-01
J= 1 I=5
.004 -.451 1.423; c2= .113E+00, MSE= .412E-01
J= 2 I= 3
-.079 .186 .933; c2= .224E+00, MSE= .523E-01
J= 2 I= 4
-.054 .076 .989,; c2= .165E+00, MSE= .536E-01
J= 2 I= 5
.020 -.099 1.045; c2= .102E+00, MSE= .443E-01
J= 3 I= 4
-.019 -.665 1.664; c2= .263E+00, MSE= .598E-01
J= 3 I= 5
.020 -.437 1.388; 2= .613E-01, MSE= .381E-01
Jd= 4 I= 5
.023 -.794 1.747; c2= .581E-01, MSE= .417E-01
LAYER= 3 (m3=5)
J= 1 I= 2
.008 1.439 -.472; c2= .919E-01, MSE= .390E-01
J= 1 I= 3
.001 .098 .886; c2= .548E-~01, MSE= .374E-01
J= 1 I=
-.008 .399 .596; c2= .119E+00, MSE= .399E-01
Jd=1 I= 5
.008 4.123 -3.144; c2= .453E~-01, MSE= .406E-01*
J= 2 I= 3
.000 .047 .939; c2= .642E-01, MSE= .374E-01
J= 2 I= 4
-.013 .146 .858; «c2= .111E+00, MSE= .404E-01
J= 2 I= 5
.003 -.456 1.430; c2= .128E+00, MSE= .411E-01
J= 3 I= 4
.004 1.154 -.174; c2= .969E-01, MSE= .372E-01
J= 3 I= 5
.001 .929 .055; c2= .537E-01, MSE= .373E-01
J= 4 I= 5
~.009 715 .281; c2= .105E+00, MSE= .406E-01
LAYER= 4 (md= 5)
J=1 I= 2
.004 -.390 1.372; c2= .896E-01, MSE= .353E-01
J=1 I= 3

.004 -.400 1.385; «c2= .699E-01, MSE= .353E-01
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I= 4
.121;
I= 5
-1.025;
I=- 4
-.005;
I= 5
-.130;
I= 5
.738;
(m5= 5)
I= 2
-.436;
I= 3
-2.879;
1=
.649;
I=5
1.123;
I= 3
1.567;
I= 4
1.421;
I= 5
1.429;
I= 4
3.461;
I= 5
3.587;
I=5
1.158;
(m6= 5)
I= 2
1.132;
I= 3
.539;
I= 4
.542;
I=5
8.758;
I= 3
1.439;
I=
.428;
I= 5
.323;
I= 4
.494;
I= 5
-.675;
I= 5
-.693;

c2=

c2=

c2=

c2=

c2=

c2=

c2=

c2=

.918E-01,
.121E+00,
.636E-01,
.636E-01,
.819E-01,
.636E-01,
.716E-01,

.669E-01,

.971E-01,
.105E+00,
.484E-01,
.484E-01,
.113E+00,
.983E-01,
.964E-01,
.814E-01,
.935E-01,

.340E+01,

.836E-01,
.899E-01,
.883E-01,
.983E-01,
.972E-01,
.982E-01,
.895E-01,
.483E-01,
.870E-01,

.888E-01,

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

MSE=

.363E-01

.351E-01

.350E-01

.350E-01

.351E-01

.350E-01

.350E-01

.351E-01

.352E-01

.354E-01

.350E-01

.350E-01

.351E-01

.352E-01

.352E-01

.353E-01

.353E-01

.350E-01

.364E-01

.353E-01

.353E-01

.352E-01

.352E-01

.352E-01

.363E-01

.350E-01

.353E-01

.354E-01
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Table 7.2. Network structure with signoid function

LAYER= 1
J=1 I= 2
411 .186 .147; MSE= .513E-01
J= 2 I= 3
.434 .155 .179; MSE= .406E-01
J= 3 I= 4
.452 .203 .133; MSE= .589E-01
J= 4 I= 5
.466 .008 .329; MSE= .109E+00
J=5 I=1
. 455 .268 .069; MSE= .103E+00
LAYER= 2
J=1 I= 2
-.500 -1.100 2.489; MSE= L223E-01%*
J= 2 I= 3
-.477 1.803 -.436; MSE= .336E-01
J= 3 I= 4
~.489 1.989 -.613; MSE= .328E-01
J= 4 I=5
-.856 .115 1.709; MSE= .102E+00
J= 5 I=1
-.757 1.304 .402; MSE= .824E-01
LAYER= 3
J= 1 I= 2
-.484 1.052 .329; MSE= .242E-01
J= 2 I= 3
-.456 1.464 -.117; MSE= .368E-01
J= 3 I= 4
-.614 .960 .577; MSE= .393E-01
J= 4 I= 5
-.722 1.497 .169; MSE= .764E-01
J=5 I=1
-.488 .158 1.229; MSE= .249E-01
LAYER= 4
J= 1 I= 2
-.458 . 905 .454; MSE= .438E-01
J= 2 I= 3
-.441 1.641 -.304; MSE= .492E-01
J= 3 I= 4
-.502 1.757 -.349; MSE= .410E-01
J= 4 I= 5
-.467 .290 1.080; MSE= .456E-01
J= 5 I=1
-.436 -4.405 5.736; MSE= .465E-01
LAYER= 5
J=1 I= 2
-.437 1.088 .253; MSE= .643E-01
J= 2 I= 3
-.455 .954 .405; MSE= .591E-01
J= 3 I= 4

-.476 .560 .830; MSE= .586E-01
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-.422

-.426

LAYER=

~-.427

-.428

-.441

H

H

=5
7.783; MSE=
=1
1.786; MSE=
=2

.175; MSE=
=3
1.444; MSE=
= 4
*‘406; MSE=
=5
1.195; MSE=
=1
1.358; MSE=

.642E-01

.651E-01

.778E-01

.741E-01

.729E-01

.796E-01

.791E-01

309



Chapter 8

Basic Algorithms and
Program Listings

The computer listings of the basic inductive network structures for multilayer, combinato-
rial and harmonical techniques, and their computational aspects are given here. Multilayer
algorithm uses a multilayered network structure with linearized input arguments and gener-
ates simple partial functionals. Combinatorial algorithm uses a single-layered structure with
al combinations of input arguments including the full description. Harmonical algorithm
follows the multilayered structure in obtaining the optimal harmonic trend with nonmultiple
frequencies for oscillatory processes. One can modify these source listings as per his/her
needs. These programs run on microcomputers and SPARC stations of SUN microsystems.
To some extent they were also previously given for NORD-100/500 systems [88].

1 COMPUTATIONAL ASPECTS OF MULTILAYERED ALGORITHM

The basic schematic functional flow of the multilayered inductive learning algorithm is
given in Chapters 2 and 7.

As the multilayer network procedure is more repetitive in nature, it is important to con-
sider the algorithm in modules and facilitate repetitive characteristics. The most economical
way of constructing the algorithm is to provide three main modules: (i) the first module
is for computations of common terms in the conditional symmetric matrix of the normal
equations for al input variables. This is done at the beginning of each layer with all fresh
input variables entering into the layer using the training s&t, (ii) the second module is for
generating the partial functions by forming the symmetric matrices of the normal equations
for all pairs of input variables, for estimating their coefficients, for computing the values of
the threshold objective functions on the testing set, and for memorizing the information of
coefficients and input variables of the best functions (this is done for each layer), and (iii)
the third module is for computing the coefficients of the optimal model by recollecting the
information from the associated units.

To initiate the program one has to specify the control parameters:

Ml — no. of input variables
N — total no. of data points
PE —  percentage of points on training and testing sets;

50 < PE < 100; if PE =80, then A = 80%, B = 80%,
and C=20%
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PM — no. of layers
ALPHA — weightage used in the combined criterion as
C = ALPHA*C1 + (1-ALPHA)*C2, where
C indicates the combined criterion (c2),
Cl indicates the minimum-bias criterion,
C2 indicates the regularity criterion,
and 0 < ALPHA < 1
CHO(l), I - 1,PM  — freedom-of-choice at each layer of PM layers
FF — choice of optimal models at the end (FF > 1)

The values of these parameters are supplied through the file "param.dat.” The file "input.dat"
supplies the output and input data measurements.

The "input.dat" file is to be supplied according to the specified reference function. If the
reference function is a linear function (for example, (Ml = 6)), then

yir=apt+ayx; +axyx; +---+agxe, (81)

where a are thecoefficients; xi,- - -, x¢ are the inputs to the network; and y; is the desired
output variable. One has to supply the data file with N rows of points as

[ [ [ [ora [ s [oxe ]

If the reference function is a nonlinear function (for example, (M1 = 5)), then
Y|y =ag+apx) +axx; + a3x% + a4x§ + asxixa, (8.2)

where a are the coefficients; xl,xz,x%,x%,xlxz are the inputs to the network, and y; is the
desired output variable. One has to supply the data file with N rows of points as

RENER

The higher-ordered terms are to be calculated and supplied in the file. Data sets A and B
are separated according to the dispersion analysis.

In the first module, common terms in the conditional matrix XH is computed using the
P2 input variables and the output variable Y. P1 and PU indicate the number of functions
to be selected at the first layer and number of the layer, correspondingly.

In the second module, it forms the matrices (HM1, HM2, HM3) of normal equations for
each pair of input variables J and I, and estimates the weights or coefficients (KO1, KO2,
KO3) using the data sets A, B, and W (=AUB), correspondingly. All partial functions are
evaluated by the combined criterion. It stores the information on coefficients (KOE) and
input variables (NK) of the best P1 nodes. Subroutine RANG is used to arrange al values
in ascending order. Standard subroutine GAUSS is used to estimate the coefficients of each
partial function.

Futhermore, the estimated outputs (YY) of P1 functions are calculated to send it to the
next layer. To repeat the above two modules, we have to convert the outputs (YY) as inputs
(XX) and initialize with fresh control parameters of the layer—the number of the layer PU
is updated as PU+1, the number of input arguments P2 is equated to P1, and the number
of functions to be selected (freedom-of-choice) is taken from CHO(PU) as specified at the
beginning. This procedure is repeated until PU becomes the number of specified layers (PM).

Modules 1 and 2 with the subroutine NM, help in forming normal equations for each
pair in a more economical of utilizing computer time.

In the third module, it recollects the information for the function that has achieved global
minimum or FF functions. The parameter PDM is calculated in advance as an indicator of
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the number of original input arguments u activating in the function at a particular layer—
in the first layer PDM = 2 and in consecutive layers PDM = PDM*2. The coefficients
and number of input arguments of the optimal function are computed using the stored
information from KOE and NK.

The program listing and the sample output for a chosen example are given below.

1.1 Program listing
C

C***********************************************

C TH'S FORTRAN VERSION |S DEVELOPED BY H MADALA

C*****‘k*********************‘k*******************

C MULTILAYER INDUCTIVE LEARN NG ALGORI THM
C
c MATIN PROGRAM
C
| NTEGER N,M,M1,PE,PM,N1,I,J,K,S,P,R,T,GG, PN,
1 FF, SH, PU, YP, Pl , BM P2, NI , PDM
2 PL,NL, EG, SS,MH,MH1,MH2, IFAIL
REAL XS,XM,OSH,TL,TX,YB,C,C1,C2,YM,AL,OL,H21,H22,Y3,Y11,
1 Y22, CTROO
REAL CM. (30, 10), X( 15, 200), Y(I, 200) , KX( 15) , AX( 200) ,
1 XX(15,200),KO1(15),K02(15),K03(15),K04 (15) ,CM(30),
2 HM1 (15,16),HM2 (15,16) ,BEM3(15,16),CMM(30,10),
3 KOE (30,10,20),CT(15) ,CTRO(15) ,D2 (15) ,AY (200),
4 XH( 15, 10, 10) , YY( 20, 200) , SK( 20) , A(256) , AD (256),
5 D22( 200)
INTEGER NPP (200), NPl (200), NP2( 200) , NO ( 200) , NO2( 200) ,
1 CHO(10) ,NK (30,10,20) ,NC(30),ND(15),ST(20,5),
2 NDD(200) ,AN (256),AND (256), OB(200, 5)
C

OPEN(1,FILE='param.dat’)
OPEN (8, FILE="'"input.dat’)
OPEN(3,FILE="output.dat’)

C****************

C I NI TI ALI ZATI ON

C* ************* *
READ(1, *)M1,N, PE, PM, ALPHA
READ(|, *) (CHO(1),1=l,PM, FF
XS =PE*N

PE =INT(XS/100.)
C***********************'k**********************************
C M - NO OF INPUT VAR ABLES
C N - NO OF DATA OBSERVATIONS
C PE - PERCENTAGE OF TOTAL PTS. ON TRAI N AND TESTI NG SETS
C PM- NO COF LAYERS
C (oHl), | =I,PM - CHOCE OF MCDELS AT EACH LAYER
C FF - CHOCE OF OPTIMAL MODELS AT THE END
C***********’\'********************‘k*************************

ME1

DO 91 I=I,N

READ(8,*)Y(1,I), (X(J,I),J=1,M1)
91 CONTI NUE

C
92 FORMAT (2X,' CONTROL PARAMS:’/2X, /)
95 FORMAT (3x,'NO OF INPUT VARI ABLES (M) ',12)
97 FORMAT (3x,'NO OF DATA PONTS (N ',I13)

99 FORMAT (3X,' PERCENTAGE CF TRAIN AND TEST PANTS (PE) ',12)
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100
102
104
106
108
110
120
125
130
140
150
160
165
170
175
180

190
200
210
220
230
240
250
260

71

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

FORMAT (2X, 'Y="
FORMAT (2X, ' X="
FORMAT (/13X,'M

BASIC ALGORITHMS AND PROGRAM LISTING

(3X, 'NO.OF LAYERS (PM) ‘,I2)

