
time, and in place of the correlation function its time estimate is used

(2.76)

where T is the length of realization.
There is one-to-one correspondence between the correlation function and the power spec-

trum of the process; specifically, the power spectrum is the Fourier transform of the corre-
lation function.

(2.77)

In turn, the correlation function is defined in terms of the inverse Fourier transform,

(2.78)

i.e., the form of the correlation function depends essentially on the frequency spectrum of
the original signal. The higher the frequency of the harmonics contained in that signal,
the faster the correlation function decreases; a narrow spectrum corresponds to a broad
correlation function and vice versa. In the limiting case, the correlation function of white
noise is a delta-function with its singular point at the coordinate origin. Thus, the correlation
function is a measure of the smoothness of the process being analyzed, and it can serve as
a measure of the accuracy of prediction of its future values.

A relay autocorrelation function is called the sign-changing function A'V(T);

(2.79)

Analogously, a relay cross-correlation function is given below.

(2.80)

Relay autocorrelation functions reflect only the sign and not the magnitude of x(t). They
have properties analogous to those of ordinary correlation functions, and in particular they
coincide with them in sign. The advantage of relay functions (auto- and cross-correlations)
is in the simplicity of the apparatus used for obtaining them. When the phase of the
function >'(/) changes by 180°, the sign of the correlation function reverses. This means
that in extremal regulation systems the correlation functions (ordinary or relay) can be used
for determining which side of an extremum the system is on.

In practical computations associated with the random processes, one frequently estimates
the so-called correlation interval, which is the time TV, over which the statistical connection
between sections of the process is kept—in that the correlation moment between these
sections exceeds some given level; for example, | A(r) \ > 0.05 (Figure 2.8a).

Sometimes the meaning of the correlation interval is taken as the rectangular height /4(0)
with area equal to the area under the correlation function (Figure 2.8b).

(2.81)

This is a convenient definition in case of a nonnegative correlation function.



The correlation time or interval is also defined as half the base of a rectangle of unit
height whose area is equal to the area under the absolute value of the correlation function
(Figure 2.8c).

(2.82)

Among these three definitions we shall use the first one because of its simplicity.

3.2 Correlation interval as a measure of predictability

Various types of mathematical details (language) of modeling can be used. The influence of
the degree of detailedness (sharpness) of the modeling language on the modeling accuracy—
or in case of prediction, the limits of predictability of the process—is of great interest. One
of the simplest devices for changing the diffuseness of description of a time series is to
change the intervals of averaging (smoothing) of the data (for example, mean monthly, mean
seasonal, mean annual, mean 11 years, etc.). The spectrum of the process in question then
narrows down to the original and its correlation function broadens; that is, the correlation
interval increases. This in turn extends the scope of predicting the process.

The problem encountered now is how to estimate, at least approximately, the achievable
prediction time. The maximum achievable prediction time Tpmax of a one-step forecast is
determined by the correlation interval time called coherence time rc of the autocorrelation
function Av. This time is equal to the shift that reduces the autocorrelation function (or its
envelope) to a value determined by the allowed prediction error 8% following this level
which it no longer exceeds.

The maximum allowed prediction time of a multiple (step-by-step) forecast is equal to
the coherence time multiplied by the number of steps; i.e., Tpmax = nrc. The prediction
error increases with each integration step, which imposes a definite limit on the step-by-step
forecast. We give here a brief view on the maximum capabilities of multiple step-by-step
prediction, assuming that they are determined by the coherence time in the same way as
those for one-step prediction.

Because of one-to-one dependence between the correlation and spectral characteristics
of a random process, one can use some limiting correlation frequency as a measure of pro-
cess predictability instead of correlation interval. The spectrum amplitude for the limiting
correlation frequency is less than some threshold S(w) < 0. Obviously these measures of
diffuseness of the modeling language are not universal and are suitable only for evaluat-
ing certain mathematical modeling languages—primarily languages differing as regards the
interval of averaging of the variables.

Example 1. Let us look at the influence of the interval of averaging on the form of its
correlation function, its interval, and hence on the limit of its predictability; the example
given here is an analysis on outflow q(f) of a river over a period of one hundred years [44].
The autocorrelation functions for different averaging times are constructed.

(2.83)

where q is the mean monthly outflow, N is the number of data points, and r is the step
in computation of the correlation function. It shows that averaging of variables in time
increases the coherence time, in the same way as averaging time interval of variables over
the surface of the earth, as shown in Figure 2.10.



(a)

(b)

(c)

Figure 2.8. Three versions of defining the correlation interval



(a)

(b)

Figure 2.9. Autocorrelation functions; (a) monotonically decreasing and (b) oscillating



Figure 2.10. Qualitative variation of maximum prediction validity time Tpmax as a function of object
properties and averaging interval of variables; (a) axis of maximum prediction time with constant
averaging, (b) location of axis (a) in the plane of time and space averages

It is appropriate to remember that the achievable prediction time of a forecast depends
not only on the averaging interval of variables, but also on physical properties of the process
being predicted, as well as on the quality and characteristics of the mathematical prediction
apparatus. If an exact deterministic description of the process is known, then prediction is
reduced to detailed calculations.

