Part from the Chapter 2 of the book:
Madala H.R. and Ivakhnenko A.G.,

Algﬂlilhmb‘ fﬂ}f "Inductive Learning Algorithms for
Complex Systems
Modeling

Complex System Modeling",
1994, CRC Press, ISBN: 0-8493-4438-7.

From abstract:

Inductive Learning Algorithms for Complex Systems Modeling is a professional monograph
that surveys new types of learning algorithms for modeling complex scientific systems in
science and engineering. The book features discussions of algorithm development, structure,
and behavior; comprehensive coverage of all ty pes of algorithms useful for this subject; and
applications of various modeling activities (e.g., environmental systems, noise immunity,
economic systems, clusterization, and neural networks). It presents recent studies on
clusterization and recognition problems, and it includes listings of algorithms in FORTRAN that
can be run directly on IBM-compatible PCs.

Inductive Learning Algorithms for Complex Systems Modeling will be a valuable reference for
graduate students, research workers, and scientists in applied mathematics, statistics,
computer science, and systems science disciplines. The book will also benefit engineers and
scientists from applied fields such as environmental studies, oceanographic modeling,
weather forecasting, air and water pollution studies, economics, hydrology, agriculture,
fisheries, and time series evaluations.

Features:

o Discusses algorithm development, structure, and behavior

e Presents comprehensive coverage of algorithms useful for complex systems modeling

¢ Includes recent studies on clusterization and recognition problems

e Provides listings of algorithms in FORTRAN that can be run directly on IBM-compatible
PCs



Chapter 2
Inductive Learning Algorithms

1 SELF-ORGANIZATION METHOD

The existence of man on earth began about two million years ago. The twentieth century
is the turning point for changes, the likes of which have never before occurred in human
history. The change in the way of living, modern production processes, scientific-technical
revolution, and important changes in and rapid development of computers for information
processing and control of complex objects, including the hereditary characteristics of living
organisms, constitute but a short list of new phenomena that characterize our age. The
expanding possibilities are accompanied by growing anxieties such as how to cope with
increasing pollution problems and how to find new food and energy sources in time to feed
and warm an increasing population. These and other important problems will be solved
in the near twenty-first century—the century in which our children and grandchildren will
develop. It is clear why our eyes are turned to the future, to the twenty-first century. We
cannot say that we are completely ignorant, because this is not true. For example, we
know the fundamental trends of development of scientific-technical progress. We know that
this leads to the qualitative mathematical predictions of the future that are possible only
with the methods of quantitative mathematical modeling which answer questions about the
time periods of the predictions (when?), the forms (how, in which way, and under what
conditions?), and the place (where?). Futurology is a young mathematical science whose
purpose is to develop methods for the prediction of the future. This branch of science is
slowly coming to a mature stage when some of its unavoidable meanderings and errors can
be executed. However, we will see here some of its successes and achievements.

A long time ago scientists knew how to calculate exactly the motions of the planets,
how to predict eclipses of the moon and of the sun because these are described by exact
deterministic equations. Even these were achieved in successful prediction of variable
quantities, averaged over a long period of time. Thus, it is not difficult to predict the
average temperature of the earth for the entire twenty-first century or to calculate the amount
of precipitation which will fall on the mainland of Asia during the same long period of time.
The question is, however, how much can the averaging time intervals and area sectors be
decreased? How does one obtain predictions for each month and season or year when the
prediction interval extends over scores of years? Can scientists actually predict the distant
future in general? Such a question usually comes into our minds because of lack of success
in many detailed (nonaveraged) quantitative forecasts. The first fiasco was suffered by
the so-called probabilistic methods of long-term predictions. Probability is also a type of
averaging, and is useful in predictions of the future. Probabilistic methods have their own
drawbacks because of their lack of inductive analysis.
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Simulation modeling is another area used by Forrester [20] in studying world dynamics.
The fact is that simulation modeling does not require any test data. Equations that describe
separate parts of the object of prediction are invented by modelers on the basis of their sub-
jective ideas of the object. These models apparently do not take into account the variability
of the object characteristics. The common feature of probabilistic and simulation methods is
that “the more complex the model, the more accurate” the interval of empirical observations
used for estimating the parameters. The modeler cannot tell whether the model is accurate
or not in the interval of the object that he lacks the knowledge about. The self-organization
modeling that is described here plays an important role in such conditions.

The self-organization method uses a very general meta-language, rather than a language
of detailed instructions. The quantitative model built up from the observations should be
the same as the model built up from other observations taken at different times and places.
This is the prerequisite in obtaining a predictive model through the inductive approach. Let
us first go through the basic iterative algorithm based on the inductive approach and the
basic network structures that have been in use since the beginning of the usage of these
algorithms. Later we will study basic directions, principal characteristics of the algorithms
and advanced multilevel achievements in complex problem solving.

1.1 Basic iterative algorithm

In problem solving, the main strategy is to specify a set of proper input-output associations
and the main goal is to design an efficient learning algorithm, which is regarded as a search
procedure that correctly solves the problem. Learning in the networks takes a variety of
forms; mainly it discovers statistical features for detecting regularity. Self-organization is
considered while building the connections among the units through a learning mechanism
to represent discrete items. The self-organizing process that is established using various
heuristics in the network structure helps in obtaining the optimum output response. In the
network each unit is represented independently as a black box to generate the input-output
relationship as a state function and group of units are treated as a layer of certain thresholding
hierarchical stage. The relationships are established through the connecting weights that are
estimated by adapting a parameter estimation technique. The measure of the objective
function as an “external complement” is used as a threshold value on a competitive basis
to make the unit “on” or “off” and if the unit is “on” its output is fed forward to the
next layer as inputs. The measure is also considered as an objectivity measure of the unit.
Overall, this works as a search in the domain of solution space through a sort of competitive
learning. Relevance of local minimum depends on the complexity of the task on which the
system is trained by building up heuristics like design of objective function, design of
input-output relationships or summation functions at the units, and usage of empirical data
for training and testing the network. When one of the units in a particular layer achieves
the global minimum of the measure, the processing is stopped and information about the
optimal response is recollected from the associated units in the preceding layers. The global
minimum is guaranteed because of steepest descent in the output error with respect to the
connection weights in the solution space in which it is searched as per a specific objective
through cross-validating the weights.

Suppose we have a sample of N observations, a set of input-output pairs (Zy, 01), (I2, 02),

-, (y,on) € N, where N is a domain of observations corresponding to the empirical
data, and we have to train the network using these input-output pairs to solve two types
of problems: (1) identification problem—the given input /;(1 < j < N) of variables x
corrupted by some noise expected to reproduce the output o; and to identify the physical
laws, if any, embedded in the system; (2) prediction problem—the given input Iy, ex-
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pected to predict exactly the output oy, from a model of the domain studied during the
training.

In solving these, a general relationship between output and input variables is built in the
form of a mathematical description, which is also called a reference function. Usually the
description is considered as a discrete form of the Volterra functional series or Kolmogorov-
Gabor polynomial:

m. m m
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where the output is designated as y, the input vector as x = (x, x2, - - -) and a is the vector of
coefficients or weights. This is linear in parameters a and nonlinear in x. Components of the
input vector x could be independent variables or functional terms or finite difference terms.
This means that the function could be either an algebraic equation or a finite difference
equation, or an equation with mixed terms. The partial form of this function as a state or
summation function is developed at each simulated unit and is activated in parallel to build
up the complexity.

Unit level

Each simulated unit k receives input variables—for example, (x;, x;)) C x; i # j—and
generates a function f() which is a partial form of the reference function.