(3X, "WEIGHTAGE VALUE IN COMBINED CRIT (ALPHA) ‘,F3.1)
(3X, 'FREEDOM-OF-CHOICE AT EACH LAYER(CHO) ’,10I3)

(3X, 'NO.OF OPTIMAL MODELS (FF) ’,I2)

(3X, 'NO.OF OUTPUT VARIABLES (M) ',I2)

(//)

(2X,10E10.3)

(1X, ' PERFORMANCE OF THE NET:'/1X,’'------------—---—— /)
(2X, "EQUATION NUMBER= ',I2/)

(3X, "LAYER=',14,2X, 'SELECTED DESCRIPTION=',I5)

(5X, 'ERROR GAUSS='14)

(5X, 'COMBINED ERROR BEST= ',E10.3,4X, 'WORST= ’',E10.3)
(5%, 'RESIDUAL MSE= ’,E10.3,'AT THE BEST COMBINED NODE’)
(5X, '"RESIDUAL MSE BEST= ',E10.3,4X, '"WORST= ’,E10.3)
(1X, "OPTIMAL MODELS:’/1lX, ' ——-==~==~---—~ /)

(2X, "MODEL', I3,1X,’ (LAYER ’,12,3X, COMBINED=',6E10.3,1X,
'MIN BIAS=',E10.3,1X, ‘MSE=',E10.3,1X,")")

(2X, "COEFFICIENTS=",/2X,E12.3)

(/(2X,10110))

(2X,10E10.3)

(7K, ¢ mmmmmm ")

(10X, "~ == mmmmmmmmmmmmm oo ")

C ~- ~—

LTI LAYERETD ALGORITHM' //)

WRITE(3,260)

WRITE

(3,92)

WRITE(3,95)M1

WRITE(3,97)N

WRITE(3,99)PE
WRITE(3,100)PM
WRITE(3,102)ALPHA
WRITE(3,104) (CHO(I),I=1,PM)
WRITE(3,106)FF
WRITE(3,108)M

PN=0
S=M1+PN
P=S
N1=N
P=M1
S=M1
CHO(0) =M1

WRITE(3,240)

DO 71 J=1,M

WRITE (3,120) (Y{(J,I),I=1,N1)

CONTINUE
WRITE (3,250)
WRITE (3,120) ((X(I,J), I=1,M1),J=1,N1)

C*************************‘k*********************************

C NORMALIZATION AND RANGE OF DATA AS PER DISPERSION ANALYSIS
ok ke kR ok kK ok ok K ok kK ok kK ok K ok K K KR K R KR KR R KR K K R K K R R K R K Kk K K Kk K
DO 5 J=1,8

DO 3 I=1,N1

AX(I)=ABS(X(J,I))

CALL NORM(AX,N1,XS)

KX (J)=XS

DO 4 I=1,N1
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4 X(J,I)=X(J,I1)/XS
5 CONTINUE
DO 6 I=1,N1
6 Y(1,I)=Y(1,I)/KX(1)
NI=0
BM=CHO (0)

DO 7 I=1,PM
IF (BM.LT.CHO(I))BM=CHO(I)

7 CONTINUE
YP=1
8 P2=CHO(0)
P1=CHO(1)

DO 9 I=1,BM
DO 9 J=1,PM
9 NK (I,1,J)=0
WRITE (3,110)
WRITE(3,125)
WRITE (3,130)YP
IF(P2.EQ.P)THEN
DO 10 I=1,P

10 ND(I)=P-I+1
GOTO 13
ENDIF
DO 12 J=1,P
D2 (J)=0.0
DO 11 I=1,N1
11 D2 (J)=D2(J)+X(J,I)*Y(YP,I)
12 D2 (J)=ABS (D2(J))
CALL RANG (D2,ND, P)
13 CONTINUE

DO 14 J=1,P2
DO 14 I=1,N1

I1=P-J+1

MH1=ND(I1)

14 XX (J,I)=X(MH1,I)
PU=1
PDM=2

c****************************************‘k*********************‘k

C FIRST MODULE TO CALCULATE COMMON TERMS IN CONDITIONAL MATRICES

C******************************‘k‘k*******************************

15 DO 16 I=1,N1

D22(1)=0.0
DO 16 J=1,P2
16 D22 (I)=D22 (1) +XX(J,I)**2

CALL RANG(D22,NDD,N1)
DO 17 I=1,PE
NP1 (I)=NDD(I)
I1=N1-I+1
17 NP2 (I)=NDD(I1)
CALL OPE (NP1,NO1,PE,N1)
CALL OPE (NP2,NO2Z,PE,N1)

EG=0
K=0
DO 18 I=1,PE
SH=NP1 (I)

DO 18 J=1,PE
IF(SH.EQ.NP2 (J)) THEN
K=K+1
NPP (K) =SH
GOTO 18
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18

19

74

20

75

76
21

22

C

23

24

ENDIF
CONTINUE

IF(PU.EQ.1)THEN

DO 19 I=1,

N1

AY (I)=ABS(Y(YP,I))
CALL FMAX(AY,N1,YM,I)

ENDIF

R=N1-PE

Y3=

0.0

¥22=0.0

DO

Y3=
Y22=Y22+Y (YP,K) **2

74 K=1,N1
Y3+Y{(YP,K)

CONTINUE
Y22 =SQRT(Y22)

DO

20 J=1,R

OB (J,1)=NO1(J)
OB (J,2)=N0O2(J)

DO
XH
XH
XH

21 J=1,p2

(J3,1,3)=0.0
(3,2,3)=0.0
(J3.3,3)=0.0

DO 75 K=1,N1

BASIC ALGORITHMS AND PROGRAM LISTING

XH (J,1,3)=XH(J,1,3)+XX(J,K)

XH (J,2,3)=XH(J,2,3)+XX(J,K)**2

XH (J,3,3)=XH(J,3,3)+XX(J,K)*Y(YP,K)
CONTINUE

MH=0B (K, T)

o

XH(J,1,T)=XH(J,1,T)+XX(J,MH)
XH(J,2,TYy=XH(J,2,T)+XX(J,MH) **2
XH(J,3,T)=XH(J,3,T)+XX(J,MH) *Y (YP,MH)

CONTINUE

CONTINUE
X5=0.0
XM=0.0
DO 22 I=1,R
MH1=NO1(I)
MH2=NO2 (1)

XS=XS+Y (YP,MH1)

XM=XM+Y (YP,MH2)
O LR S
C SECOND MODULE FOR FORMING THE CONDITIONAL MATRICES FOR EACH
PARTIAL FUNCTION

C************************************************************

J=J+1

HM1 (1,

SH=1
J=0

I=J+1

1)=R

HM2 (1,1)=R
HM1 (1,4)=XS
HM2 (1,4)=XM
H21=0.0
H22=0.0

DO 77 K=1,R
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MH1=NO1 (K)
MH2=NO2 (K)
H21=H21+XX(J,MH1) *XX (I, MH1)
H22=H22+XX (J,MH2) *XX (I,MH2)
77 CONTINUE
HM1 (2,3)=H21
HM1 (3, 2)=H21
HM2 (2, 3) =H22
HM2 (3, 2)=H22
HM2(1,4)=XM
CALL NM (HM1,XH,1,J,1)
CALL NM (HM2,XH,2,J,1)
DO 25 K=1,3
DO 25 S=1,4

25 HM3 (K, S) =HM1 (K, S) +HM2 (K, S)
Ok ko ko dkokodk ok hok Kk ko ko k ok ok ok ok K kK kK ok kK
C ESTIMATING COEFFICIENTS

C******************************

CALL GAUSS(HM1,3,4,K01, IFAIL)
IF (IFAIL.EQ.0)GO TO 29
CALL GAUSS (HM2,3,4,K02, IFAIL)
IF (IFAIL.EQ.0)GO TO 29
CALL GAUSS (HM3,3,4,KO03,IFAIL)
IF (IFAIL.EQ.0)GO TO 29

C************‘k**********************************

C COMPUTING THE VALUES OF EXTERNAL CRITERIA
C***********************************************
C1=0.0
€2=0.0

C*****************************’k*************************

C Cl - MEAN SQUARED MINIMUM BIAS ERROR ON TOTAL POINTS
C C2 - MEAN SQUARED RESIDUAL ERROR ON EXAMIN SET
C C - ROOT MEAN COMBINED ERROR OF (Cl + C2)
O % Kk K Kk K Xk kK KKk K K KKk Kk K Kk kR K Kk KR Rk K kR Kk Kk R Kk Kk Kk k kK Kk Kk kK
DO 78 S=1,N1
C1=C1+(KO1(1)-KO2(1)+(KO1(2)-KO2(2))*XX(J,S)+(KO1(3)-

1 KO2(3)) *XX(I,8))**2

78 CONTINUE
C1=C1l/(Y22**2)

Y11l =0.0

MH1=2*PE-N1

DO 79 S=1,MH1

MH=NPP (S)
C2=C2+(Y(YP,MH) -KO3 (1) -KO3 (2) *XX (J,MH) -KO3 (3) *XX (I ,MH) ) **2
Y11 =Y11+Y(YP,MH) **2

79 CONTINUE

C2=C2/Y11

C = SQRT( ALPHA*C1 + (1-ALPHA)*C2)

CALL NM{HM3,XH,3,J,1I)
HM3 (1,1)=N1
HM3 (1,4)=Y3
HM3 (2,3)=0.0
DO 80 K=1,N1
HM3 (2,3)=HM3 (2,3) +XX (J,K) *XX (I,K)
80 CONTINUE
HM3 (3,2)=HM3 (2, 3)
CALL GAUSS(HM3,3,4,K04, IFAIL)
IF(IFAIL.EQ.0)GO TO 29
IF(SH.GT.P1)GO TC 27
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CM (SH) =C
DO 26 K=1,3
26 KOE (SH, K, PU) =KO0O4 (K)

CMM(SH,1)=C1
CMM(SH, 2) =C2
NK(SH, 2, PU) =J
NK(SH, 3,PU)=I
IF(SH.EQ.P1)CALL RANG (CM,NC,P1)
SH=SH+1
GO TO 30

27 MH1=NC (P1)
IF(C.GT.CM(MH1))GO TO 30
GG=NC (P1)
CMM (GG, 1)=C1
CMM (GG, 2)=C2

CM(MH1) =C
DO 28 K=1,3
28 KOE (MH1, K, PU) =KO4 (K)

NK (MH1, 2, PU)=J
NK (MH1,3,PU)=1
CALL RANG(CM,NC,P1l)
GO TO 30

29 EG=EG+1

30 I=I+1
IF(I.LE.P2)GO TO 24
IF(J.LT.P2-1)GO TO 23
DO 33 S=1,P1
OSH=0.0
DO 32 J=1,N1
YB=KOE (S, 1, PU)
DO 31 I=2,3
MH1=NK (S, I, PU)

31 YB=YB+KOE (S, I,PU)*XX(MH1,J)
32 OSH=OSH+ (Y (YP,J) -YB) **2
C OSH=SQRT (OSH/N1) /Y22

OSH =SQRT (OSH) /Y22

IF(S.EQ.1) THEN

TX=0SH

TL=0SH

ENDIF

IF(NC(1).EQ.S)THEN

AL=0SH

IF(PU.EQ.1)THEN

OL=0SH

PL=1

NL=S

ENDIF

IF (OL.GE.OSH) THEN

OL=0SH

PL=PU

NL=S

ENDIF

ENDIF

IF(OSH.LT.TL) TL=0OSH

IF (OSH.GT.TX) TX=0SH
33 CONTINUE

C**********'k********************************************

C PRINTING THE PERFORMANCE OF THE NETWORK AT EACH LAYER

C************‘k******************************************

MH1=NC (1)
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MH2=NC (P1)
WRITE(3,140)
WRITE(3,150)E
WRITE (3, 160)CM(MH1),CM(MH2)
WRITE(3,170)TL, TX
WRITE(3,165)AL
WRITE(3,230)
34 PDM=2*PDM
DO 35 J=1,P1
DO 35 I=1,N1
YY(J,I)=KOE(J,1,PU)
DO 35 S5=2,3
35 YY(J,I)=YY(J, I)+XX(NK(J,S,PU),I)*KOE(J,S,PU)
DO 36 J=1,P1
DO 36 I=1,N1
36 XX(J,I)=YY(J,I)
IF(PU.EQ.1)THEN
DO 39 I=1,FF
IF(I.LE.P1)THEN
CML(T,1)=CM(NC(I))
CML(T,2)=
CML (I,3)=NC(I)
DO 38 J=1,2
38 CML(I,J+3)=CMM(NC(I),J)
ELSE
CML({I,1)=10000.
ENDIF
39 CONTINUE
ELSE
K=1
40 I=1
C=CML(1,1)
DO 41 J=2,FF
IF{CML(J,1).GT.C)THEN
C=CML (J, 1)
I=J
ENDIF
41 CONTINUE
F(C.LE.CM(NC({K)))GOTO 43
CML (I, 2)=PU
CML(I,1)=CM(NC(K))
DO 42 J=1,2

PU Pl

42 CML(I,J+3)=CMM(NC(K),J)
CML (I, 3)=NC(K)
K=K+1
IF(K.LE.P1)GOTO 40
43 ENDIF
IF(PU.EQ.PM)GO TO 44
PU=PU+1
pP2=P1
P1=CHO (PU)
GO TO 15

C***********************************************

C THIRD MODULE TO RECOLLECT THE OPTIMAL MODELS
R R R R R e R Y
44 WRITE(3,110)
WRITE(3,175)
SS=0
PDM=PDM-1
45 SS=55+1
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46 PU=CML (SS, 2)
NCDGE=CML (SS, 3)
K=0
DO 47 I=1,10
T(I,1)=0
ST(I,2)=0
SK(I)=0
47 CONTINUE
WRITE(3,180)SS,INT(CML(SS,2)),CML(SS, 1),
1SORT (CML (S5, 4) ), SQRT (CML (SS,5) )
K=0
DO 48 I 0
CTRO( =
)