For example, the motions of planets can be predicted exactly for long time intervals in
advance. Outputs of a generator of random numbers or the results of a "lotto" game cannot
be predicted as a matter of principle. These two examples are extreme cases corresponding
to "purely" deterministic objects and "purely" random objects with equiprobable outcomes.
In actual physical problems we are always located somewhere between these two extremes
(Figure 2.10a).

The autocorrelation function of a process with its coherence time contains some infor-
mation on its predictability (the degree of determinancy or randomness). The analysis of
autocorrelation functions indicates that by increasing the averaging interval of variables in
time or space we can, so to speak, shift the process from the region of unpredictability
into the region of exact and long-term calculability. Figures 2.1 la and b demonstrate the
autocorrelation functions for one with calendar averaging and another with moving averages
on the empirical data of river outflow.

One can see that with the increase in the interval of averaging of the data, the correlation
function for a single time scale becomes ever more sloping, and the correlation interval
increases. In the moving average case, a smaller step of sampling the initial data enables



Figure 2.11. Autocorrelation functions of a river outflow; (a) with calendar averages and (b) moving
averages on (1) monthly data, (2) seasonal data, and (3) annual data



us to keep unchanged the number of sample data (all monthly values), which leads to a
broadening of the spectrum of the original signal and to a corresponding narrowing of its
correlation function. The correlation function obtained in the case of moving averages
occupies an intermediate position between the correlation functions of unsmoothed data and
the data of calendar smoothing. Thus, the correlation time can serve not only as a measure
of the limit of predictability of the process, but also as a measure of detailedness of a
number of modeling languages.

Example 2. In the harmonic algorithm the trend is represented as a sum of a finite number
of harmonic components (usually the optimal number of components does not exceed m =
20).



Figure 2.12. Autocorrelation functions for languages of (1) integral, (2) algebraic and (3) differential
equations

One can see that the language of differential equations is the most diffuse of the three
modeling languages; it is more suitable for long-range predictions. This explains the
widespread use of differential equations in the equivalent analogue of finite-difference equa-
tions in modeling as compared with algebraic and integral models.

Let us take the problem of weather forecasting. Weather forecasters use data gathered by
satellite in order to predict the weather quite successfully over an extended period of time,
but this prediction is only possible in terms of a very general language. They convey the
future weather picture qualitatively ("it will be warmer," "precipitation," "cold," etc.). More
quantitative predictions require the use of mathematical models. As per various studies it is
indicated that the daily prediction interval cannot exceed 15 days and practical predictions
have even shown for a much shorter interval of time (not more than 3 to 4 days). The
mean monthly values of variables are less correlated than the average daily variables; the
maximum length of the prediction interval of mean monthly values does not exceed 3 to
4 months. Average yearly values of variables have an intermediate degree of correlation,
and the maximum achievable prediction interval of average yearly values is 8 to 10 years.
It is important to point out that the limit imposed on the interval of prediction, measured
in the same units of time, increases together with the interval over which the variables are
averaged. In other words, the interval span for average daily values is 15 days, the span
for average monthly values is 4 x 30 = 120 days, and the interval for average yearly values
is 10 x 365 = 3650 days, etc.

Reliable long term predictions of weather are frequently related to the idea of analogues.
This idea is simple and interesting: one must find an interval in the prehistoric measured
data whose meteorological characteristics are identical to the currently observed data. The
future of this interval (observed in the past) will be the best forecast at present. Neverthe-
less, attempts to apply the idea of analogues always produced results that were not very
convincing. The fact is that for such a large number of observed variables (and also many
unobserved ones) it is impossible to find exact analogues in the past. Resorting to group
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analogues, introduction of weighing coefficients for each measurement, and other measures
first bring us to regression analysis and then, after further improvements, to the inductive ap-
proach algorithms. Therefore, inductive learning can be interpreted as an improved method
of group analogues in which the analogues of the present state of the atmosphere are selected
by using special criteria and summed up with specific weighing coefficients to produce the
most probable forecast. Weather forecasting is an object whose structure switches when a
new type of circulation is established randomly at the time of equilibrium. Nevertheless, it
is possible to investigate an optimum method for overcoming the predictability limit appli-
cable to some weather variables (temperature and pressure at surface layer, etc.). This will
be discussed in later chapters. Further research is needed on this subject.

It seems that insurmountable barriers have been established for quantitative predictions.
However, the self-organization method enables one to overcome these limitations and to
solve the problem of long-term predictions, because the limit of predictability depends
on the time interval of averaging. Self-organization uses two or three averaging intervals
for correcting the variable under study; for example, the daily prediction is corrected ac-
cording to a 10-day prediction, the 10-day prediction is corrected according to the mean
monthly prediction, and the mean monthly prediction is corrected in accordance with the
average yearly prediction. In this way we can achieve a breakthrough in methods of long-
term and very long-term prediction which has heretofore not been achievable by any other
method.

3.3 Principal characteristics for predictions

The principle characteristic of achieving an objective goal is for detailed (sharp) predictions
in a low-level language which contain the greatest amount of detail while maintaining the
prediction lead time that is typically obtained by using the most general high-level language.
The more general the language, the longer the achievable prediction lead time (Figure 2.10).