S, xp) = (k) + V%k)x, + Vék)x + ng)x iXj + ng)xz +v (k) 12 2.2)

where v® are the connecting weights. If we denote o as the desired values and y as the
estimated values of the outputs for the function being considered, the output errors would
be given by

€y =Yp — 0p; P E Ny. 2.3)

The total squared error for that input vector is

E= z el (2.4)

PENA

This corresponds to the minimization of the average error E in estimating the weights v®;
this is the least squares technique. The weights are computed using a specific training
sample N4 which is a part of the whole data points N specified for this purpose.

Layer tevel

Each layer contains a group of units that are interconnected to the units in the next layer. The
weights at each unit are estimated by minimizing the error E. The measure of an objective
function is used as the threshold value to make the unit “on” or “off” in comparison with the
testing data Np which is another part of N and, at the same time, it is considered to obtain
the optimum output response; i.e., this is used as threshold as well as objectivity measures
simultaneously. The outputs of the units which are “on” as per the threshold values are
connected as inputs to the units in the next layer; that means that the output of kth unit, if it
is in the domain of local threshold measure, would become input to some other units in the
next level. The process continues layer after layer. The estimated weights of the connected
units are memorized in the local memory.
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Functional flow of the algorithm

The flow of the algorithm can be described as follows. We feed the input data of m input
variables of x randomly; for example, if they are fed in pairs at each unit, then a total of
C2 (= m(m — 1)/2) partial functions of the form below are generated at the first layer:

y=f(x;, x])’ i’j: 152a"'1m; l_TJJs (2'5)

where f() is the partial function as in Equation 2.2 and y is its estimated output. Then outputs
of Fy (< C?) functions (“freedom-of-choice”) are selected as per the threshold measure to
pass on to the second layer as inputs in pairs. In the second layer we check the functions
of the form

Z=f(yi>)’j); i7j=1727"'aF1; l#]: (26)

where f() is the same form of the partial function as in Equation 2.2 and z is its estimated
output. The number of such functions is C%l. Outputs of F, functions are selected to pass
on to the third layer. In the third layer we estimate the functions of the form:

V=f(Zi, Zj), iaj=152,"'aF2; l#], (27)

where v is the estimated output of the type of function as in Equation 2.2. The number
of such functions is C%z. The process continues and is stopped when the threshold value
begins to increase. The parameters of the optimal function are retrieved through the path
of the connecting units from the preceding layers.

2 NETWORK STRUCTURES

The network structures differ as per the interconnections among the units and their hierar-
chical levels. There are three main inductive learning networks: multilayer, combinatorial,
and harmonic. There are other networks based on these three using the concept of self-
organization modeling. Multilayer algorithm uses a multilayered network structure with
linearized input arguments and generates simple partial functionals. Combinatorial algo-
rithm uses a single-layered structure with all combinations of input arguments including
the full description. This could be realized in different ways at each layer of multilayer
structure by restricting the number of selected nodes at each layer. Harmonic algorithm
follows the multilayered structure in obtaining the optimal harmonic trend with nonmultiple
frequencies for oscillatory processes.

2.1 Multilayer algorithm

Multilayer network is a parallel bounded structure that is built up based on the connec-
tionistic approach given in the basic iterative algorithm with linearized input variables and
information in the network flows forward only. Each layer has a number of simulated units
depending upon the number of input variables. Two input variables are passed on through
each unit. For example, x; and x; are passed on through kth unit and build a summation
function. Weights are estimated using the training set A. At the threshold level, error cri-
terion is used to evaluate this function using the test set B. If there are m input variables,
the first layer generates M, (= C,z,,) functions. F1(< M,) units as per the threshold values
are made “on” to the next layer. Outputs of these functions become inputs to the second
layer and the same procedure takes place in the second layer. It is further repeated in
successive layers until a global minimum on the error criterion is achieved. If it is not
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achieved, it means the heuristic specifications must be considered for alteration. The partial
function that achieves the global minimum is treated as an optimal model under the given
specifications.

The mathematical description of a system can be considered as a nonlinear function in
its arguments which may include higher ordered terms and delayed values of the input
variables.

2
Yy =f(x1a X2yt ,x%, Xyt 3 X1 X2, X1X3, 0 5, X)(—1)y " " " 3 X1(=2)y ° ° ')7 (2'8)

where f() is a function of higher degree and y is its estimated output. This can be renotated
as a linearized function by calculating all arguments of x in the following form of full
description.

y =f(u17 u27'”aum)
=qg+aiuy +axuz +: -+ anly, (29)
where u;, i = 1,2, -+, m are the renotated terms of x; a, k=0, 1,- -, m are the coefficients

and m is total number of arguments. These m input variables become inputs to the first
layer. The partial functions generated at this layer are

(1) (1) (1)

1
Yi = Yy Ty VU,
2) (2) 2)
y2 = I/(()l +l/“ U +V§1 us,
M, M M
yu, = V8 4 Uy + P, (2.10)

where M, (= C2) is the number of partial functions generated at the first layer, y; and
vi({), j=1,2,---,My; i=0,1,2 are the estimated outputs and corresponding weights of the
functions. Let us assume that F; functions are selected for the second layer and that there
are M, (= C%l) partial functions generated at the second layer.

3} (1) 1
= Vc()z + ViR + vy,
2 2 2
2= V(()z) + ng)}’l + Véz)J’Ba
M. M, M;
M, = V(()22)+V52 ))’FI—I+V§22))’F1, (2.11)
where z; and u}?, j=1,2,---,M>; i =0,1,2 are the estimated outputs and corresponding

coefficients of the functions. In the same way, assume that F, functions are passed on to
the third layer; this means that there are M3 (= C%-z) partial functions generated in this layer.

(1) (1) (1)

Vi = Yy + V32 + V22,
2 2 2
v, = l/(()3) + u§3)zl + u§3)z3,
M M M
VM, = 1/((,33) + V§33)zp2_1 + 1/53 3)zp2, (2.12)
where v; and ug?, j=1,2,---,M3; i=0,1,2 are the estimated outputs and corresponding

coefficients of the functions. The process is repeated by imposing threshold levels of
m > F, > F, > F3 > --- > Fjso that finally an unique function is selected at one of the
layers. The multilayer network structure with five input arguments and five selected nodes
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Figure 2,1. Multilayer network structure with five input arguments and selected nodes

at each layer is exhibited in Figure 2.1. For example, if the function v, = vy +1\3z1+132;

in Equation 2.12 achieves the global minimum, then it traces back to the preceding layers to
recollect the functional values of all connecting weights from the associated units. Finally,
we get the optimal function in terms of the input arguments as shown below:

va = f(z1, z3)
Ef(f(yla YZ),f()’Iy y4) )
= f(uy, uz, us, us) = f(X). (2.13)

This is demonstrated in Figure 2.2. One could obtain more functions which are nearer to
global measure for further evluation.

The computational aspects that are considered as the multilayer network procedure is
more repetitive in nature. It is important to consider the algorithm in modules and facilitate
repetitive characteristics. This is given in the last chapter of the book.