8
I
48 T(I)=

y=0.
0.0
DO 49 I=1,PDM
A( )=0.0
D(I ):
AN(I) =
49 AND(I)=0
DO 50 I1=1,3
A (I)=KOE (NCDGE, I, PU)
50 AN(I)=NK(NCDGE, I, PU)
IF(PU.EQ.1)GO TO 55
AD(1)=A(1)

.0

88 SH=1
DO 53 1=2,PDM
IF(A(I).NE.O)THEN
F(AN(I).EQ.0)THEN
SH=SH+1
D(SH) =A(I)
AND (SH) =0
ELSE
DO 86 S=1,3
D(SH+S)=A(I)*KOE(AN(I),S,PU-1)
AND (SH+S) =NK(AN(I), S, PU-1)
86 CONTINUE
SH=SH+3
ENDIF
ENDIF
53 CONTINUE
DO 54 I=2,PDM
A(I)=AD(I)
AN(I)=AND(I)
54 CONTINUE
PU=PU-1
F(PU.GT.1)GOTO 88
55 CONTINUE
DO 56 I=1,PDM
S=AN(I)
CT(S)=CT(S)+A(I)
56 CONTINUE
DO 57 I=1,P
IP1=P-T+1
MH=ND (IP1)
CTRO(MH) =CT (1)
57 CONTINUE
CTRO(0) =CT(0)*KX(YP)
CTROO =CTRO(0)
WRITE (3,190)CTROO
MPN=M1+PN
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DO 60 J=1,MPN
IF(CTRO(J) .NE.0.0) THEN
CTRO (J)=CTRO (J) *KX (YP) /KX (J)
K=K+1
T(K,1)=J
SK (K) =CTRO (J)
IF(K.EQ.10) THEN
WRITE(3,200) (ST(K, 1),
WRITE(B,ZIO)(SK(K},K:
DO 61 K=1,10
ST(K,1)=0
SK (K) =0
61 CONTINUE
K=0
ENDIF
ENDIF
60 CONTINUE
IF(K.NE.O) THEN
WRITE (3, 200)( T(I,1
WRITE(3,210) (SK(I
ENDIF
WRITE(3,220)
IF(SS.LT.FF)GO TO 45
YP=YP+1
IF(YP.LE.M)GO TO 8
close(3)
close(8)
close (1)
STOP
END

e
=

- ~—

’

Subroutines used

C

SUBROUTINE FMAX (X,N, XM, K)
DIMENSION X (200)
REAL XM
INTEGER N,K, I
XM=X (1)
K=1
DO 1 I=2,N
IF (XM.GE.X(I))GOTO 1
XM=X (1)
K=1

1 CONTINUE
RETURN
END

SUBROUTINE NORM(XN,N, P)
DIMENSION XN (200)
INTEGER N, K

REAL P, XM
CALL FMAX (XN,N,XM,K)
P=1.0
1 P=p*10
F(P.GT.XM)GO TO 2
GO TO 1

2 P=P/10
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IF(P.LT.XM)GO TO 3
GO TO 2

P=P*10

ND (I

RETURN
END

SUBROUTINE RANG (X,NP,N)
DIMENSION X (200),XD(200)
INTEGER NP (200) ,ND(200)
INTEGER N,K,I,N1

REAL XM

DO 1 I=1,N
XD(I)=X(I)
)=1

N1=N

CALL FMAX(XD,N1, XM, K)

NP (N1)=ND(K)

K1=K+1

DO 3 I=K1,N1

XD(I-1)=XD(I)

ND(I-1)=ND(T)

HM (1
HM (S, 1)

N1=N1-1
IF(N1.GE.2)GO TO 2
NP (1) =ND (1)

RETURN

END

SUBROUTINE NM(HM, XH,T,J, I)
INTEGER T,S,R
DIMENSION XH(15,10,10),HM(15,16)

S=2

R=J
,S)=XH(R,1,T)
=HM(1,S)

HM(S,S)=XH(R,2,T)
HM(S,4)=XH(R,3,T)
S=S+1

R=1I

IF(S.EQ.3)GO TO 1
RETURN

END

SUBROUTINE OPE (NP, NO, PE,N1)
INTEGER I,J,7Z,PE

INTEGER NP (200),NO(200)

2=0

I=1

DO 2 J=1,PE

IF(I.EQ.NP(J))GO TO 3

CONTINUE

I=I+1

Z=7Z+1
NO(Z)=I

IF (I.LE.N1) GO TO 1
RETURN
END
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a0

100

300
11

400
88
99

200

500

13
14

FUNCTI ON RN S2)
R1=(S2+3.14159) *5.04
Rl =Rl - I NT(Rl)
S2=Rl
RND=R1
RETURN
END

SUBROUTI NE GAUSS(A, N, L, X, | F)
DI MENSI ON A( 15, 16) , X( 15)

I F=1

NN=N-1

DO 99 K=1,NN

J=K

KK=K+1

DO 100 |=KK, N
IF(ABS(A(J,K)).LT.ABS(A(I,K)))J=1
CONTI NUE

| F(J. EQ K)GOTO 11

DO 300 | =1, L
T=A(K,TI)
A(K, I)=A(J,T)
A(J,I)=T
CONTI NUE

DO 88 J=KK, N
IF(A(K,K).EQ.0.)GOTO 13
D=-A(J,K) /A (K,K)

DO 400 I=I,L
A(J,I)=A(J,I)+D*A(K, 1)
QGONTI NUE

CONTI NUE

CONTI NUE

IF(A(N,N). EQ O )GOTO 13
X (N)=A(N,L)/A(N,N)
NN=N-1

DO 500 J=I, NN

K=N-J

SUM=0.0

NNN=N- K

DO 200 JJ=1,NNN

M=K+JJ
SUM=SUM+A (K, M) *X (M)
CONTI NUE

| F(A(K, K).EQ O )GOTO 13
X (K)=(A(K,L)-SUM) /A (K,K)
CONTI NUE

Q1o 14

IF=0

RETURN

END

1.2 Sample output

Example. The output data is generated from the equation:

y =0.433 - 0.095x; + 0.243x; + 0.35x$ - 0.18x1x0 + ¢,
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where x;, X2 are randomly generated input variables, y is the output variable computed from
the above eguation, and ¢ is the noise added to the data. The data file “input.dat” is prepared
correspondingly.

The control parameters are supplied in the file “param.dat”

5 100 75 7 0.5
10 10 10 10 10 10 10 8

The parameters take the values as Ml =5, N =100, PE =75, PM =7, ALPHA =05,
CHO(l) =10, CHO(2) =10, ..., CHO(7) =10, and FF =8.

The program creates the output file “output.dat” with the results.

The results are given first with the control parameters, then the performance of the
network at each layer that include the values of the combined criterion for the best and
the worst models, the values of the residual mean-square error (MSE) for the best and the
worst models, and the residual MSE value for the best model according to the combined
criterion. The value of ERROR GAUSS indicates the number of singular nodes, if any in
the layer, and the SELECTED DESCRIPTION is the freedom-of-choice at each layer. The
EQUATION NUMBER indicates the number of the output variable. It is fixed as one (M
= 1) because it is dealt with as a single output equation. This can be changed to a number
of output equations and the program is modified accordingly.

The coefficient values of optimal models as a number specified for FF are displayed with
the constant term and the numbers of input variables with the layer number and the values
of the criteria. The second model in the list, obtained at the seventh layer, is the best among
all according to the combined criterion; this is read as

y = 0.433 — 0.0948x; + 0.248x; + 0.340x3 — 0.00593x3 — 0.167x,x;. (8.3)

The output is written in the file " output.dat" as below:
MULTTI L A Y E R ALGORI THM

CONTRCL PARAMS:

NO.OF I NPUT VARI ABLES (M1) 5

NO.OF DATA PO NTS (N 100

PERCENTAGE CF TRAIN AND TEST PANTS (PE) 75

NO.OF LAYERS (pM) 7

WEIGHTAGE VALUE | N COMBI NED CRIT (ALPHA) 0.5

FREEDOM OF- CHO CE AT EACH LAYER(CHO) 10 10 10 10 10 10 10
NO.OF OPTIMAL MCDELS (FF) 8

NO.OF QUTPUT VARI ABLES (M 1

PERFORVANCE COF THE NET:

EQUATI ON NUMBER= 1

LAYER= 1 SELECTED DESCRIPTION= 10
ERROR GAUSS= 0
COVBI NED ERROR BEST= 0. 644E-01 WORST= 0. 275E+00
RESI DUAL NMSE BEST= 0. 304E-01 WORST= 0.961E-01
RESI DUAL MSE= 0. 304E-01 AT THE BEST CQOVBI NED NCDE
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LAYER=
ERROR GAUSS=

COMBINED ERROR BEST=

0

SELECTED DESCRIPTION= 10
0.202E-01 WORST= 0.538E-01
0.160E-01 WORST= 0.334E-01

RESIDUAL MSE
RESIDUAL MSE=

LAYER=
ERROR GAUSS=

COMBINED ERROR BEST=

BEST=

0.177E-01 AT THE BEST COMBINED NODE

SELECTED DESCRIPTION= 10

RESIDUAL MSE
RESIDUAL MSE=

LAYER=
ERROR GAUSS=

COMBINED ERROR BEST=

0

BEST=

0.196E-
0.113E-

01 WORST= 0.223E-01
01 WORST= 0.194E-01

0.173E-01 AT THE BEST COMBINED NODE

SELECTED DESCRIPTION= 10

RESIDUAL MSE
RESIDUAL MSE=

LAYER=
ERROR GAUSS=

COMBINED ERROR BEST=

0

BEST=

0.108E-
0.592E-

01 WORST= 0.162E-01
02 WORST= 0.117E-01

0.608E-02 AT THE BEST COMBINED NODE

0

SELECTED DESCRIPTION= 10
0.614E-02 WORST= 0.127E-01
0.470E-02 WORST= 0.878E-02

RESIDUAL MSE
RESIDUAL MSE=

LAYER=
ERROR GAUSS=

COMBINED ERROR BEST=

BEST=

0.509E-02 AT THE BEST COMBINED NODE

SELECTED DESCRIPTION= 10

RESIDUAL MSE
RESIDUAL MSE=

LAYER=
ERROR GAUSS=

COMBINED ERROR BEST=

0

BEST=

0.593E-
0.392E-

02 WORST= 0.861E-02
02 WORST= 0.509E-02

0.418E-02 AT THE BEST COMBINED NODE

SELECTED DESCRIPTION= 10

RESIDUAL MSE
RESIDUAL MSE=

MODEL

1

(

LAYER

COEFFICIENTS=
0.431E+00

1

0

BEST=

0.496E-
0.349E-

02 WORST= 0.664E-02
02 WORST= 0.418E-02

0.362E-02 AT THE BESTY COMBINED NODE

7

2

COMBINED=
MSE=

3

0.599E-02 MIN BIAS= 0.713E-02
0.457E-02 )

4 5

-0.813E-01 0.245E+00 0.326E+00-0.614E-02-0.161E+00

MODEL

2

(

LAYER

COEFFICIENTS=
0.433E+00

1

7

2

COMBINED=
MSE=

3

0.496E-02 MIN BIAS= 0.566E-02
0.415E-02 )

4 5

-0.948E-01 0.248E+00 0.340E+00-0.593E-02-0.167E+00

MODEL

3

LAYER

7

COMBINED=

0.550E-02 MIN BIAS= 0.654E-02
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MSE= 0.420E-02 )
COEFFICIENTS=
0.433E+00

1 2 3 4 5
-0.941E-01 0.250E+00 0.339E+00-0.749E-02-0.168E+00
MODEL 4 ( LAYER 7 COMBINED= 0.570E-02 MIN BIAS= 0.685E-02
MSE= 0.423E-02 )
COEFFICIENTS=
0.432E+00

1 2 3 4 5
-0.937E-01 0.250E+00 0.339E+00-0.795E-02-0.168E+00
MODEL 5 ( LAYER 7 COMBINED= 0.580E-02 MIN BIAS= 0.663E-02
MSE= 0.483E-02 )
COEFFICIENTS=
0.431E+00

1 2 3 4 5
-0.813E-01 0.245E+00 0.326E+00-0.619E-02-0.161E+00
MODEL 6 ( LAYER 6 COMBINED= 0.593E-02 MIN BIAS= 0.702E-02
MSE= 0.458E-02 )
COEFFICIENTS=
0.431E+00

1 2 3 4 5
-0.812E-01 0.245E+00 0.326E+00~0.617E-02-0.161E+00

MODEL 7 ( LAYER 7 COMBINED= 0.576E-02 MIN BIAS= 0.696E-02
MSE= 0.421E-02 )
COEFFICIENTS=
0.432E+00

1 2 3 4 5
-0.923E-01 0.251E+00 0.338E+00-0.828E-02-0.169E+00

MODEL 8 ( LAYER 7 COMBINED= 0.578E-02 MIN BIAS= 0.700E-02
MSE= 0.423E-02 )
COEFFICIENTS=
0.432E+00

1 2 3 4 5
-0.915E-01 0.251E+00 0.338E+00-0.863E-02-0.169E+00

2 COMPUTATIONAL ASPECTS OF COMBINATORIAL ALGORITHM

The agorithm given is for a single-layered structure. The mathematical description of
a system is represented as a reference function in the form of discrete Volterra series in
multivariate data and finite-difference equations in time series data.

—a0+§ ax,+E E aux,xj+g g 5 QXXX + -

=l j=1 =l j=1 k=1

Yi=ap+a1y-1 + a2V, (8.4)
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wherey and x; are the desired and input variables in the first polynomial; / is the number of
input variables; y, is the desired output at thetime #; y,—1, y;—2, ¢ * * are the delayed arguments
of the output as inputs in the finite-difference scheme.

The combinatoria algorithm frames al combinations of partial functions from the given
reference function. If the reference function is a linear function; for example,

y =f,x)= ap + ayx +azxx;, (8.5

then it generates

Y= a0, Y= aixy, Y= axxz, Y= apt aixy,

Y= aptaxxy, Y= ax\ + axx;, andy= apt+ a\X\ + arx;. (86)

Suppose there are m(= 3) parameters in the reference function, then the total combinations
are 2" — 1(= 7). The "structure of functions" is used to generate these partial models.

PRrROROOS
FhOROROS
mPOoORRoORSE

where each row indicates a partial function with its parameters represented by "1 the
number of rows indicates the total number of units, and the number of columns indicates
total number of parameters in the full description. This matrix is referred further in forming
the normal equations.

The weights are estimated for each partial equation by using the least squares technique
with atraining data set at each unit and computed at its threshold measure according to the
external criterion using the test set. Then the unit errors are compared with each other and
the better functions are selected for their output responses and evaluated further.

For simplicity, the external criteria used in this algorithm are the minimum-bias, regu-
larity, and combined criterion of minimum-bias and regularity.

Three ways of splitting data are used here: sequential, alternative, and dispersion analysis.
The user can choose one of them or experiment with them for different types of splittings.

The program works for time series data as well as multivariate data. If it is time series
data, the user has to specify the number of autoregressive terms in the finite-difference
function and supply the “input.dat” file with the time series data. If it is multivariate data,
one has to specify the number of input variables and supply the "input.dat" file with the
rows of the data points for output and input variables.

The program listing and an example with the sample output are given below.

2.1 Program listing
C

C*******************‘k*******************k******************************
C THS PROGRAM | S THE RESULT CF EFFORTS FROM VARI OUS GRADUATE STUDENTS
C AND RESEARCH PROFESSIONALS AT THE COMVBI NED CONTROL SYSTEMB GROUP CF
C INSTITUTE OF CYBERNETICS, KIEV (UKRAI NE)
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C*****************************‘k*******’k**‘k****‘k***********************

SINGLE LAYER COMBINATORIAL INDUCTIVE ALGORITHM

M - TOTAL NO.OF DATA POINTS

MP - NO.OF POINTS IN TEST SET

MAl - NO.OF POINTS IN EXAMIN SET

IT - ORDER OF THE MODEL

L - NO.OF INPUT VARIABLES

NB - FREEDOM OF CHOICE (NO.OF BEST MODELS AT THE OUTPUT)

IH - NO.OF DISCRETE POINTS IN SIGNAL DATA

G(IH)- DISCRETE SIGNAL DATA

LM - SELECTION CRITERION NO.

IS = -1 - DATA IS SPLITTED ON THE BASIS OF STD.DEVIATIONS
= 0 - DATA IS SPLITTED ALTERNATELY
= 1 - DATA IS SPLITTED SEQUENTIALLY

Y1 (M) - DEPENDENT VARIABLE (OUTPUT VECTOR)

X1(M,L) - INDEPENDENT VARIABLES (INPUT MATRIX)
Y (M) - OUTPUT VECTOR AFTER SEPARATION OF DATA
X(M,L) - INPUT MATRIX AFTER SEPARATION OF DATA

SUBROUTINE DATA - WHICH SUPPLIES THE DISCRETE SIGNAL
DATA G(IH)
SUBROUTINE FORM - WHICH FORMS THE OUTPUT VECTOR Y1 (M)AND
THE INPUT MATRIX X1 (M,L)FROM THE
DISCRETE SIGNAL G(IH). THIS IS MAINLY
FOR FORMING FINITE-DIFFERENCE
EQUATIONS

FE KA KA A A KA IAAAA AR A A AT A A A A A A kAR AR A A AR A A AN A A A AT AR R A A AR I T A A A A Ak ko k ok kkkkh*

MAIN PROGRAM

[oNeNoNONONONONONO RO NN NN NONONONONONONO NI NS NO N RO N NC RO NP NP

DIMENSION D(100)

INTEGER NP (9)

COMMON /GAMA/G(100)

COMMON /X1Y1/X1(100,15),Y1(100)

COMMON /XYUD/X(100,15),Y(100),0D(100,15)
COMMON /PS/NB,N,PS(15,16)

COMMON /INIT/M,MP,MAl,L

C
OPEN(3,FILE='results.dat"’)
OPEN(8,FILE="innl.dat’)
C
WRITE(3,12)
12 FORMAT (8X, ' SINGLE L AY ERED COMBINATORIAL ALGORITHM'///)
WRITE (*,230)
230 FORMAT (2X, "GIVE TOTAL DISCRETE POINTS')
READ (*, *) IH
C

WRITE(*,235)

235 FORMAT (2X, ‘TIME SERIES (1)/ MULTIVARIATE DATA (2)2?’)
READ(*,301)IIH
IF (IIH.EQ.2) GOTO 350

C
CALL DATA(IH)
WRITE(3,240)
240 FORMAT (2X, 'DATA: ")
WRITE (3,100) (G(I),I=1,IH)
100 FORMAT (3X,5F12.2)

WRITE(3,303)
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303 FORMAT (//)
WRITE(*,300)

300 FORMAT (//3X, ‘Give No of AR terms in model= ’)
READ(*,301)L

301 FORMAT (I2)

CALL FORM(IH,M,L)
IF (IIH.EQ.1) GOTO 355

C
350 M =IH
WRITE (*,245)
245 FORMAT (2X, ‘GIVE NO.OF INPUT VARIABLES??')
READ(*,301)L
DO 91 I =1,M
READ(8,*) Y1(I), (X1(I,J), J=1,L)
91 CONTINUE
C
355 WRITE(3,250)M
WRITE(*,250)M
250 FORMAT (//2X, 'TOTAL NO.OF DATA PTS. =',I3//)
WRITE(*,280)
280 FORMAT (2X, ‘GIVE NO.OF TRAINING PTS??’)
READ(*,290)ME
290 FORMAT (1I2)
WRITE (*,260)
260 FORMAT (2X, 'GIVE NO.OF TESTING PTS??’)
READ(*,270)MP
270 FORMAT (I2)
MA1=M- (MP+ME)
IF(MA1.LE.0)MA1=0
WRITE(*,999)
999 FORMAT (1HS$, ‘DATA SETS BY (-1 DISP, 0 ALTER, 1 SEQUEN)?’)
READ(*,220)1IS
220 FORMAT (12)
C
YM=0.0
DO 5 I=1,M
YM=YM+Y1(I)
5 CONTINUE
YM=YM/M
F(IS)15,16,17
15 DO 7 I=1,M
7 Y1(I)=(Y1(I)-YM)/YM
DO 8 I=1,L
XM=0.0
DO 9 J=1,M
9 XM=XM+X1(J,I)
XM=XM/M
DO 10 J=1,M
10 X1(J,I)=(X1(J,T)-XM) /XM
8 CONTINUE
DO 11 I=1,M
D(I)=Y1(I)**2
DO 13 J=1,L
13 D(I)=D(I)+X1(I,J)**2
D(I)=D(T)/(L+1)
11 CONTINUE

CALL RANG (D,NP,M)
DO 14 1I=1,M
I12=M-I+1

I1=NP(I2)
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Y(I)=Y1(I1)
DO 14 J=1,L
X(I,J)=X1(11,J)

14 CONTINUE
GO TO 3
16 I1=0

DO 18 L1=1,2
DO 18 I=L1,M,2
Il=I1+1
Y(I1)=Y1(I)

DO 18 J=1,L
X(I1,J)=X1(1,J)

18 CONTINUE
GO TO 3
17 DO 19 I=1,M

Y(I)=Y1(T)

DO 19 J=1,L

X(I,J)=X1(1,J)
19 CONTINUE
3 CONTINUE

CALL COMBI

NOB=NB
STOP
END

Subroutines used

SUBROUTINE DATA (IH)
COMMON /GAMA/G(100)
DO 300 I=1,IH
READ(8,100)G(I)

100 format (£12.6)
300 CONTINUE
RETURN
END
C

SUBROUTINE FORM(IH,M,L)
COMMON /GAMA/G(100)
COMMON /X1Y1/X(100,15),Y(100)
M1=0
Ll=L+1
DO 2 I=L1,IH
M1l=M1+1
Y{(M1)=G(I)
DO 1 J=1,L
IJ=I1-J
1 X(M1,J)=G(1J)
2 CONTINUE
M=M1
RETURN
END

SUBROUTINE COMBT
REAL KCH, IQ
DIMENSION 0S(16),0A(16),FS(15,16),FS1(15,16),
1 ID(15),P(15),P1(15),IA(1l5),IP(15)
COMMON /XYUD/X(100,15),Y(100),UD(100,15)
COMMON /PS/NB, N, PS(15,16)
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COMMON /INIT/M,MP,MAl,L

65 FORMAT (/2X, '"MODEL ORDER (IT)=',I3/2X,’'NO INPUT VAR.(L)=',
1 I3/2X,’TOTAL NO.PTS.(M)=',I3/2X,’NO.PTS.TESTSET (MP)=",13/2X,
2 'NO.PTS.EXAM.SET (MAl)=',I3/)
WRITE (*, 64)
64 FORMAT (2X, 'GIVE ORDER OF THE MODEL??’)

READ (*,*) IT
WRITE (3,65)IT,L,M,MP,MAL

N=1
DO 38 J1=1,L
38 N=N* (IT+J1) /J1

KCH=2.**N-1
WRITE(3,50)N, KCH
WRITE(*,50)N, KCH

50 FORMAT (/4X, ’'NO.TERMS IN FULL MODEL=', I3/4X,
1 'NO.PARTIAL MODELS=',F12.0/)

WRITE(*,320)

320 FORMAT (///2X, "NO OF OPTIMAL MODELS (NB)??’)
READ(*,330)NB

330 FORMAT (I2)
WRITE(3,321)NB

321 FORMAT (//2X, '"NO OF OPTIMAL MODELS = ',I2)

c*********************************

C - FORMING CONDITIONAL EQUATIONS
C**‘k******************‘k***********
N1=N+1
MA=M-MA1
MO=MA-MP
MPR=MO+1

C******)\'**************************

C STRUCTURE OF FULL POLYNOMIAL

ChkkHkhk ok kkdok ok ok ok kok kK kok ok ok ok ok ok koK ok ok Kk
CALL FORD(IT,L,M,N,IP)
WRITE(*,100)

100 FORMAT (1HS$, 'GIVE SELECT CRIT(1-REGUL,2-MINBIAS, 3-COMBINED)?')
READ(*,101)LM

101 FORMAT (12)

C****************‘k**'k**‘k**********

C FORMING NORMAL EQUATIONS

C*************************‘k*******

CALL NOS(N,N1,M,1,MO,FS)
CALL NOS(N,N1,M,MPR,MA,FS1)

C************************************

C SORTING OF PARTIAL DESCRIPTIONS
Chkkkkhhkkkkkhhkkkkkkkhhkhhkhhokkkk & k%

I0=0.0
(% % ek ok ok sk k ok ok k k ok K ok ok ok ok Kk ok K ok ok Kk ok K ok kK ok K ok ok K ok kK ok Kk ok Kk
C CALCULATION OF COEFFICIENTS OF THE MODELS
R R R T Y
41 I0=10+1

CALL DICH(IQ,ID,N,2)

KB=0

DO 60 I4=1,N
60 KB=KB+ID(I4)

KB1=KB+1

CALL PAP(ID,N,N1,KB,KB1,FS,P, IA)
CALL PAP(ID,N,N1,KB,KBl,FS1,P1l,IA)

(“************************************************

C VALIDATION OF MODELS BY SELECTING CRITERION

C****‘k**************‘k****************************
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IF(LM-2)92,93,92

92 OSH=0.0
DO 54 J=MPR,MA
2=0.0
DO 55 I=1,N

55 Z=Z+P(I)*UD(J, T)

54 OSH=0SH+ (Z-Y (J) ) **2

OSH1=S5QRT (OSH) /MP

IF (LM-2)51,93,93
93 OSH=0.0

DO 56 J3=1,MA

2=0.0

AF=0.0

DO 57 I3=1,N

Z=Z+P(I3)*UD(J3,13)
57 AF=AF+P1 (I3)*UD(J3,13)
56 OSH=0SH+ (Z-AF) **2

OSH2=SQRT (OSH) /MA

IF(LM-2)51,52,53

51 OSH=0OSH1
GO TO 59
52 OSH=0SH2
GO TO 59
53 OSH=0SH1+0SH2
(% Kk ok K kX Kk ok ok ok Kk Kk K Kk ke k k K ko K ok Rk
C SELECTION OF THE NB BEST MODELS
(K & Kk ok Kk kK K K Kk Kk ok ok kK kK Kk K Kk ok ok Kk ok kR K K Kk
59 IF (IQ-NB)42,42,43
42 JE=10Q
GO TO 47
43 IF(NB-1)45,44,45
44 R5=0S (1)
GO TO 49
45 CALL FMAX(OS,NB,R5,JF)
49 IF(OSH-R5)47,41,41
47 0S (JF)=0SH
DO 48 I5=1,N
48 PS (I5,JF)=P(I5)

IF (IQ.LT.KCH)GO TO 41

C********************************************************

C SELECTION CRITERION FOR SORTING OUT THE BEST MODELS

C*******************************‘k************************

IF(LM-2)88,89,90

88 WRITE(3,85)

85 FORMAT (/4X, *SORTING OUT BY REGULARITY CRITERION’)
GOTO 91

89 WRITE (3, 84)

84 FORMAT (/4X,’'SORTING OUT BY MINIMUM-BIAS CRITERION')
GOTO 91

90 WRITE(3,80)

80 FORMAT (/4X, ' SORTING OUT BY COMBINED CRITERION’)

91 CONTINUE
WRITE(3,75)

75 FORMAT (4X, 'DEPTH OF THE MINIMUM’)

WRITE (3, 68) (OS(K),K=1,NB)