2.2 Combinatorial algorithm

This uses a single-layered structure. Summation functions are generated for all combinations
of input variables; i.e., this is like “all types of regressions” in the regression analysis. Let
us describe the mathematical description of a system as shown below with three input
arguments.

y=ag+au +axuy +asus, (214)
where y is the estimated output, u,uy, and u3 are the input arguments, and a; are the

weights. The algorithm uses a single-layered structure because of its complexity in model
building. This is given below.
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input layer 1 layer 2 layer 3
layer

Figure 2.2. Schematic output flow to unit 2 of layer 3 in the multilayer structure

Layer level

1. Summation functions for all combinations of the input arguments u;, 4>, u3 (in this
case there are seven units, Figure 2.3) are generated:

1) 1
n = aﬁ, +0(1 uy,

2 2
y2 = af))+a§)u2,

3) 3) 3
y3 = ag +a(1 Uy +a(2 )uz,

4 4
Ya = af))+a(3 us,

— (5) 5
ys = a5)+al u) +ag)u3,

6 6 6
Y6 = ag)+a(2 )uz +ag )u3,

y7 = ag) + a§7)u1 + a§7)u2 + a(37)u3, 2.15)
where y; is the estimated output of kth unit, k=1,2,---,7; and af’”, i=0,1,2,3 are
their connecting weights.

2. The weights are estimated by using the least squares technique with a training set at
each unit.

3. Then the unit errors are compared as per the threshold objective function using a
testing set, and

4. Units with selected output responses are made “on” and cvaluated further.
The schematic flow of the algorithm is given in Figure 2.4.

Usage of “structure of functions.” If there is increase in the input arguments, there is
corresponding increase in the combinations of them. Suppose there are m variables, then
the total combinations are M, = (2™ — 1). This is the main difference of this single-layer
algorithm in comparison with the multilayered algorithm described in the previous section.
There is restriction on the number of input variables with which to use this algorithm as
per the capacity of the computer. Efforts are given to build up the algorithm in a more
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Figure 2.3. Single-layer layout of combinatorial structure

economical way in generating the functions with all combinations. It uses a binary matrix
structure of “0”s and “1”’s, where each row indicates a partial function with its parameters
represented by “1”, number of rows indicates total number of units in the layer, and number
of columns indicates total number of parameters in the full description. Terms in the matrix
are made equal to “0” if the parameters are not present in the function. This is called
“structure of functions” (2.16), and includes the full description and the function with all
arguments. Usually the “structure of functions” contains the constant term ag which is
present in all functions:

i ag) a(3i) a(zi) a(li)
11 0 0 1
21 010
31 01 1
41100 (2.16)
51 1 0 1
61 1 10
71 1 1 1

This is referred further in forming the normal equations for each function. Connection
weights of each unit are estimated using a training set and evaluated for its threshold
measure in comparison with a testing set. Finally it gives out the selected output responses
as per the threshold values.

Gradual increase of complexity. As we have seen above, the combinatorial algorithm is
based on an inductive approach; this is done by sorting of all possible models from a
given basis of a reference function with fixed input variables. The best of them are chosen
according to the external criteria. The complexity of the models is increased by sorting,
which is done by gradual increase of arguments in the polynomials or partial functions. The
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Figure 2.4. Schematic flow of single-layer combinatorial algorithm

important thing here is that no possible variants of the model that appears with the complete
set are missed. Let us see how this is realized with three variables of the complete quadratic
polynomial that has the form

Y = ag + aix; + axXy + a3xs + a4Xs + asxs + agx;

+axixy + agx X3 + AgXxsX3. 2.17)

There are ten terms in the full polynomial that includes the constant term ap (m = 10).
Sometimes arguments like 1/x;,1/x,, and 1/x3 and other higher order nonlinear terms are
to be included based on the global minimum attained on the external criterion. The partial
polynomials are linear in coefficients a, and the least squares technique is used to estimate
the coefficients by reindexing the nonlinear terms in linear form. Here we give the scheme
for gradual increase of complexity in the partial functions. The scheme is as follows.

In the first step, all models with single arguments are determined.

Yi=4ao, Y2=aix;, Y3=daXa,-'-, Y0 = doX2X3. (2.18)

That means there are Cl, = 10 partial models. Then in the second step, all models with
two arguments are determined.

yun = ap+ayxy, Yip=4ag+taxxy,---,Yy;=do+agxX3

Y = a1xy +axxz, Y =aix +a3x3, -, Y45 = AgX1X3 + AgX2X3. (2.19)

There are C3, = 45 partial models. Similarly, in the third step models with three arguments
are built up, in the fourth step with four arguments, and so on until C}3 = 1 model, which
is the complete polynomial. The total number of all possible models constructed for m
arguments is

M=) C,=2"—1. (2.20)
s=1

The value of M, increases with the increase of m; for example, if m = 10, then M; = 1,023
and if m = 15, then M, = 32,767. This algorithm with the given program at the end, where
the complexity of the partial models is not changed sequentially but rather according to the
binary matrix of m-digit counter, sorts all possible models for m < 18 in an acceptable time.
However, the inclusion of an additional argument in the input set doubles the computational
time. We give here one of the optimal sorting schemes [115] that enables us to increase the
input set to m = 23.

2.3 Recursive scheme for faster combinatorial sorting

Suppose we are given N measurement points of output y and input variables x of a system.
For the given output y we set up the measurement function

y=Xa, where y[N x 1], X[N xm]. and a[m x 1]. (2.21)
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The coefficients of the model are determined by the least-squares method
a=x"x)"x7y. (2.22)

Let us consider the question of obtaining inverse matrices of the type (X'X)~! for each
partial polynomial in the combinatorial algorithm. First of all we consider for one individual
output; this means that at a certain stage of the algorithm we have obtained the estimates

of the parameters of a partial model containing & arguments x;,xy, - - -, x;. Then we know
that
a =H 'g, (2.23)
where
H,=X{X;, and g =XIy (2.24)

denote the elements of the matrix of the normal system

He |gd 2 XTx | XTy). (2.25)

In estimating the coefficients ay, the inverse of the matrix H; is computed by using the
Gauss method. As a further step, for example, the system considers another partial model
with an additional argument x,,;, and the matrix of the normal system takes the form

[Hi1 | el = |- —=|— - = |— — — , (2.26)
hly | Ok | s

where hg, [k x 1] is a k dimensional vector; ¥4, and <y, are scalars whose values are
computed using the measurements of the (k+ 1)st argument. In the combinatorial algorithm,
the estimate of the vector &;,; is found by the least squares method; that means that
one performs operations analogous to a new inversion of the matrix Hy,; for finding the
parameter estimates 8, = H;llgk+1. This estimate can be obtained in terms of the known
H ! and other elements h;,: and 94, as below.

A -1
a; Hy | hy 8k
= |- ——| = [-——|-—— N 2.27)
G hl, | Yk Yeel

Specifically, if we write the inverse of the matrix as

1>

H}) = Byy=|--—-|--- (2.28)

and solve the equation By Hie1 = Ixe1, where It is the identity matrix, we obtain the
following formulae by inverting the above block matrices.

N A
Bie1 = 1/(Ore1 — WL, €41), k1 = Hj "his, Hy'=

bii1 = —frei€ie1, Bi = Hk_] + Bra1Cke1€hy g - (2.29)

Substituting the results above, we get

ay = H'ge + BesrCrer (€L, 8 — Yaa1)
Qi1 = B (€L Bk — Tee1)- (2.30)
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Thus, the new estimate 4;,; can be expressed explicitly in terms of the estimate already
calculated.

0. 2.31)
Gpat a1

It is obvious that the above operation considerably decreases the number of computations
needed for estimating ag,; in comparison with the direct determination of the matrix H,;',.
If the next term x;,, is adjoined to the model as another partial polynomial, then the new
inverse matrix is obtained directly as

1 H;:l + Bre1Cin1Cpyg —Brs1€k41
Hol=|-o T : 2.32)

= Bia1 c;{.,.] B+

The above recursive technique is convenient to use in constructing models of the partial
polynomials of gradually increasing complexity that begin with a single argument. This
type of approach is called “method of bordering.”