C**k‘k**‘k******************************

C ADAPTATION OF THE COEFFICIENTS
% % Kok K X K K kK K KK kK R K KK KKk R Rk kK Kk K K kK
DO 76 K=1,NB
DO 71 I6=1,N
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73

72
71

70

58

78

79

77

83

86
76

(C % %k % ok % ok ok ok sk ok sk ok ok ke vk e e e de e e e e W e e g ok e e e ke gk ok ok ke ok ok K ok ok ok ok ok ok

PRINTING OUT THE PARAMETERS OF BEST MODELS

C***************"******************************

C

67

94
69

95

68

87

20
21

22

IF (PS(I6,K))72,73,72
ID(16)=0

GO TO 71

ID(I6)=1

CONTINUE

CALL NOS(N,N1,M,1,MA,FS)
KB=0

DO 70 I7=1,N
KB=KB+ID(I7)

KB1=KB+1

CALL PAP(ID,N,N1,KB,KB1,FS,P,IA)
DO 58 I8=1,N
PS(I8,K)=P(I8)
0OSH=0.0

AF=0.0

DO 77 J=1,M

7=0.0

DO 78 I=1,N
7Z=Z2+PS(I,K)*UD(J,I)
OSH=OSH+ (Z-Y (J) ) **2
AF=AF+Y (J) **2
IF(J-MA)77,79,77
R5=0SH

R1=AF

CONTINUE

R7=R5/R1

0S (K) =SQRT (R7)

IF (MA1)83,83,86
OA(K)=0.0

GO TO 76

OA (K) =SQRT ( (OSH-R5) / (AF-R1))
CONTINUE

WRITE (3,67)

FORMAT (4X, 'COEFFICIENTS: ")
DO 94 J=1,NB

WRITE(3,69) (PS(I,J),I=1,N)
FORMAT (8F10.3)

WRITE (3,95)

FORMAT (4X, 'MSE AFTER ADAPTATION’)

WRITE (3,68) (OS(K),K=1,NB)
FORMAT (2X,5E12.3)
WRITE (3,87)

FORMAT (4X, "ERROR ON THE EXAMIN SET')

WRITE (3,68) (OA (K),K=1,NB)
RETURN
END

SUBROUTINE FMAX(G,JE,C,M)
DIMENSION G(16)
C=G(1)

(C-G(I))21,22,22
(
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23

35

34

36

37

11

15

16

17

18

19

24

25
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IF(I-JE)20,20,23
RETURN
END

SUBROUTINE PAP(ID,N,N1,IS,IS1,FS,P,IA)
DIMENSION ID(15),FS(15,16),P(15),IA(15)
DIMENSION QN{15,16),R{15)
K=0

DO 34 I=1,N

P(I)=0.0

IF (ID(I)) 35,34,35
K=K+1

IA(K)=I

QN (K,IS1)=FS(I,N1)
CONTINUE

DO 36 I=1,IS

DO 36 J=1,18

L1=IA(I)

L2=IA(J)
ON(I,J)=FS(L1,L2)

CALL GAUSS(QN,IS,IS1,R)
DO 37 K=1,IS

L3=IA(XK)

P(L3) =R(K)

RETURN

END

SUBROUTINE DICH(JQ, ID,JN,JS)
DIMENSION ID(15)
REAL JQ,JL

JL=JQ

DO 11 I=1,JN
ID(I)=0
IF(JS-1)15,19,15
I=0

JN1=JN+1

I=I+1
IF(JS-JL)17,17,18
JC=JL/JS
L1=JN1-I
ID(L1)=JL-JC*JS
JL=JC

GO TO 16
L2=JN1-1I
ID(L2)=JL
RETURN

END

SUBROUTINE FORD(ICT,L,M,N,IP)

REAL IC

DIMENSION IP(15)

COMMON /XYUD/X(100,15),Y(100),UD(100,15)
WRITE (3,24)

FORMAT (4X, ' STRUCTURE OF THE FULL POLYNOMIAL')
IC=0.0

JF=0

ICT1=ICT+1

CALL DICH(IC,IP,L,ICT1)

IC=IC+1

I5=0
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26

27
28

81
82
31
32

30

31

32

DO 26 Jl1=1,L
IS=IS+IP(J1)
IF(IS-ICT)27,27,25
JF=JF+1

FORMAT (5X,1713)
WRITE(3,28) (IP(J),J=1,L)
DO 32 I=1,M
UD(I,JF)=1.0
IF(JF-1)32,32,81

DO 31 J=1,L
IF(IP(J))31,31,82
UD(I,JF)=UD(I,JF)*X(I,J)**IP(J)
CONTINUE

CONTINUE
IF(IP(1)-ICT)25,30,30
RETURN

END

SUBROUTINE NOS(N,N1,ML,MB,M1,FS)
DIMENSION FS(15,16)

COMMON /XYUD/X(100,15),Y(100),UD(100,15)

DO 31 I=1,N

FS(I,N1)=0.0

DO 31 J=MB, Ml
FS(I,N1)=FS(I,N1)+UD(J,I)*Y(J)
DO 32 Il=1,N

DO 32 Ji=1,N

FS(11,J1)=0.0

DO 32 K=MB,Mi

FS(I1,J1)=FS(I1,J1)+UD(K,I1)*UD(K,J1)

RETURN
END

SUBROUTINE RANG (X,NP,N)
DIMENSION X (100),XD(100)
INTEGER NP(100),ND(100)

DC 1 I=1,N
XD(I)=X(1I)
ND(I)=I
N1=N

CALL FMAX(XD,N1,XM,K)
NP (N1)=ND(K)

K1l=K+1

DO 3 I=K1,N1
XD(I-1)=XD(I)
ND(I-1)=ND(I)
N1=N1-1

IF (N1.GE.2)GO TO 2
NP (1)=ND(1)

RETURN

END

SUBROUTINE GAUSS(A,N, L, X)
DIMENSION A(15,16),X(15)

L=N+1
NN=N-
DO 88
J=K

KK=K+
DO 10

1

K=1,NN
1
0 I=KK,N

335



336 BASIC ALGORITHMS AND PROGRAM LISTING

IF(ABS(A(J,K)) .LT.ABS(A(I,K)))J=IL
100 CONTINUE

IF(J.EQ.K)GOTO 11

DO 300 I=1,L

T=A(K,I)
A(K,I)=A(J,I)

A(J,I)=T

300 CONTINUE
11 DO 88 J=KK,N

TF(A(K,K).EQ.0.)COTO 600
D=-A(J,K) /A(K,K)
DO 88 I=1,L
A(J,I)=A(J,1)+D*A(K,I)
88 CONTINUE

IF(A(N,N).EQ.0.)GOTO 600
X(N)=A(N,L)/A(N,N)
NN=N-1
DO 500 J=1,NN
K=N-J
SUM=0.0
NNN=N-K
DO 200 JJ=1,NNN
M=K+JJ
SUM=SUM+A (K, M) *X (M)

200 CONTINUE
IF(A(K,K).EQ.0.)GOTO 600
X(K)=(A(K,L)-SUM) /A (K,K)

500 CONTINUE
600 RETURN
END

2.2 Sample outputs

Example.
I. Here the case of multivariate data is considered. The output data is generated from
theequation:

y=0.433 —0.095x; + 0.243x; + 0.35x% — 0.18x1x2 + ¢,

where x;, x, are randomly generated input variables y is the output variable, and eis the
noise added to the data. The “input.dat” file is arranged for 100 measured points with the
values of’ y,xl,x;;_,xf,xg,xlxz.

BENEAEES

The initial control parameters of the program are fed through the terminal as it asks inputting
the values, starting with

G VE TOTAL DI SCRETE PQ NTS
100

TIME SERIES (1)/MULTIVARIATE DATA (2)°??
2

G VE NO.OF | NPUT VARIABLES??
5
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G VE NO.OF TRAINING pTsS??
30

G VE NO.OF TESTING PTS??
L5

DATA SPLITTING BY (-1 pisp, O ALTER 1 SEQUEN)??
L

G VE ORDER OF THE MODEL??
1

Then it on the screen displays information to the user on how to feed further information:

NO.OF TERMS IN FULL MXDEL = 6
NO.OF PARTI AL MODELS = 63

The user has to feed further data such as the number of optimal models to be selected
and the selection criterion to be used.

NO.OF OPTI MAL MODELS (NB) ??
8

QG VE SELECT CRIT (1-REGUL, 2-MINBIAS, 3-COMBINED)?
1

The output is written in a file “results.dat” given here

SINGLE L A Y ER E D COVBINATORI AL ALGORI THM
TOTAL NO.OF DATA pTS. =100

MODEL ORDER (1T)= 1
NO INPUT VvAR. (L)= 5
TOTAL NO.PTS. (M)=100
NO.PTS.TESTSET (MP)= 15
NO.PTS.EXAM.SET (MAl)= 5

NO.TERMS IN FULL MODEL= 6
NO.PARTIAL MODELS= 63.

NO OF SELECT MODELS = 8
STRUCTURE OF THE FULL POLYNOMIAL

O OO OO
o OO0 oo
OO PR O COo
OO O+ OO
o000~ C

SCRTING QUT BY REGULARI TY CRI TERI ON

DEPTH GF THE M N MM
0. 647E- 04 0. 652E- 04 0. 219E-02 0. 364E- 02 0.352E-02
0. 219E- 02 0. 394E- 02 0. 409E- 02
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COEFFICIENTS:
0.434 -0.180 0.000 0.350 0.243 -0.095
0.434 -0.180 0.000 0.350 0.243 -0.095
0.417 -0.192 0.005 0.266 0.242 0.000
0.442 0.000 0.000 0.174 0.161 0.000
0.437 0.000 -0.030 0.173 0.190 0.000
0.416 -0.191 0.000 0.265 0.247 0.000
0.458 0.000 -0.033 0.293 0.196 -0.127
0.463 0.000 0.000 0.292 0.163 -0.126

MSE AFTER ADAPTATI ON
0. 469E- 03 0. 470E- 03 0. 116E-01 0. 306E- 01 0. 303E-01
0. 116E-01 0. 260E-01 0. 264E-01

ERROR ON THE EXAMIN SET
0. 516E- 03 0. 527E-03 0. 901E- 02 0. 268E-01 0. 266E- 01
0. 900E- 02 0. 182E-01 0. 182E-01

The STRUCTURE OF THE FULL POLYNOMIAL helps to read the coefficients in order.
For example, the first row indicates the constant term; the second row which contains 1
at the fifth column indicates that the second coefficient corresponds to the fifth variable;
similarly, the third row for the fourth variable, and so on until the last row indicates the
coefficient of first variable.

The COEFFICIENTS are given for eight optimal models; they are given according to the
order of STRUCTURE OF THE FULL POLYNOMIAL as ay,as,as,as,az, and a;. The
DEPTH OF THE MINIMUM for regularity criterion, MSE AFTER ADAPTATION, and
ERROR ON THE EXAMIN SET are given for each model in the order. The first model is
the best one among all; this is read as

y = 0.434 — 0.180x,x; + 0.0x3 + 0.350x7 + 0.243x, — 0.095x, (87

I1. The above example can also be solved alternatively by forming the “input.dat” with
the variables y,x;, and x; as

B

The control parameter values are the same as above, except the number of variables and
the value of the order of the model which must be fed as

G VE NO.OF | NPUT VARIABLES??
2

d VE ORDER OF THE MODEL??
2

Then the output in “results.dat” is shown below:

SINGE L A Y ERED COVBINATORIAL ALGORI THM
TOTAL NO.OF DATA PTS. =100

MODEL ORDER (IT)= 2

NO I NPUT VAR. (L)= 2
TOTAL NO.PTS. (M) =100
NO.PTS.TESTSET (MP)= 15
NO.PTS.EXAM.SET (MAl)= 5

NO.TERMS IN FULL MODEL= 6
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NO.PARTIAL MODELS= 63.

NO OF SELECT MODELS = 8
STRUCTURE CF THE FULL PCLYNCM AL

NFRPPRPOOO
OrOMNPRFRO

SCRTING QUT BY REGULARI TY CRI TERI ON

DEPTH G- THE M NI MUM
0. 364E-02 0. 646E- 04 0. 219E-02 0. 651E-04 0. 394E- 02
0. 352E-02 0. 409E- 02 0. 219E- 02

COEFFICIENTS:

0.442 0.161 0.000 0.000 0.000 0.174
0.434 0.243 0.000 -0.095 -0.180 0.350
0.417 0.242 0.005 0.000 -0.192 0.266
0.434 0.243 0.000 -0.095 -0.180 0.350
0.458 0.196 -0.033 -0.127 0.000 0.293
0.437 0.190 -0.030 0.000 0.000 0.173
0.463 0.163 0.000 -0.126 0.000 0.292
0.416 0.247 0.000 0.000 -0.191 0.265

MSE AFTER ADAPTATI ON
0. 306E-01 0. 469E- 03 0. 116E-01 0. 470E- 03 0. 260E-01
0. 303E-01 0. 264E-01 0. 116E-01

ERROR ON THE EXAMIN SET
0. 268E-01 0. 516E-03 0. 901E- 02 0. 527E-03 0. 182E-01
0. 266E-01 0. 182E-01 0. 900E- 02

Notice the change in the order of the coefficients. The first row of the STRUCTURE
OF THE POLYNOMIAL indicates that the first coefficient term is the constant term; the
second row indicates that the second coefficient term corresponds to the variable x,; the
third row indicates that the third coefficient term corresponds to the variable x3; the fourth
row indicates that the fourth coefficient term corresponds to the variable x;; the fifth row
corresponds to the variable x;x2; and the sixth row indicates the variable x3. The second
model is the best optimal model among the eight models; this is read as

y = 0.434 4+ 0.243x; + 0.0x3 — 0.095x; — 0.180x; x5 + 0.350x7. (8.8)

3 COMPUTATIONAL ASPECTS OF HARMONICAL ALGORITHM

This is used mainly to identify the harmonical trend of oscillatory processes [127]. It is
assumed that the effective reference functions of such processes are in the form of a sum of
harmonics with nonmultiple frequencies. This means that the harmonical function is formed
by several sinusoids with arbitrary frequencies which are not necessarily related.

Let us suppose that functionf(¢) is the process having a sum of m harmonic components
with distinct frequencies wy, wy, -+ -, wy,.

f(0) = Ao+ [ Ay sin (wit) + By cos (win)], (8.9)

k=1

where Ay is the constant term; .4, and By are the coefficients; and w; #wj, i #j, 0 <w; <
m, i=1,2,---,m. The process has discrete data points of interval length of N (1< ¢ < N).
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A balance relation is derived using the trigonometric properties for a fixed point i and
any p;

m—1
> [fG+p) + £ — p)) = i+ m) + (i — m), (8.10)
p=0

where p, i1, -+, um—1 are the weighing coefficients. This is considered a balance relation

of the process and is used as an objective function

m—1

bi=[fG+m)+fGi—m) > p[fi+p)+fi—pl. 8.11)

p=0

If the process is expressed exactly in terms of a given sum of harmonic components,
then b; = 0; i.e., the discrete values of f(r) which are symmetric with respect to a point
i(m+1 < i < N—m) satisfy the balance relation. The coefficients ;1, are independent of i.
It is possible to determine uniquely the coefficients y,, p=0,1,---,m—1 from the balance
relation fori=m+1,-- - N—-m. (N—m)—(m+1)>m—1;ie., N> 3m.

The standard trigonometric relation which is used in deriving the balance relation,

m—1

o + Z Hp COS (pwy) = cos (mwy) (8.12)
k=1

helps in obtaining the frequencies wy. This could be formed as mth degree algebraic equation
in cos w:

D(cos W)™ + Dyu_i(cos w)" L+ +Dj(cos wy+ Dy =0, (8.13)
where D;, i=0,1,---,m are the functions of p,.

Substituting the values of ,, the above equation can be solved for m frequencies wy
of harmonics by using the standard numerical techniques. Various combinations of the
harmonic components are formed with the frequencies wy. The coefficients Ay, A, and
B, are estimated for each combination by using the least-squares technique. The best
combination as an optimal trend is selected according to the value of the balance criterion.

The algorithm functions as below:

The discrete data is to be supplied as training set A and testing set B; one can allot
a separate checking set C for examining the final optimal trend; i.e., N = Ny + Ng + N¢.
The maximum number of harmonics is chosen as M, (< N/3). The coefficients j, are
estimated by using the least squares technique by forming the balance equations with the
training set. The system of equations has the form:

m—1
> pplyti +p) + Y — p) = y(i+m) +y(i — m);
p=0
i=m+1,--- Ny —m. (8.14)

By substituting the values of 1, in the above mth order polynomial in cos w, the frequencies
are estimated; the m roots of the polynomial uniquely determine the m frequencies wy. These
frequencies are fed through the input layer of multilayer structure where the complete sifting
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of harmonic trends would take place according to the inductive principle of self-organization.
This is done by a successive increase in the number of terms of the harmonic components
m=1,m=2,m=3,---until m = M,,,. The linear normal equations are constructed in
the first layer for any 1 < m < M,,,, number of harmonics. The coefficients Ay, A, and
B, are estimated for al the combinations based on the training set using the least squares
technique; the balance functions are then evaluated. The best trends are selected. The
output error residuals of the best trends are fed forward as inputs to the second layer. This
procedure is repeated in all subsequent layers. The complexity of the model increases layer
by layer as long as the value of the "imbalance" decreases. The optimal trend is the total
combination of the harmonical components obtained from the layers. The performance of
the optimal trend is tested on the checking set C.
The program listing and sample outputs for an example are given below.

3.1 Program listing

C
C********'k*************‘k**********************************************
C THS PROGRAM | S THE RESULT OF EFFCRTS FROM VARl QUS GRADUATE STUDENTS
C AND RESEARCH PROFESSI ONALS AT THE COVBI NED CONTRCL SYSTEMS GROUP OF
C [INSTITUTE OF CYBERNETICS, KIEV (UKRAINE)

C***********************************‘k**************************‘k***‘k**

C

C HARMONI CAL | NDUCTI VE LEARNI NG ALGORI THM

C

C

C N - NO.OF TRAINING SET POINTS

C NP - NO.OF TEST SET POINTS

C NE - NO.OF EXAMIN SET POINTS

C PT - NO.OF PREDICTION POINTS

C JFM - MAX NO.OF FREQUENCIES

C JF - FREEDOM OF CHOICE

C NRM - NO.OF SERIES IN HARMONICAL TREND

Cc NN = N+NP+NE

C NPT = NN+PT

C G(NN) - DISCRETE SIGNAL DATA

C APR(NPT) - HARMONICAL MODEL VALUES

C MA - NO.OF LAG POINTS FOR SMOOTHING PROCEDURE (MOVING AVERAGE
Cc VALUE). IF IT IS ONE, DATA REMAINS SAME
g************************************‘k********************************
C MAIN PROGRAM

C

INTEGER PT
DIMENSION GY(120)
COMMON /AB/G(120)

C
OPEN(3,FILE="output.dat’)
OPEN(8,FILE="ts.dat’)
C
WRITE(3,4)
4 FORMAT (5X, ’ LAY ERED HARMONICAL ALGORITHM’/)
C

WRITE(*,110)
110 FORMAT (3X, ‘GIVE NO.OF TRAIN, TEST & EXAM PTS?’)
READ (*, *)N, NP, NE
NN=N+NP+NE
WRITE(*,112)
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112 FORMAT (3X, 'GIVE NO.OF PRED PTS??’)
READ(*,*)PT
NPT=NN+PT
READ(8,*) (G(I),I=1,NN)
FAX=G(1)

DO 5 I=2,NN

IF(G(I).GT.FAX)FAX=G(I)
5 CONTINUE

DO 6 I=1,NN

G(I)=G(I)/FAX

6 CONTINUE
WRITE (*,222)
222 FORMAT (3X, 'GIVE MOVING AVERAGE VALUE (=1 or >1)?')
READ(*,111)MA
111 FORMAT (12)
WRITE(*,333)
333 FORMAT (3X, "HOW MANY SERIES?’)

READ(*,111)NRM
WRITE(*,114)
114 FORMAT (3X, ‘GIVE MAX NO.OF FREQS(<=15)2??')
READ(*, *)JFM
JF2=2*JFM+2
WRITE(*,115)
115 FORMAT (3X, 'GTVE FREEDOM OF CHOICE (< MAX FREQS)?2?')

READ (*, *)JF
SMA=0.0
DO 7 I=1,MA

7 SMA=SMA+G (1)
SMA=SMA/MA
GY (1)=SMA
IX=1
MHR=MA+1
DO 8 I=MHR,NN
IX=IX+1
IX1=IX-1
IMA=I-MA
GY (IX)=GY(IX1)+(G(I)-G(IMA))/MA

8 CONTINUE
DO 9 I=1,IX
G(I)=GY(I)

9 CONTINUE
CALL HARMAN (N, NP, NE,NN, PT,JF,JFM,NRM, 0,1, JF2,NPT)
STOP
END

Subroutines used

SUBROUTINE WB(N1,M,M1, IER,KA)
COMMON /BC/X{160),Y(160),Y1(31),Y2(31),A(31),C(31,32),W(15)
N=N1-2
M1=M+1
NM=N-M
DO 1 I=1,N
1 Y(I)=X(I+2)-X(I)
DO 2 J=1,M1
Y1(J)=0.0
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13

DO 3 I=M1,NM
K=I-M
R=K
E=1.0/R
DO 4 J=1,M1
I1=I+J-1
I12=1I-J+1
Y2(J)=Y1(J)+Y(I1)+Y(I2)
IF(KA-0)4,10,4
Y2 (J)=Y2(J)-Y1(J)
Y1(J)=Y2(J)
DO 5 Kl=1,M
DO 5 J=K1,M1
El=Y2 (K1)} *Y2(J)
IF(KA-2)5,11,5
E1=E1*E
C(K1,J)=C(K1l,J)+E1l
IF(KA-2)3,12,12
K=K-1
F(K-0)13,3,13
DO 7 J=1,M1
I1=I+J-1-K
I2=1-J+1-K
Y2(J)=Y2(J)-Y(I1)~Y(I2)
GOTO 8
CONTINUE
IF(M-1)14,77,14
DO 6 I=2,M
T1-I-1
DO 6 J=1,1I1
C(1I,J)=C(J,1I)
CALL GAUSS(C,M,M1,A, IER)
RETURN
END

SUBROUTINE COEF (M, N, IER)
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COMMON /BC/Y(160),Y1(160),WK(31),B(31),A(31),HM(31,32),W(15)

K=2*M

K1=K+1

DO 1 I=1,K1
HM1=0.0
IF(I-K)2,2,3
AT=T1
BI=(AI+1.25)/2.
II=INT(BI)
BI=(AT+0.1)/2.
AI=INT (BI)
TI=BI-AT

DO 4 J=I,K
AJ=J
BJ=(AJ+1.25)/2.
JJI=INT (BJ)
BJ=(AJ+0.1)/2.
AJ=INT (BJ)
TJI=BJ-AJ
W1=W(II)-W(JJ)
W2=W(II)+W{JJ)
IF(II-JJ)6,5,6
IF(ABS(TI-TJ)-0.01)8,30,30
S1=0.0
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GOTO 9
8 S1=N
GOTO 9
6 AN=N
CN=AN*W1/2.
BN=W1/2.
S1=SIN(CN) /SIN(BN)
9 AN=N
CN=AN*W2/2.
BN=W2/2.
S2=SIN(CN) /SIN(BN)
AN=N+1
BN=AN*W1/2.
CN=AN*W2/2.

CN1=COS (BN)
CN2=COS (CN)
SN1=SIN(BN)
SN2=SIN(CN)
IF(TI-0.25)11,10,10

10 IF(TJ-0.25)13,12,12

12 HM(I,J)=S1*CN1-S2*CN2
GOTO 40

13 HM(I,J)=S2*SN2+S1*3N1
GOTO 40

11 IF(TJ-0.25)15,14,14

14 HM(I,J)=S2*SN2-S1*SN1
GOTO 40

15 HM(I,J)=S1*CN1+S2*CN2

40 HM(I,J)=0.5*HM(I,J)

4 CONTINUE
IF(TI-0.25)17,16,16

16 ¥1(1)=SIN(W(II))
Y1(2)=SIN(2*W(ITI))
GOTO 18

17 Y1{(1)=COS(W(II))
Y1(2)=COS{2*W(TIT))

18 WK1=COS(W(II))

DO 19 J=3,N
YL (J)=2.*WK1*Y1(J-1)-Y1(J-2)
19 HM1=HM1+Y1(J}*Y(J)
HM(I,K+2)=HM1+Y1 (1)*Y(1)+¥1(2)*Y(2)
IF(TI-0.25)21,20,20
20 AN=N+1
AN=AN*W(II)/2.
H1=SIN(AN)
GOTO 22
21 AN=N+1
AN=AN*W(II)/2.
H1=COS (AN)
22 AN=N
BN=W(II)/2.
CN=AN*BN
HM(TI,K1)=H1*SIN(CN)/SIN(BN)
GOTO 24
3 HM(I,K1)=N
H1=0.
DO 23 J=1,N
23 H1=H1+Y (J)
HM(I,K+2)=H1
24 IF(I-2)1,25,25
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25 I1=I-1
DO 26 J=1,I1
26 HM(T,J)=HM(J, I)
1 CONTINUE
K11l = K1+1
CALL GAUSS(HM,K1,K11,B, IER)
RETURN
END
C

SUBROUTINE WB1{(M,M1l,IER)

COMMON /BC/YB(160),AP(160) ,WK(31),B(31),A(31),C(31,32),W(15)
M1 = M+1

DO 1 I=1,M

DO 1 J=1,M1

AJ=J-1
AJ=AJ*W(I)
1 C(I,J)=COS(AJ)
CALL GAUSS(C,M,M1,A,TIER)
RETURN
END
C
SUBROUTINE RANG (N, B)
DIMENSTION B(15)
DO 1 I=1,N
I1=T+1
IF(I1-N)7,7,3
7 DO 1 J=I1,N
IF(B(I)-B(J))1,1,2
2 R=B(I)
B(I)=B(J)
B(J)=R
1 CONTINUE
3 RETURN
END
C
C
SUBROUTINE HARMAN(N,NP,NE, NN, PT,F, FM,NRM, KA, IP,F2,NPT)
INTEGER F,FM, PT, F2
REAL IB(6)
DIMENSION IST(6),PA(15,120),PA1(15,120),APR(160)
COMMON /AB/G(120)
COMMON /TIN/TIN(15,48)
COMMON /BC/YB(160),AP(160),WK(31),B(31),A(31),C(31,32),W(15)
C
100 FORMAT(//)
101 FORMAT (5X, 'FREEDOM OF CHOICE’,I3/)
102 FORMAT (5X, ‘MAX NO.OF FREQUENCIES’,I3/)
103 FORMAT (5X, “MAX.NO.OF SERIES’,I3/)
104 FORMAT (5X, 'LENGTH OF EXAMINING SET (C)’,I4/)
105 FORMAT (5X, "LENGTH OF TESTING SET (B)',I4/)
106 FORMAT (5X, ‘LENGTH OF TRAINING SET (A)’,I4/)
107 FORMAT (5X, 'NO.OF PREDICTION POINTS’,I4/)
109 FORMAT (/)
110 FORMAT (2X,7F11.3)
111 FORMAT (2X, 'TIME SERIES’)
112 FORMAT (10X, ‘OPTIMAL TREND’,/,10X, ' -===--- -=-—~ ")
113 FORMAT (3X, ' SERIES’,I3)
114 FORMAT (3X, ‘NO.OF FREQUENCIES’,I3)