The above table of “structure of functions” (Equation 2.16) shows the sequential change
in the states of the binary counter that corresponds to the changes in structures of partial
polynomials. In the shiftfrom1 — 3 or2 — 3,4 — 5and 6, and 5 — 7 or 6 — 7 models,
one can notice that a new term is added; the inverse matrices in these cases can simply
be computed using the above recursive algorithm. This type of combinatorial scanning of
models accelerates the calculation of the model coefficients and reduces the computational
time; one has to think about the optimum way of utilizing the computer memory to store
these inverse matrices as the number of arguments increases. The solution is to have an
optimum way of sequencing the rows of binary matrix in a specific way. For example, let
us consider the sequencing as follows:

@ @ @) @

I ay a3 ay aj
11 0 0 1
21 0 1 1
31 01 0
41 1 10 (2.33)
51 1 11
61 1 0 1
71 1 0 0

In this sequencing, one can notice that from 1 — 2 one argument is added, from 2 — 3 one
argument is eliminated, and so on. When an argument is added, the above recursive proce-
dure can be used for obtaining the new inverse matrix. When an argument is eliminated, a
new procedure which works in reverse is needed; one can introduce the inverse operation
of it to calculate H ! and a, from the known Hk:ll and 4, as

] By | b a;
H[H.] i D y Al = | T |, (2.34)
T ~
bk+1 Brs1 Qi

and eliminate the (k + 1)st argument by
_ 1
H' =B~ —g—bknb;a],
Pk+1

A ax O
4 = a — Ei‘*—:bm. (2.35)
+
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This type of refinement of the recursive algorithm yields maximum decrease in the time
of total scanning of the models at the cost of increased memory utilization. In the above
“structure of functions” (Equation 2.33), one argument is added to the models in the shift
from1 — 2,3 — 4, and 4 — 5; and in the shift from 2 — 3,5 — 6, and 6 — 7, one
argument is eliminated. The above procedure with the alternate use of recursive and inverse
recursive routines can be used as required for computing H,~ ! and H,;ll matrices alternately
from an initial matrix H; '. The least square error €2 can be calculated after estimating the
coefficients 4.

e =0a — I (a — §4) = yiva — g, (2.36)
where g4 = X1iya; here the subscript A corresponds to the training set. The recurrent

algorithm enables us to compute the least squares error €2, , recursively when a new argument
is added.

22
2 2, A T — 2, Yy
€kal = €k + Qher1 (Vi1 — Cpyy 8k) = € + —. 2.37)

5k+ 1

2.4 Multilayered structures using combinatorial setup

One version of a multilayered structure is that the combinatorial algorithm could be realized
at each layer of the multilayer network structure by keeping the limit on the “freedom of
choice” at each layer. The unit outputs are fed forward layer by layer as per the threshold
measure to obtain the global output response for optimal complexity. This structure is
exhibited in Figure 2.5 with three input arguments and three selected nodes at each layer.

2.5 Selectional-combinatorial multilayer algorithm

Here is another version of a multilayered structure that is called a selectional-combinatorial
algorithm that realizes the above recursive procedure [116] [49]. The general outline of the
algorithm is as follows.

In the first layer, all models containing single arguments are estimated, and some of the
best are selected as per certain external criteria and passed on to the next layer. In the
second layer, different arguments are selected and added to these models, which improved
the response as per the external criteria. This continues until it deteriorates. In contrast to the
original multilayer set up, it does not pass on the outputs of the units. The multilayer error
is not passed on because of its retainment of the original basis functions; their number of
arguments coincides with the layer number, and the total number of layers cannot exceed m.

The important aspect of this algorithm is its realization of the recursive procedure for
successive estimation of coefficients of the partial models according to the least squares
method. The matrix of normal equations for a model is represented with [+ 1 arguments
that is obtained from the complete normal matrix [m X (m+1)] matrix [H | g] = XTx | XTy]
using the form

Hy=|—-——|——- y 81 = | —— — |- (2.38)

The coefficients 4,,, are estimated using the following:

Br1 = 1/01 — hi en), ey = Hy Ty,
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Figure 2.5. Multilayer structure with restricted combinatorial set up at each layer

a & — Qi1
= |-——|=| ————— . (2.39)
a1 Br1(Vie1 — 8i€141)

Let us explain the sequence of calculations of the (I + 1)st layer from the /th layer.

1. For each ith model (i = 1,---,M;) of the first layer (! = 1), the inverse matrices
H 1(i) are calculated. These matrices will be updated at all the consecutive layers
using the recursive procedure. Let us assume that H, (1) are the inverse matrices at
the /th layer and F; models are selected as per the external criteria.

2. Partial models of the (I + 1)st layer are generated by an ordered addition to each
selected ith model of one of the arguments absent from it that correspond to the
zeroth elements of the binary structure of the vector for ith model. Here the partial
models M,,, are generated with the complexity /+ 1 arguments. Each new model
is uniquely defined from the preceding F; models of /th layer, and the x; is the new
added argument.

3. Estimates 4;,(i,j) are calculated for all M,,; models using the recursive procedure
for each i on the basis of the matrix H,‘l(i). From the denominator terms, one can
easily sort out even the ill-conditioned normal matrix.

4. The values of the external criteria are computed for each model.

5. The best Fi,; models are chosen for the next (! + 2)nd layer from the condition of
improvement of the minimal value of the external criterion; for example, A(B) is



40 INDUCTIVE LEARNING ALGORITHMS

H\(1)
X10 = O
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Figure 2.6. Multilayered version of selectional-combinatorial algorithm; the inverse matrices Hf'(i)
are updated layer after layer using the recursive technique

obtained at the preceding layer /.

Ml+1 .
_ 1 ifAB) <6
Fu=Xn 6={0 oG @)
p:

where 6, = min A;(B).
iEFI

This procedure is applicable in a strict sense when the external criterion actually
behaves like an ideal one in selecting a unimodel.

In general, one can choose selection of models on a competitive basis as in the
usual multilayer algorithm.

To overcome the possible local minimum when I+ 1 < m and F,; =0, it is better
to fix the lower boundary (for example, Fi; ., =m — (I+1)) and an upper boundary

mi
Fpax. The freedom of choice at the (/ + 1)st layer is determined with the constraint

Fl+lmm S Fl+1 S Fmax- (241)

6. When Fi,; = 0, the procedure is stopped automatically which would indicate the
minimum is achieved at the previous layer.

The schematic diagram of this algorithm is shown in Figure 2.6 with the passage of
inverse matrix A and an additional term from layer to layer.
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data of
xandy

y =0

Figure 2.7.  Schematic illustration of front propagation algorithm with the calculation of ocutput error
residuals, where Mo, M1, - - - denote the total partial models; Fy, Fy,-- -, F, are the number of best
models (freedom of choice) at zeroth, first and last layers correspondingly

2.6 Multilayer algorithm with propagating residuals

(front propagation algorithm)

This algorithm is built up based on forwarding the output errors to the next layers as
outputs and using the combinatorial induction on original input variables at each layer. The
schematic flow of such algorithm is given in Figure 2.7.

Each block of the figure is explained below.

L.
2.

Table of initial empirical data points of N, m input variables of x; and output variable y.

The initial layer which is called the zeroth layer uses the combinatorial algorithm in
choosing the best Fy models.

. The first differences (error residuals for each model) which are denoted as AE”,[ =

1,---,Fy are computed. Each vector, A{" is of [N x 1]; AP =y — §,, where § is
the vector of estimated output corresponding to ith model.

This is the first selection layer in which the Fyy vectors of first differences are used as
output variables independently at each combinatorial sorting procedure. The best F
models are chosen.