115 FORMAT (3X, 'FREE TERM’,F13.5)
116 FORMAT (3X, 'FREQ', 12X, 'COEFFS A’,9X, 'COEFFS B',8X, 'AMPLITUDE")
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FORMAT (F10.7,3F17.6)

(
FORMAT (2X, 'ACTUAL VALUES:’)
FORMAT (5F16.6)
FORMAT(ZX "ESTIMATED VALUES: ')
FORMAT (5X, ' PREDICTED VALUES: ')
FORMAT(IS 2F28.5)
FORMAT(IS F53.5)
FORMAT (/
FORMAT(llX 'NO CORRECT DECISION’)

NK=N+NP+NE
N1=N+NP

NKT=NK+PT
PI=3.1415926535/2.
WRITE(3,100)
WRITE(3,106)N
WRITE(3,105)NP
WRITE(3,104)NE
WRITE(3,102)FM
WRITE(3,101)F
WRITE(3,107)PT
WRITE(3,103)NRM
WRITE(*,109)
WRITE(*,111)
WRITE(*,110) (G(I),I=1,NN)
NR=1

IT=0

IT=IT+1
M=0
M=M+1
MP=2*M

DO 4 I=1,NK
IF(NR-1)6,6,5
YB(I)=G(I)

GOTO 4
YB(I)=PA(IT,I)
CONTINUE

CALL WB(N,M,M1, IER, KA)
IF(IER)Y77,998,77
CALL FRIQ(M,M1)

DO 7 J=1,M
AN=1.-WK(J)**2
BN=WK (J) /SQRT (AN)
W (J) =PI-ATAN (BN)
CALL WB1(M,M1, IER)
IF(IER)78,999,78
CALL COEF (M,N, IER)
IF(IER)79,997,79
B1=0.

B2=0.

B3=0.

D1=0.

D2=0.

D3=0.
M1l=M+1

NKM=NK-M

DO 11 I=M1,NKM
R=0.

DO 12 J=1,M
I1=I+J-1
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I12=1-J+1
12 R=R+A(J)*(YB(I1l)+YB(I2)-2*B(MP+1))
IM=T+M
MI=I-M
R=(YB(IM)+YB(MI)-R-2*B(MP+1))**2
IF(I~-(N-M))80,80,13
80 B1=B1l+R
GOTO 11
13 IF(I-(N1-M))81,81,14
81 B2=B2+R
GOTO 11
14 B3=B3+R
11 CONTINUE
AN=N-MP
BN=B1/AN
IB(1)=SQRT (BN)
AN=NP
BN=B2/AN
IB(2)=SQRT(BN)
DO 15 I=1,MP
R=0.0
DO 16 J=1,M
AI=I
D=W(J) *AI
J2 = 2*J
J21 = J2-1
16 R=R+B(J21)*SIN(D)+B(J2) *COS (D)
D1=D1+(YB(I)-B(MP+1)-R)**2
15 AP(I)=R
DO 17 I=M1,NKM
I1=I-M
R=-AP(Il)
DO 18 J=1,M
I1=I+J-1
I2=1-J+1
18 R=R+A(J)*(AP(I1)+AP(I2))
I12=T+M
AP(I2)=R
D=(YB(I2)-R-B(MP+1))**2
IF(I2-N)82,82,19
82 D1=D1+D
GOTO 17
19 IF(I2-N1)83,83,20
83 D2=D2+D
GOTO 17
20 D3=D3+D
17 CONTINUE
AN=N
BN=D1/AN
IB(4)=SQRT (BN)
AN=NP
BN=D2 /AN
IB(5)=SQRT (BN)
IF(NE)21,21,22

21 IB(3)=0.
IB{(6)=0.
GOTO 23
22 IB(3)=SQRT (B3/NE)

IB(6)=SQRT(D3/NE)
23 IF(IT-1)25,84,25
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84 IF{(M-F)24,24,25

24 KP=(NR-1) *8+1
IF(NR-1)26,26,27

26 TIN(M, KP) =0.
GOTO 28

27 TIN(M,KP)=IT

28 TIN(M,KP+1)=M
DO 29 I=1,6
KS=KP+1+I

29 TIN(M,KS)=IB(I)
DO 30 I=1,NK

30 PA1(M,I)=YB(I)-AP(I)-B(MP+1)
GOTO 34

25 R=0.
172=0

DO 31 I=1.,F
KP=(NR-1)*8+1IP+2
D=TIN(I,KP)
IF(R-D)85,85,31

85 R=D
I1Z=1
31 CONTINUE
55 IF(R-IB(IP))34,34,86
86 DO 32 I=1,NK
32 PAL(IZ,T)=YB(I)-AP(I)-B(MP+1)

KP=(NR-1)*8+1
DO 33 I=1,6
KS=KP+1+T

33 TIN(IZ,KS)=IB(I)
TIN(IZ,KP)=IT
TIN(IZ,KP+1)=M
IF(NR-1)34,87,34

87 TIN(IZ,KP)=0.0

34 Ir(M-FM)3, 88,88

88 IF(NR-1)89,35,89

89 IF(IT-F)2,35,35

35 CALL PRI(NR,IP,F)
NR=NR+1

DO 136 J=1,F
DO 136 I=1,NK

136 PA(J,I)=PA1(J, 1)
IF(NR-NRM)1,1,90
90 WRITE (3,100)
WRITE (3,112)
I1Z=1
NR=1

P1=TIN(1l,IP+2)
DO 36 I=1,NRM
KS=(I-1)*8+1IP+2
DO 36 J=1,F
D=TIN(J,KS)
IF(D-P1)91,36,36

91 NR=I
P1=D
IZ=J

36 CONTINUE

KP=(NR-1) *8+2
IST(NR)=TIN(IZ,KP)
I1=NR-1
F(I1)92,382,92
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CONTINUE

DO 37 I=1,I1

I2=NR-T

KS=I2*8+1
IZ=TIN(IZ,KS)
KS=(I2-1)*8+2
IST(I2)=TIN(IZ,KS)

DO 38 I=1,NKT
APR(I)=0.0
IF(I-NK)39,39,40
YB(I)=G(I)

GO TO 38

YB(I)=0.0

CONTINUE

IZ=1

M=IST(IZ)

MP=2*M

CALL WB(N,M,M+1,IER,KA)
IF(IER)999,989,42
CALL FRIQ(M,M+1)

DO 43 J=1,M
AN=1.0-WK(J) **2
BN=WK (J) /SQRT (AN)
W(J)=PI-ATAN (BN)

CALL RANG(M,W)

CALL WB1(M,M+1, IER)
IF(IER)93,998,93
CONTINUE

CALL COEF (M,N, IER)
IF(IER)94,997,94
CONTINUE
WRITE(3,113)1IZ
WRITE(3,115)B(MP+1)
WRITE(3,114)M
WRITE(3,116)

DO 46 I=1,M

I2 = I*2

121 = 12-1
BN=B(I21)**2+B(I2)**2
P1=SQRT (BN)
WRITE(3,117)W(I),B(121),B(12),P1
DO 47 1=1,MP

R=0.0

DO 48 J=1,M

AI=T

D=W(J)*AI

J2 = J*2

J21 = J2-1

R=R+B(J21) *SIN(D)+B(J2) *COS (D)
APR(I)=APR{I)+R+B(MP+1)
AP(I)=R

M1=M+1

NKM=NK+PT-M

DO 53 I=Ml,NKM
I1=I-M

R=-AP(Il)

DO 49 J=1,M

IJ1=I+J-1

I1J2=1-J+1
R=R+A(J)* (AP (IJ1)+AP(IJ2))

349
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I2=T+M
AP(I2)=R

53 APR(I2)=APR(I2)+AP(I2)+B(MP+1)
DO 50 I=1,NK

50 YB(T)=YB(I)-AP(I)-B(MP+1)
12=1Z+1
IF(IZ-NR)41,41,95

95 CONTINUE
WRITE(3,100)
WRITE(3,118)
WRITE(3,110) (G(I),I=1,NN)
WRITE(3,109)
WRITE(3,120)
WRITE(3,110) (APR(I),I=1,NN)
GM=0.0
DO 54 IH=1,NN
GM=GM+G (TH)

54 CONTINUE
GM=GM/NN
CN=0.0
CD=0.0
DO 10 IH=1,NN
CK=G (TH) -APR (IH)
CN=CN+CK**2

10 CD=CD+ (G (TH) ~GM) **2
CK=SQRT (CN/CD)
WRITE(3,133)CK

133 FORMAT (/5X, 'RESIDUAL SUM OF SQUARES =',5X,E18.7/)
WRITE(3,100)
WRITE(3,121)
I1=N1+1
I2=NK+PT
DO 51 I=I1,12
IF(I-NK)96,96,52

96 CONTINUE
WRITE(3,122)I,G(I),APR(I)
GO TO 51
52 WRITE(3,123)I,APR(I)
51 CONTINUE
GO TO 1001
999 WRITE(*,124)
GO TO 1000
998 WRITE(*,124)
GO TO 1000
997 WRITE (*,124)
1000 WRITE(*,127)
1001 RETURN
END
C
C

SUBROUTINE PRI (NR, IP,F)
INTEGER F

DIMENSION SERV(6)
COMMON /TIN/TIN(15,48)

10 FORMAT (//,1X, 'SERIES’, I2)
11 FORMAT (2X, 'TRNO’, 2X, "FRNO’, 4X, 'BAL A’,
1 6X,’BAL B',6X, 'BAL C’,6X,'ERR A’,6X, 'ERR B’, 6X,

2 "ERR C',/)
12 FORMAT (3X, I3,2X,I4,6E11.3)
13 FORMAT (3X, * == === === mm o m oo ")
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K=1
KP=(NR-1) *8+IP+2
P=TIN(1,KP)
IF(F-1)7,4,7

7 DO 1 I=2,F
IF(TIN(I,KP)-P)2,1,1

2 P=TIN(I,KP)
K=I

1 CONTINUE

4 WRITE(3,10)NR
WRITE(3,11)
KP=(NR-1)*8+1
DO 3 I=1,F
DO 5 J=1,6
KS=KP+1+J

5 SERV(J) =TIN(I,KS)
MT=TIN(I,KP)
MF=TIN(T, KP+1)
WRITE(3,12)MT,MF, (SERV(J),J=1,6)
IF(I-K)3,6,3

6 WRITE(3,13)
3 CONTINUE
RETURN
END
c
C

SUBROUTINE NEW(N1,N,MAX,EPS,EPS1)
DIMENSION DB(31)
COMMON /BC/YB(160),AP(160),C(31),AD(31),A(31),FI(31,32),W(15)
DO 11 I=1,N1

11 DB(I)=AD(I)
DO 12 I=1,N1
I1=N1+1-T

12 AD(I1)=DB(I)
I=N
J=1
N2=N1

1 IF(I-1)20,20,2

2 R=1.0
M=0
DO 3 I1=1,I

3 DB(I1)=(N2-I1)*AD(I1)
F2=1.0

4 CALL FUNC (AD,N2,R,F)
CALL FUNC(DB,I,R,F1)
IM=M+1
IF(ABS(F1)-EPS1)7,7,8

8 F2=F1

7 R=R-F/F2
M=M+1
IF(M-MAX)10,5,5

10 IF(ABS(F)-EPS)5,5,4

5 C(J)=R
J=J+1
DO 6 I1=1,1I

6 AD(I1)=AD(I1)+AD(I1-1)*R
I=I-1
N2=N2-1
GO TO 1

20 C(J)=-AD(2)/AD(1)
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RR=-AD(2) /AD(1)
RETURN
END

SUBROUTINE FUNC(A,N1,R,F)
DIMENSION A(31)

N=N1-1

F=A (1)

DO 1 I=1,N

F=F*R+A(I+1)

RETURN

END

SUBROUTINE FRIQ(M,M1)

COMMON /BC/YB(160),AP(160),WK(31),C0O(31),A(31)

M1 = M+1

DO 1 I=1,M

DO 1 J=1,M1
FI(I1,J3)=0.0
FI(1,2)=1.0
IF(M-1)11,27,11
FI(2,1)=-1.0
FI(2,3)=2.0
IF(M-2)2,2,12

DO 3 I=3,M

I1=I+1

DO 4 J=2,I1
FI(I,J)=2*FI(I-1,J-1)-FI(I-2,J)
FT(I,1)=-FI(I-2,1)
M2=M-1

DO 5 I=1,M2

DO 5 J=1,M1
FI(M,J)=FI(M,J)-FI(I,J)*A{(I+1)
FI(M,1)=FI(M,1)-A(1)
DO 6 I=1,M1
CO(I)=FI(M,I)
EP=0.000001
EPS2=0.000001
EPS3=0.0001

MAX-=25

EPS=0.000001
EPS1=0.001
ETA=0.00001

DO 66 I=1,M

WK(I)=0

CALL NEW(M1,M,MAX, EPS,EPS1)
RETURN

END

SUBROUTINE GAUSS(A,N,L, X, KGA)
DIMENSION A(31,32),X(31)

KGA = 1

L = N+1

NN=N-1

DO 99 K=1,NN

J=K

KK=K+1

DO 100 I=KK,N

IF(ABS(A(J,K)) .LT.ABS(A(I,K)))J=1I

,FI(31,32),W(15)
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100 CONTINUE
IF(J.EQ.K)GOTO 11
DO 300 I=1,L

T=A(K,I)
A(K,I)=A(J,I)
A(J,I)=T

300 CONTINUE

11 DO 88 J=KK,N

IF(A(K,K).EQ.0.)GOTO 600
D=-A(J,K) /A(K,K)

DO 400 I=1,L
A(J,I)=A(J,I)+D*A(K,I)

400 CONTINUE
88 CONTINUE
99 CONTINUE

IF(A(N,N).EQ.0.)GOTO 600
X(N)=A(N,L)/A(N,N)
NN=N-1
DO 500 J=1,NN
K=N-J
SUM=0.0
NNN=N-K
DO 200 JJ=1,NNN
M=K+JJ
SUM=SUM+A (K, M) *X (M)

200 CONTINUE
IF(A(K,K).EQ.0.)GOTO 600
X(K)=(A(K,L)-SUM) /A (K, K)

500 CONTINUE
GOTO 800
600 KGA = 2
WRITE(*,700)
700 FORMAT (5X,  SINGULAR’)
800 RETURN
END

3.2 Sample output

Example. Thetime seriesdatasampleis supplied with afile“ts.dat.” The datacorresponds
to the air-temperature data that is collected at an interval of one day. The control parameters
are fed as input:

G VE NO.OF TRAIN, TEST & EXAM pPTS?
451 1
G VE NO.OF PRED PTS??