The second differences A}z), j=1,--- F; are computed; AJ(.Z) = AD — AD | where
AW s the vector of actual values of first differences from the first layer and A is
the vector of estimated output corresponding to each jth model.

This block denotes the similar follow-up of layers and calculation of further residuals.
Last layer with the model of optimal complexity.

Some features of the algorithm

One can see below the overall effect of the forward propagation of residuals.
First-differences (residuals) at layer “0” are computed as

AV = y-3
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= y—Xxa?, (2.42)

where y, § and AW are the actual, estimated and first difference vectors with the dimension
of [N x 1], a4© is the vector of least squares estimates of coefficients with the dimension
[m x 1], and matrix X is the initial data of [N x m].

Second-differences (residuals) at layer “1” are computed as

AD = A _ AMD
=y— Xxa©® — xa®
= y — X@? +ah), (2.43)

where a!) is the vector of estimated coefficients at the first layer.

The propagating residuals help in the finer adjustment of the coefficients as the process
proceeds layer by layer and ultimately an optimal model is obtained.

The external criterion ¢3? 272 + A%(C) decreases monotonically with the prolifeiration
of the selection layers and a relatively small decrease in it serves as a signal to stop the
procedure. In comparison with the original multilayer algorithm, the objective nature of the
choice of model is not fully conserved because the error decreases monotonically.

This algorithm is worked out for finite-difference reference functions [54]. In the absence
of constraints on the coefficients, this algorithm with forward error propagations resembles
the exponential-harmonic algorithm.

2.7 Harmonic Algorithm

The principal aim of this algorithm is to extend the use of the inductive self-organization
principle to identify the oscillatory processes. It is assumed that the effective reference
functions of such processes are in the form of the sum of harmonics with nonmultiple
frequencies. The harmonic function is composed of several sinusoids with arbitrary fre-
quencies which are not necessarily related. This type of function produces a multifrequency
resultant and exhibits similar spectral characteristics. A balance relation plays an important
role in obtaining the frequencies of the process and as an objective function in selecting
the optimal trend in the multilayered structure. The algorithm is explained below with the
derivation of the balance relation.

Suppose a function f(t) is a process having the sum of m harmonic components with
pairwise discrete frequencies wy, wy, - - -, wy,.

f@) = " [Apsin (wit) + By cos (wit)]

k=1

> ewi, 1), (2.44)
k=1

where A; and B, are the coefficients; and w; #w;, i #j, 0 <w; <m, i=1,2,---,m. The
process has a total interval length of N (1 < ¢ < N) and points at discrete intervals of time
6}.

For a fixed point i and any p of Equation 2.44, one can obtain the formula:

Ji+p)+f(i—p)=2 Z cos (pwy) @(wy, i). (2.45)

k=1
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Summing Equation 2.45 for p from 0 to m — 1, with weighing coefficients pg, p£1, - -, thm—1,
we derive a relation:

m—1 m m—1

Y mplf+p)+fG—p) =2 @i, Do+ Y ppcos (pw))

p=0 k=1 p=1

=2 Z D(wy, i) cos (mwy)
k=1
= fli+m)+f(i —m). (2.46)

This is considered as a balance relation of the process.

m—1

bi = [fG+m) +f(i —m)] = Y wplf i +p) +fi — p)). (247)

p=0

If the process is expressed exactly in terms of a given sum of harmonic components,

then b; = 0; i.e., the discrete values of f(f), which are symmetric with respect to a point

i(m+1 <i < N—m), satisfy the balance relation. The coefficients y, are independent of i.
The trigonometric relation used in the calculations of Equation 2.46 is:

m—1

o + Z Hp cos (pwy) = cos (mwy,). (2.48)
k=1

This could be formed as mth degree algebraic equation in cosw by using the recursive
trigonometric relations

Dnlcos W)™ + Dp_1(cosw)" L+« + Dy(cosw) + Dy =0, (2.49)
where D;, i =0,1,---,m are the functions of p,.
It is possible to determine uniquely the coefficients p,, p = 0,1,---,m — 1 from the

relation (Equation 2.46) fori=m+1,--- N—m. N—m)—(m+1) > m—1;ie., N > 3m.
Substituting the values of 4, in Equation 2.49, it can be solved for m frequencies wy of
harmonics by using standard numerical techniques. These frequencies are passed through
a multilayered network to form various combinations of the harmonic components. The
parameters of the harmonic components A; and B3, are estimated at each unit by using the
least squares technique. The optimal trend is obtained at one of the units by considering
the balance relation as a threshold objective function.

Suppose y(¢) is the given discrete time series data and is to be identified for its harmonic
trend f(¢). The data are to be separated into two data sets as training set points N, and testing
set points Ng. We can allot some more points N¢ as a checking set for checking the trend,
i.e., N = Ny +Np+Nc. The maximum number of harmonics is chosen as M., (< N/3). The
coefficients y, are estimated by using the least squares technique by forming the balance
equations with the training set. The system of equations has the form:

m—1

> wply(i+p)+ ¥ — p)l

p=0

yi+m)+y(i — m);
i=m+1,--- Ny —m. 2.50)

By substituting the values of p,, the frequencies of the harmonics are determined by solving
the mth deeree Eauation 2.49. This has m roots that uniauelv determine m freauencies w:.
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These frequencies are fed through the input layer of a multilayered structure as components
of the harmonic terms. The procedure of complete sifting of trends would take place by
multilayer selection of trends using the inductive principle. The linear normal equations
are constructed in the first layer for any 1 < m < My number of harmonics, and the
coefficients A, and By are estimated for all combinations of M, harmonics based on the
training set using the least squares technique. All harmonic trends are evaluated for their
threshold values in comparison with the testing set, and the output errors of the best trends
from F units are fed forward as inputs to the second layer. This procedure is repeated
in all subsequent layers. The complexity of the model increases layer by layer as long as
the value of the “imbalance” decreases on the testing set points Np. The balance criterion
B (Equation 2.51) is used as the objective function which takes into account the balance
relation, b; (Equation 2.47).

Ng—m

Bz Y b — min. (2.51)

i=m+1
This unique solution is guaranteed as it is in the multilayer algorithm; the performance of
the optimal trend can be tested further using the checking set Nc.

2.8 New algorithms

According to the form of the reference functions, the inductive learning algorithms can be
divided into several main classes that could be constructed based on the addition (additive
algorithms) or multiplication (multiplicative algorithms); they could be extended further
as additive-multiplicative and multiplicative-additive with the factors considered as unit,
integer, or noninteger powers. In addition to these, there are other algorithms like correla-
tional and orthogonalized (generalized) algorithms. Let us first give some of the types of
polynomials and later study some algorithms.
(i) Additive polynomials with unit powers of the factors:

m
y=ao+ Y am, 2.52)
=
where m is the number of independent variables; a are the coefficients; y and x are the

output and input variables correspondingly.
(ii) Multiplicative polynomials with unit powers of the factors:

y=a.]]x (2.53)
j=1
where a is the single coefficient; y and x are the output and input variables; and m is the
number of independent variables.

(iii) Multiplicative-additive polynomial with unit powers of factors: This can have dif-
ferent forms as per the complexity of the terms. One of the forms is given as

m k
y=3Y a]x¢ (2.54)
=1 =1

and another form can have factors in integer or noninteger powers

s m
y= Zwaf“ , pij €{0,Ah,---}, (2.55)
k=1 j=1
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where s denotes the complexity of the equation, and Ah is the least fractional power
(a certain minimum fractional power of the original factors is indicated; for example,
ch(-"5 and xj"o‘s ). The model of optimal complexity in this case can be represented in the
form of linear and multiplicative terms with the powers not higher than the powers specified
in advance.

Multiplicative-additive (generalized) algorithm

The algorithm described below allows one to obtain models with the multiplicative-additive
terms [51].

When the basic inductive algorithms, where the variables have integer powers, do not
lead to unbiased and accurate predictions, it is necessary to shift the solution space to
another region of functional space; for example, to the region of polynomials with other than
integer powers of generalized arguments. This is possible with the following multiplicative-
additive algorithm. First of all, one has to choose certain multiplicative models with optimal
complexity on the basis of the external criteria. An original model is represented in the
form of a product of given arguments with unknown powers;

y= aox'f‘xgzx'g’ o km (2.56)
This can be rewritten in the following form by taking logarithms on both sides:
Iny=1Inag+kInx; +kyInxy + - - - + k,, Inx,,. (2.57)

Using the original data table of the quantities y, xi, - - -, x,5, a new data table for the variables
with the logarithmic values can be set up. Data is separated into training, testing, and
examining sets. Several partial, but best, models can be chosen by using one of the inductive
learning algorithms (combinatorial or multilayer) with the combined criteria of “minimum-
bias plus prediction.” By inverting the logarithms of these optimal models one can obtain
the best multiplicative models of the given process.

At the second level, to obtain the generalized multiplicative-additive model, we combine
the selected multiplicative models into a single complete polynomial as

y=bo+bi91+ b2+ +byi+---, (2.58)
where y is the desired output of the process; $;, j=1,2,---,1,-- - are the estimated outputs

of the selected multiplicative models; and b are the coefficients.

The combinatorial algorithm enables us to obtain a unique optimal model. This model can
be rewritten in terms of the original input variables; this is in the form of the multiplicative-
additive model with the sum of covariance terms with noninteger powers of the factors and
their products which could be used for further analysis.

Sometimes, at the first level, when the conditional equations are formed, it is necessary to
take the logarithms of negative quantities. This situation can be avoided either by discarding
that particular conditional equation or by reformulating the data in advance. The constant
term is chosen in such a way that the error caused by applying the least squares technique
to the logarithms of the variables, rather than to the variables themselves, is compensated.

Algorithm for correlation mcdels

Rosenblatt [106] asserts that an infinite perceptron can execute a classification of images
according to classes without any a priori information. Analogously, one might assert that a
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model of optimal complexity can be found by sorting the points of the entire function space
without any a priori specification (or “prompting”). Actually, infinitely large sortings are
impossible either in a perceptron or by using inductive algorithms. That’s why the class
of functions that can be used to choose the complete description must be chosen on the
basis of certain a priori “prompting.” The majority of the inductive algorithms are based
on the following “prompting”: the complete description is designed as a polynomial which
is in its linear form. This means that, as per this constraint, the object is described by a
linear algebraic or finite-difference equation that remains unchanged at the interpolation or
prediction intervals; the stability condition for these types of equations is unchanged.

In the regions of other types of functional spaces (for example, in the correlational
functional space) it can be prompted by computer with the condition of correlational stability.
This condition provides a way of extending the function manifold that can be used by
applying correlation models of standard form [53], [68]. Here “prompting” is set up by a
complete set of support functions of the correlational type,

1
Ky(1) = m—— Zy,y, s 1<i<T, (2.59)

i=T

where 7 is the displacement along the axis.
The sum of the discrepancies of these equations from the values of the correlation function
forr=1,2,---,nis

AL =A 4+ A2+ 4+ A2 (2.60)

where Ay, Ay, - -+, A, are the mismatchings and A; = Ky(1) — K,(7 +)).

One can obtain a correlational model of standard structure for a fixed value of 7. The
combinatorial algorithm is used to choose the optimal number of mismatchings of the
correlation equations. For each sum of the discrepancies, a system of normal equations are
formed as

oA = 0Af

0

—= =0, —= =0, ... 2.61
o Oy2 ( )

The model of optimal complexity contains the optimal set of mismatchings. Differen-
tiating this sum with respect to the first sought prediction y,, at the point T, the inverse
transformation of the correlation function into a prediction that best minimizes the sum
of discrepancies Ay is obtained. The obtained equation yf,, + ayyr + b = 0 is the correla-
tional predicting model and the prediction is the real root of this equation. The procedure
is repeated for calculating the prediction at the point T + 1 by replacing the interval for
determination of the estimates of the correlation function.

In the case of two-dimensional models, we have

N N
K iy 1j ijYi— 3
N e ;,,;1” =
l_l __]

K+ 1,7) = 7',)(N — Z Z Vig¥iri—1i=r

t—‘r+2]—‘r+l
(I <i<N;, 1<jEN;
Ay = Ky(ri, 73) — Ky(Ti + 1,7, (2.62)



NETWORK STRUCTURES 47

where 7; is the displacement along the horizontal line corresponding to i; 7; is the dis-
placement along the vertical line corresponding to j; N; and N; are the number of discrete
values of the function along the horizontal and vertical lines respectively; and Ajg is the
discrepancy.

One has to compute all discrepancies for the specified pattern area of the two-dimensional
discrete field and obtain a correlational model of standard structure from the system of
normal equations. Differentiating this sum with y,,, which denotes the predicted value of
the variable, the inverse transformation of the correlation function is obtained as a cubic
model; the real root of the function represents the value of the prediction. The usage of
combinatorial algorithm is similar to the above case.

Case of multivariable (multifactor) fields. ~An advantage of the algorithm with correlational
models over the harmonic algorithm is the possibility of solving multifactor problems. For
example, if two variables (the output y and its factor x) are indicated in each cell of
the pattern in the two-dimensional field, the functions similar to the above must be formed
corresponding to two autocorrelation functions (K(yi’yj) and Ky; xj») and one cross-correlation
(K(_y,-,x,-))~ )

Differentiating the sum of squares of the discrepancies and setting g—if =0, one obtains
an estimate of the extrapolation that is averaged in the mean-square sense. A nonlinear
equation is obtained if the terms include a discrepancy of the expression for correlation
coefficient without displacement; otherwise, linear equations are obtained. The variety of
multi-dimensional autocorrelation and cross-correlation functions and the set of their ordi-
nates make it possible to obtain a corresponding variety of correlational models of standard
structure. The optimal model is selected by using the combinatorial or multilayer algorithm

with the help of external criteria. This is subjected to the sorting on the basis of the criteria.

Multilayer algorithm using the correlation models of standard structure. Let us assume
that the initial data sample of N points is supplied for the output variable y and the in-
put arguments (factors) x1,x2,---,X,; and that the number of data points N(= A U B) are
comparatively small, where A and B are the training and testing sets correspondingly.

(1) At the first layer, partial descriptions in the form of systems of equations are formed
using the output variable y with a pair of input variables x; and X3

Ky (1) = NLT Z)’kxi,k—'ra
k
Ky (1) = NLT zk: YiXj ks
Kip() = 3 > naer
Koy(1) = NI: ;xj,k)’k—-ra
K,y (1) = NIT- ;yk)’k—f- (2.63)

It is possible to make C,zn such partial descriptions for each value of the displacement 7.

(ii) The values of the functions K,,(7) and K,,(7) are found by averaging the sequence
of observations of length N, over several intervals. The values of y are taken as actual
values from the data table.
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(iii) The estimated values of the output variable $ are computed from the correlation
models. The best system of equations of the ordinates of the correlation function is chosen
by minimizing the sum of squares of the discrepancies of that system as the relation A%, =

>, A? is satisfied. The optimal vector § is obtained by solving the normal equations of the

form %jﬂ = 0. Calculation of § enables us to expand the initial data table; the number of
1

columns of the table may be increased by F;, where F) is the freedom-of-choice, (F; < C2).
The algorithm described above can be used for identification and prediction of the se-
quence of observations. This can be realized in a multilayered structure.
Correlational models provide an inverse transition from correlation functions to the orig-
inal field or process for predicting it. Success with the correlation models is based on the
following features.