° G VE MOVI NG AVERAGE VALUE (=1 or =>1)?
' HOW MANY SERI ES?

° G VE MAX NO.OF FREQS (<=15)7??

j G VE FREEDOM OF CHOICE (< MAX FREQS)??

One can choosethe MOVING AVERAGE VALUE to smooth out the noises in the data;
if it is 1, then it takes the data as it is. SERIES indicates the number of layers in the
algorithm. Usually, one or two layers are sufficient to obtain the optimal trend. Even if
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the user chooses more number of layers, it selects the optimal trend from the layer where
it achieves the global minimum of the balance relation. MAX NO.OF FREQS which has
the limit of less than or equal to 15 indicates the maximum number of distinct frequencies
M, to be determined. FREEDOM OF CHOICE denotes the number of optimal trends to
be selected at each layer.

The performance of the algorithm is given for each layer. The values of the balance
function for training, testing, and examining sets (BAL A, BAL B, BAL C) and their error
values (ERR A, ERR B, ERR C) are given correspondingly for each selected trend. The
best trends or combinations of the freedom-of-choice are shown. The best one among them
according to the balance relation on training set (BAL A) is underlined. TRNO indicates
the trend number or combination number from the previous layer and FRNO indicates
the number of harmonical components in the current trend. For example, the optimum
trend underlined for SERIES 1 has seven freguencies (see output below). The best trend
underlined for SERIES 2 has aso seven (FRNO =7) harmonical components. This is based
on the seventh trend or combination (TRNO =7) of the SERIES 1. Similarly, the best trend
in SERIES 3 has one frequency (FRNO =1) and is based on the second trend or combination
(TRNO = 2) of the SERIES 2.

The OPTIMAL TREND is collected starting from the SERIES, where the global mini-
mum on the balance relation (BAL A) is achieved, to the first layer. For the output given
below, the globa minimum is achieved at the SERIES 3 with the value of BAL A equa
to 0.101E+01; it has one harmonical component. This is the follow up of the second com-
bination (TRNO = 2) of the SERIES 2. The second combination of the SERIES 2 has
eight harmonical components and is the follow up of the sixth trend (TRNO = 6) of the
SERIES 1. The sixth one in the SERIES 1 has six harmonic components. This means
that the recollected information of the optimal trend includes six harmonical components
from the SERIES 1, eight from the SERIES 2, and one from the SERIES 3 along with a
FREE TERM from each SERIES; the OPTIMAL TREND is printed giving the values of
the FREE TERMs, the frequencies (FREQ), and the coefficients (COEFES A and B) at each
layer adong with the AMPLITUDE values. This is represented as

s m;
o= [Ag+ > (A sin(wt) + By cos(win)], (8.15)
Jj=1 k=1

where ¥, is the estimated output value; s denotes the number of series in the optimal trend,;
m;,j=1,2,---, 5 denote the number of harmonic components at each series, Ay, is the free
term at jth SERIES; Aj; and By, are the estimated coefficients of the kth component of the
Jth SERIES; and wj, are the corresponding frequency components.

ACTUAL and ESTIMATED VALUES are given for comparison and the RESIDUAL
SUM OF SQUARES (RSS) is computed as

N

i — 9&)2
RSS =) 20 <, (8.16)
— (yi — )

where y and § are the actual and estimated values and y is the average value of the time
series.
The PREDICTED VALUES are given as specified using the optimal trend; this includes

the predictions for the points Nc.
The output is written in the file “output.dat” below.

LAY ERED HARMONI CAL ALGORI THM




COMPUTATIONAL ASPECTS OF HARMONICAL ALGORITHM

LENGTH OF TRAINING SET

(A) 45

LENGTH OF TESTING SET (B) 1

LENGTH OF EXAMINING SET

© 1

MAX NO.OF FREQUENCIES 8

FREEDOM OF CHOICE 7
NO. OF PREDICTION POINTS

MAX.NO.OF SERIES 3

SERIES 1
TRNO FRNO BAL A BAL B

0 1 0.464E+01 0.620E+00
0 2 0.651E+01 0. 381E+01
0 8 0.408E+01 0. 149E+02
0 4 0.607E+01 0.650E+01
0 5 0.486E+01 0.994E+01
0 6 0.373E+01 0.883E+01
0 7 0.356E+01 0. 121E+02

5

BAL C ERR A

0.709E+01 0. 455E+01
0.654E+01 0.427E+01
0.358E+01 0. 271E+01
0.555E+01 0. 419E+01
0.512E+00 0. 442E+01
0.320E+01 0. 354E+01
0.463E+01 0. 296E+01

SERIES 2
TRNO FRNO BAL A BAL B
7 7 0.215E+01 0.606E+01

BAL C ERR A

0.360E+01 0. 158E+01

0.236E+01 0.575E+01
0.254E+01 0.829E+01
0.252E+01 0.673E+01
0.235E+01 0. 885E+01
0.261E+01 0. 981E+01
0. 255E+01 0.809E+01

~Nwwo No
o U1 N~ 0o

SERIES 3
TRNO  FRNO BAL A BAL B

0. 120E+01 0.457E+01
0. 133E+01 0. 236E+01
0. 133E+01 0. 563E+01
0. 123E+01 0. 171E+01
0. 116E+01 0. 159E+01
0. 116E+01  0.456E+01
0. 101E+01 0. 596E-01

NWNDNWNDW
RPONWNPAW

0.385E+01 0. 919E+00
0.338E+01 0. 101E+01
0.588E+01 0. 157E+01
0.203E+01 0. 183E+01
0. 151E+01 0. 190E+01
0.313E+01 0. 258E+01

BAL C ERR A

0. 164E+01 0. 909E+00
0.490E+00 0. 784E+00
0.359E+01 0. 971E+00
0.226E-01 0. 838E+00
0. 115E+01 0. 874E+00
0. 503E+00 0. 537E+00
0. 132E+01 0. 902E+00

SERIES 1

FREE TERM -0. 56199
NO. OF FREQUENCI ES 6
FREQ COEFFS A

0. 2369936 -1. 056414

CCEFFS B
1. 915627

ERR B ERR C

0. 131E+01 0. 365E+01
0.304E+01 0. 687E+01
0.628E+01 0. 950E+01
0.300E+00 0.462E+01
0.278E+01 0. 548E+01
0. 133E+01 0. 111E+01
0.522E+01 0. 588E+01

ERR B ERR C

0.401E+01 0.454E+01

0.443E+00 0.207E+00
0.447E+01 0. 407E+01
0.275E+01 0. 152E+01
0.681E+01 0.902E+01
0.842E+01 0.972E+01
0.671E+01 0. 732E+01

ERR B ERR C

0.435E+01 0. 443E+01
0. 170E+00 0. 929E+00
0.467E+01 0. 428E+01
0. 386E+00 0. 150E-01
0. 101E+01 0. 200E+00
0.361E+01 0. 256E+01
0.323E+00 0. 389E+00

AVPLI TUDE
2. 187610

35!
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0. 7902706 -2.265249 -1. 351049 2. 637553
1. 0355266 -0.320283 1. 655817 1. 686509
1. 8367290 -0. 274392 -0.120682 0. 299759
2.1455603 1.113026 0. 479222 1.211809
2.5376661 0.573313 -0. 212797 0.611531

SERIES 2

FREE TERM -0. 09219

NO.OF FREQUENCIES 8

FREQ COEFFS A COEFFS B AMPLI TUDE
0. 1195246 -3.281033 -2.040643 3. 863858
0. 6629882 1. 209835 - 0. 435315 1. 285768
0. 9145533 -1. 877773 - 0. 696096 2. 002644
1.3779728 - 0. 100550 - 0. 039555 0. 108051
1.8496013 -0. 052124 -0. 297579 0. 302110
2.0773623 0. 101575 0. 242814 0.263203
2.3273549 0. 492773 0. 068364 0. 497493
2. 7066665 0. 342581 -0.085725 0. 353144

SERIES 3

FREE TERM -0.00055

NO.OF FREQUENCIES 1

FREQ COEFFS A CCEFFS B AMPLI TUDE
1.8217989 0. 012065 0. 247733 0. 248027

ACTUAL VALUES:

-5.000 -10.000 -1.000 -1.500 -1.000 2.000 -8.500
-12.500 -10.000 -9.000 ~4.000 0.000 ~-0.250 -5.000
-7.500 -8.000 -7.000 -2.000 2.000 1.000 2.000
2.000 2.500 3.000 1.750 1.000 0.000 1.000
4.000 8.000 6.000 2.500 1.500 -2.500 ~0.250
3.000 0.000 3.500 3.000 -0.250 ~2.000 1.750
-0.250 1.000 4.000 1.000 3.000

ESTIMATED VALUES:

-3.638 -8.640 -1.738 -0.811 -0.339 1.102 -7.365
-12.481 -11.739 -9.539 -4.904 1.292 ~-0.541 -6.119
-7.006 -8.557 -6.686 -0.882 0.505 0.457 2.365
1.528 2.405 4.178 2.263 0.802 1.061 1.741
3.362 8.5625 5.694 1.881 2.656 -3.908 -0.646
3.155 0.691 3.938 1.978 -0.462 -0.409 -0.207
-0.136 1.278 2.909 1.323 2.611
RESIDUAL SUM OF SQUARES = 0.1963205E+00

PREDICTED VALUES:

47 3.00000 2.61100
48 0.34542
49 -2.28130
50 -0.90668
51 -1.17158

52 1.71091




Epilogue

When we solve any problem of mathematical or logical origin we take either the deductive
or inductive (combined) path and develop corresponding theories and algorithms. Deduction
is the application of a general law to many partial problems. Induction is the synthesis of a
general law from many particular observations. Since childhood, we have learned to prefer
the deductive way of thinking. The most respected sciences adhere to the mathematics
of deductive science. Theorems are proven on the basis of axiomatic theory. Thus, we
conceptualize scientific way as being deductive. Any other way of thinking is referred to
as "not proven" or "not scientific", or simply "heuristic or a rule of thumb." But both ways
are equally heuristic, and constrained. The main heuristic feature of the deductive approach
is an axiom based on a priori accepted information, whereas the main heuristic for the
inductive approach is its choice of the external criteria

The choice of axiomatic or external criteria belongs to experts. But experts informed
about general possible properties of every type of criteria. Two types of external criteria are
considered in this book: accuracy and differential types. The most interesting criteria are
of the differential type. Some scientists conclude that the differential type of criteria (for
example, balance-of-variables) do not work (lhara J, 1976); this is true only of noiseless
data. The inductive approach is realized in the form of multilayered perceptron-like and
combinatorial algorithms. Further developments are described in the book. For example, the
use of implicit patterns are suggested, and the objective computer clusterization algorithm
and the method of analogues are explained.

The ways to avoid a multivalued choice of decisions are called the "art of regulariza-
tion." Regularization is a very sophisticated, but interesting area of investigation. Authors
are inclined to use the general algebraic approach in all the investigations. By the solu-
tion of agebraic and difference equations, the selection characteristic is investigated. It
expresses the dependence of an external criterion from the noise dispersion when the length
of data sample is small and having constant dispersion of noise. The usual approach in the
pattern recognition theory which, on the contrary, includes investigation of the dependence
of criterion from the length of data sample. Thus, Shannon's second-limit theorem as a
displacement of criterion minimum is proven. The primary part of the book covers this idea
as it touches on parametric models. The second part of the book presents new developments
on nonparametric algorithms, particularly in the chapter "clustering." All the methods, al-
gorithms, and applications demonstrate the variety of possibilities of inductive methods that,
are very sophisticated in the learning mode, but very simple in the application mode. They
are not simple realizations of trial and error methods, but are based on sophisticated theory.
The inductive approach promises very simple decisions for many difficult tasks.
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The success of the Hopfield network with symmetric components partially reaches its
solution by the constrained optimization (for example, the traveling salesman problem).
Inductive algorithms can be easily applied to this type of problems too. The difference is
that in continuous-valued input data it is necessary to use the two-dimensional selection
type of algorithmic structures - binary-valued data, two one-dimensional selection type of
structures. The inductive approach rivals the deductive and always wins inspite of data
sample that is short length and noisy.

The problems show how wide the application of the inductive approach is in systems
modeling, pattern recognition, and artificial intelligence is. Authors express their hope
that this book would stimulate an interest in developing and applying inductive learning
algorithms to various complex systems studies.
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