1. Correlational models are to be constructed for stationary fields or processes, or for
their remainders (obtained after removing their regular trend), where the condition for
correlation stability holds.

2. The coefficients of the correlation models are to be estimated by minimizing the
condition of the sum of their squared deviations.

3. The noncontradictory correlation models are to be chosen by using an inductive learn-
ing algorithm with the minimum-bias criterion.

4. Correlational models are nonphysical; i.e., they do not easily lend themselves to inter-
pretation; that’s why, when they are sorted out, one has to consider a great variety of
candidate models so that the criterion indicated must be ensured a definite confidence
level.

Generalized algorithm with orthogonal partial descriptions

Modeling of complex systems is frequently hindered by possible selection of initial inde-
pendent variables; sometimes this might result in the loss of stability of the model structure.
When one changes either the selection criterion or the composition of the data sequences of
training and testing, the composition of the original arguments in a model and its structure
begin to change strongly. There usually appear many models of similar quality. The stabil-
ity is lost in estimating the coefficients because of the mutual dependence of the arguments,
causing a mutual dependence on the corresponding coefficients. These disadvantages are
especially evident in standard regression analysis where a single sequence of experimental
points are used; better results are obtained by using the inductive learning algorithms. The
major advantage of inductive learning algorithms is that one can avoid such biased results
in identification of the object by using the minimum-bias criterion on the specific selection
of the experimental points. However, the adaptation of coefficients and estimation of their
confidence intervals over the entire data sample become impossible if the final form of the
model contains dependent initial variables. The orthogonalized inductive algorithms allow
one to improve stability in determination of coefficients. The algorithm with orthogonal-
ized partial descriptions [102] [123] enables one to improve the stability in determining the
coefficients by facilitating and (i) to use dependent variables in the set of experimental data,
(ii) to obtain independent estimates of the coefficients, and (iii) to perform adaptation of
the optimal model coefficients by refining their estimates over the entire sequence of the
experimental points.

Let us consider that the complete polynomial of the object with dependent variables is
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in the form of a Kolmogorov-Gabor polynomial:

y=ao+ Y0 o TTe, 57,
pi=0,1,2,--; m<bL Y% pu<s, (2.64)

where y and x are the output and input variables correspondingly; s denotes the maximum
allowed degree of the polynomial; / specifies the maximum allowed terms in the model;
and k indicates the number of initial input variables.

Let us denote the vector forms of the data matrices;

YINx1L X=[x], 1<i<k, 1<j<N, (2.65)

where N is the number of experimental points.

Data is divided into training A and testing B sequences; N = A U B.

At the first layer, the actual output quantity y is projected orthogonally onto each argument
from the generalized arguments %, separately for the training and testing sequences. The
partial descriptions have the form

E(y.X1m)a
) m = aAm-:‘\:lma aA = —A.EI_,
y“lt 1 Im E(x%m)A

~B B _ E(y'-%lm)B

B A
Yim = QpXimy Ay = — ) (2.66)
Im 1m 1m (x:l)'m)B

where E is the notation for mathematical expectation.
Each element of the set of generalized arguments is estimated from the initial variables
by using the formulas

Xim = H:'(:l xm —E (Hf:] xfmi) J
Pmi=0,1,2,--; Y% p.<s. (2.67)

The partial descriptions obtained from above are compared to each other by using the
minimum-bias criterion of coefficients;

2 _ (a?m — ale)2
n, = (a?m)z " (alfm)z . (2.68)

From this analysis, the best generalized arguments, which are denoted as %,, are selected
and introduced into the model to obtain the value of a; that is refined (adapted) by using
the entire data sample. Thus, the adaptation of coefficients is combined with the selection
of variables. Then the remainder of the output quantity A; is computed and used in the
subsequent layers.

AI =y — al)?l (269)

Subsequent selection layers are analogous to the first one. The computed remainder output
quantity after the selection layer r is A,;

Ar=A ) —ak,. (2.70)

The calculations for the elements in the set of generalized arguments are also changed as
follows:

$om = T 2 = E (T 2) = 55" b,
Pmi=0,1,2,--; Zf;[pmis& 2.71)
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The coefficients b,,, are obtained from the orthogonalized condition for %, and for each of
the generalized arguments obtained during the preceding layers as

el (o)) .
)

This shows that a partial description obtained from each layer is orthogonal to all previous
descriptions. That is why the estimates of all coefficients a, are independent from one
another, which allows us to adapt them separately after each selection. One has to keep
in mind that the orthogonalization and centering of the generalized variables are performed
separately as shown above using the training and testing sets during the selection of variables,
and that the refining of the model coefficients is performed on the entire sample.

In view of the linearity of the orthogonalization transformation with respect to the initial
variables, one can use an inverse transformation on the final model obtained. Such an
inverse transformation is necessary for interpretation of the results of the modeling.

Stopping rule. The independence of the model coefficients enables one to obtain indepen-
dent estimates of their confidence intervals. The confidence interval of each coefficient is
obtained as

day =128 4 s, 2.73)
2

o(A) !
where d(a,) is the confidence interval of coefficient a,; o(X,) and o(A,) are the estimated
variances of the generalized argument and the remainder quantity, correspondingly; and

I _an-2 is the quantile of the student r-distribution for the probability (1 — «) and (n — 2)
2

degrees of freedom.

The student criterion can be used as a second external criterion in order to determine the
optimum complexity of the model. When dl(a 5 is significant with
a probability of (1 — @) and is included in the model When this condition is not satisfied,
the selection is stopped. The coefficients of the final model are statistically significant,
making the model highly reliable. Thus, the criterion used for stopping the selection could
also be the principal criterion used in the algorithm.

It is concluded that (i) the algorithm with orthogonal partial descriptions ensures stability
of the model structure and of the estimates of its coefficients for complex system model-
ing with changing dependent variables, and (ii) the criterion proposed for measuring the
significance of coefficients enables us to obtain a statistically reliable model with optimal
complexity.

The structures of inductive learning algorithms are analogous to each other for different
reference functions. The three basic forms of structures, single-layer combinatorial, mul-
tilayer, and harmonic algorithms are given here. Obtaining finite-difference models with
lagging terms using the former type of polynomial algorithms is analogous to obtaining
a harmonic model using the later type of harmonic algorithm [49]. The different forms
of multilayer structures, multilayer algorithms with forward error propagations, selectional-
combinatorial with the realization of recursive procedure and with restrictions on the freedom
of choice are covered. There is another way of looking at the algorithms according to the
types of polynomials; various recently developed algorithms are briefly presented.

However, the properties of the algorithms with different types of reference functions
depend only on the structure. Note that (a) combinatorial algorithm does not produce errors
due to multilayeredness and does not admit “loss” of optimal model; (b) multilayer algorithm
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without propagating errors has an explicitly expressed minimum which defines the model
complexity because of an external criterion; (c) multilayer algorithm with propagation of
errors has the error of monotonic nature, and the choice of model is made according to the
“left rule.”

Multilayer algorithms enable us to obtain polynomials with more terms than number of
points in the data sample and with number of harmonics exceeding the number of harmonics
of the first layer. By appropriately choosing the combined criterion (particularly choosing
the minimum bias criterion as one of them), one can arrange for all terms of the original
function to be reproduced using a very small number of data points. The results of self-
organizing models on the basis of multilayer algorithms with and without front propagation
of errors can coincide only for a rather large sample of initial data and in case of an
identification problem using the minimum-bias criterion.

Multiplicative-additive algorithms of correlation models and algorithms with orthogonal-
ized partial functions extend the region of functional space used with the inductive approach,
and thus increase the possibility of solving complex problems.

3 LONG-TERM QUANTITATIVE PREDICTIONS

The subjective character of the models and the inaccuracy of long-term predictions ob-
tained by various authors who used probabilistic and simulation methods have somewhat
undermined the authority of cybernetics. The self-organization method should be able to
change such a situation drastically. A computer can become an arbiter of controversies
between various scientists only when objective methods are placed at its disposal. This
means that we are approaching the creation of a collective man-machine superintellect that
will be capable of solving the most complicated problems in prediction and control. The
domain of activity includes the problems of nature that require more knowledge and skill
than possessed by human experts. A computer that works on the basis of inductive learning
algorithms is able 40 participate in the creative process as an equal partner with a human
being. Let us see how it is achieved considering the following facts and characteristics.

3.1 Autocorrelation functions

Statistical prediction of random processes uses empirical data of the process (its previous
history) to estimate its future values by applying the probabilistic characteristics of the
process and corresponding algorithms. From the prediction point of view, one of the most
important characteristics which indicates the statistical connection between the values of the
process separated by some interval of time 7 is the correlation function A,:

Aty 1) = Ay(r) = EY (1)) Y (11 + 7)), (2.74)

o]
where 7 =1, — ¢#1; E denotes the expected value, and ¥ (¢) = y(t) is an my-centered process
(m, is the mathematical expectation of the process).
Usually normalized correlation function is used as

Ay(T)
A0’

py(T) = (2.75)
where A,(0) is the variance of the process. One of the properties of the correlation function
is that it is an even function: A,(7) = A,(—7). In practice, when dealing with ergodic
stationary processes, averaging over the set of realizations is replaced with averaging over



(to be continued)

3 COMPUTATIONAL ASPECTS OF HARMONICAL ALGORITHM

This is used mainly to identify the harmonical trend of oscillatory processes [127]. It is
assumed that the effective reference functions of such processes are in the form of a sum of
harmonics with nonmultiple frequencies. This means that the harmonical function is formed
by several sinusoids with arbitrary frequencies which are not necessarily related.

Let us suppose that function f(#) is the process having a sum of m harmonic components
with distinct frequencies wy, wp, -+, Wy,

£ = Ao+ [ A sin (wit) + By cos (wih)], (8.9)

k=1

where Ay is the constant term; .4; and B, are the coefficients; and w; F w;, i #j, 0 <w; <
m, i=1,2,---,m. The process has discrete data points of interval length of N (1 <t < N).
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A balance relation is derived using the trigonometric properties for a fixed point i and
any p;

m—1
D wp UG +p) + £ — p)I = £ +m) +£(i — m), (8.10)
p=0

where po, {1, , um—1 are the weighing coefficients. This is considered a balance relation

of the process and is used as an objective function

m—1

bi =[fi+m)+f(i —m)] — Z pplf(i + p) + £ — p)]. (8.11)

p=0

If the process is expressed exactly in terms of a given sum of harmonic components,
then b; = 0; i.e., the discrete values of f(t) which are symmetric with respect to a point
i(m+1 < i < N —m) satisfy the balance relation. The coefficients 1, are independent of i.
It is possible to determine uniquely the coefficients p,, p=0,1,---,m—1 from the balance
relation fori=m+1,---  N—m. N—-m)—(m+1)>m—1;1ie., N > 3m.

The standard trigonometric relation which is used in deriving the balance relation,

m—1

Mo+ Y Hp cOS (pw) = cos (mwy) (8.12)
k=1

helps in obtaining the frequencies wi. This could be formed as mth degree algebraic equation
in cosw:

Din(c0S W)™ + Dp_1(cos wY™ ™ + - - -+ Dy(cos w) + Do = 0, (8.13)
where D;, i=0,1,---,m are the functions of p,,.

Substituting the values of 4, the above equation can be solved for m frequencies wy
of harmonics by using the standard numerical techniques. Various combinations of the
harmonic components are formed with the frequencies wi. The coefficients Ay, A, and
B, are estimated for each combination by using the least-squares technique. The best
combination as an optimal trend is selected according to the value of the balance criterion.

The algorithm functions as below:

The discrete data is to be supplied as training set A and testing set B; one can allot
a separate checking set C for examining the final optimal trend; i.e., N = Ny + Ng + N¢.
The maximum number of harmonics is chosen as M, (< N/3). The coefficients p, are
estimated by using the least squares technique by forming the balance equations with the
training set. The system of equations has the form:

m—1
3" by +p) + (G — p)] = y(i + m) + y(i — m);
p=0
i=m+1, -+ Ny —m. (8.14)

By substituting the values of 1, in the above mth order polynomial in cos w, the frequencies
are estimated; the m roots of the polynomial uniquely determine the m frequencies wy. These
frequencies are fed through the input layer of multilayer structure where the complete sifting
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of harmonic trends would take place according to the inductive principle of self-organization.
This is done by a successive increase in the number of terms of the harmonic components
m=1,m=2m=3,--- until m = My, The linear normal equations are constructed in
the first layer for any 1 < m < M,,, number of harmonics. The coefficients Ag, A, and
By are estimated for all the combinations based on the training set using the least squares
technique; the balance functions are then evaluated. The best trends are selected. The
output error residuals of the best trends are fed forward as inputs to the second layer. This
procedure is repeated in all subsequent layers. The complexity of the model increases layer
by layer as long as the value of the “imbalance” decreases. The optimal trend is the total
combination of the harmonical components obtained from the layers. The performance of
the optimal trend is tested on the checking set C.
The program listing and sample outputs for an example are given below.

3.1 Program listing

c
C*********************************************************************
C THIS PROGRAM IS THE RESULT OF EFFORTS FROM VARIOUS GRADUATE STUDENTS
C AND RESEARCH PROFESSIONALS AT THE COMBINED CONTROL SYSTEMS GROUP OF
C INSTITUTE OF CYBERNETICS, KIEV (UKRAINE)

C*********************************************************************

HARMONICAL INDUCTIVE LEARNING ALGORITHM

N - NO.OF TRAINING SET POINTS

NP - NO.OF TEST SET POINTS

NE - NO.OF EXAMIN SET POINTS

PT - NO.OF PREDICTION POINTS

JFM - MAX NO.OF FREQUENCIES

JF - FREEDOM OF CHOICE

NRM - NO.OF SERIES IN HARMONICAL TREND

NN = N+NP+NE

NPT = NN+PT

G(NN) - DISCRETE SIGNAL DATA

APR (NPT) - HARMONICAL MODEL VALUES

MA - NO.OF LAG POINTS FOR SMOOTHING PROCEDURE (MOVING AVERAGE
VALUE). IF IT IS ONE, DATA REMAINS SAME

AR R RS SR SEEE R RS SRR RS SRS SRR S SRR SRR E SRR ESERRERR R R EEEEREREEREREEREERESSSE SR

MAIN PROGRAM

NN n

INTEGER PT
DIMENSION GY (120)
COMMON /AB/G(120)

c
OPEN(3,FILE='output.dat’)
OPEN(8,FILE='ts.dat’)
C
WRITE(3,4)
4 FORMAT (5X, ’ LAY ERETD HARMONICAL ALGORITHM'/)
cC
WRITE(*,110)
110 FORMAT (3X, 'GIVE NO.OF TRAIN, TEST & EXAM PTS?')
READ(*, *)N, NP, NE
NN=N+NP+NE

WRITE(*,112)