Let us give here some examples indicating the levels of languages:
(i) Prediction of processes in economic and ecological systems.
A language which preserves probabilistic moments of the process is used at the upper

level to select quantitative predictions by using the mean annual values of variables and
the mean seasonal or monthly values. The middle-level language consists of modeling
mean annual values and the lower level (detailed) consists of modeling average seasonal or
monthly values.

(ii) Prediction of river flows,
The upper level uses the language which preserves the nature of probability of distribu-

tions, the middle level consists of predictions of average annual run-off, and the lower level
involves predictions of average seasonal or monthly values. The conversion from statistical
to quantitative predictions should be performed by taking into account the principle—that
is, by using rationalized (multilevel) scanning of quantitative predictions.

(iii) Long-term weather forecasting.
The upper level can be a language which preserves the weather forecast for a large region

(or a long averaging time). The middle level will then consist of predictions for small parts
of the region (or medium averaging time), and finally the lower level will give predictions
for a specific point and specific time.

The examples given above contain three levels of detailedness of the modeling language,
which is obviously not required for all problem-solving tasks.

As we know, the principle of self-organization is realized in single-layer (combinatorial)
and multilayer inductive learning algorithms. Using the basic structures of these algorithms,
multilevel prediction algorithms are operated in several different languages simultaneously,
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within which the predictions expressed in a more general language are used for selection of
an optimum quantitative prediction in the more detailed language. Several levels are needed
to overcome the "limit of predictability" of detailed predictions, and also to eliminate the
multivalued choice of a prediction on the basis of general criteria. Let us go through
different cases of self-organization modeling for clarity in multicriterion analysis.

Case of exact data

In case of exact data, exact computation takes place for prediction (for example, motion of
heavenly bodies, prediction of eclipses, etc.) from the solution of a system equations as
mathematical models of the cosmic system of bodies.

Under the conditions of exact empirical data, self-organization modeling can only have
as its purpose the discovery of laws hidden in the data. It is sufficient to use any one internal
or external criterion like regularity or minimum bias criterion in sorting out the models. It
is important to note that we do not require multicriterion choice of a model. More complex
problems arise within the field of noisy data.

Case of noisy data

It is sufficient to impose on one of the variables (usually the output) a very small additive
or multiplicative noise so that the position of the variable is changed cardinally. If we try to
obtain an optimal model using only internal criteria, we always end up with a more complex
model, that will be more accurate in the least squares sense; only external criteria provide a
model with optimal complexity. Let us consider various systems of equations describing an
object; they are not equally valuable since they are connected with measurement of different
variables. The optimal system with the fewest excessively noisy variables can be sorted out
among variants of the system of equations using the system criterion of minimum bias:

As we know from the information theory point of view, increasing the noise stability
decreases the transmission capacity; this means that with an increase in the noise level,
a model simpler than a physical model becomes optimal. (Here physical model means a
model corresponding to the governing law hidden in the noisy data.) It is expedient to
distinguish two kinds of models: (i) a physical or identification model which is suitable for
analysis of interrelations and for short-range predictions, (ii) a nonphysical or descriptive
model for long-range predictions. One can discover a physical model with various concepts
of modeling, but detailed long-range predictions are impossible without the help of inductive
learning.

If the data are noisy, even to obtain a physical model requires one to organize rational
sorting of physical models by self-organization using several criteria which have definite
physical meanings. Usually one needs a model which is not only physical but also easy to
interpret instantaneous unaveraged values of the variables; that means the model is chosen
based on the simultaneous selection of minimum bias criterion and short-range prediction
criterion.

(2.88)
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where y is the output variable, yA and yB are the estimates of the models obtained based on
the sets A and B, respectively, y is the estimated prediction, and y is the average value of y.

In the plane of two criteria, each model corresponds to its own characteristic point; the
point corresponding to the model of optimal complexity lies closer to the coordinate origin
than do the points of other models participating in the sorting. Here we can say that one
can find a physical model using both deductive reasoning of man and self-organization of
machine with respect to choice of many criteria.

In obtaining nonphysical models for long-range detailed predictions, the role of man, as
he remains the author of the model, consists of supplying the most efficient set of criteria
for sorting the models. The dialogue between man and machine is in the language of
criteria and not in the language of exact instructions. In addition, to use the minimum bias
criterion on two sets of data A and B, the step-by-step prediction criterion is to be included
for calculating the prediction error on entire interval (W = A + B) of data. The above
short-range prediction criterion is used as long-range prediction criterion i(W) as
per notation by replacing Nc with Nw for the entire range of data points. This criterion is
desirable to use not only for choosing the structure of the model but also for removing the
bias of the estimates of the coefficients in the model. In addition to these criteria, in multi-
criteria choice of an optimal nonphysical model for long-range predictions, stability criteria
of moments (upper and lower) and probabilistic characteristics of correlation functions are
used; these will be explained later in the chapter. This means that multicriterion choice is
one of the basic methods of increasing noise stability of inductive learning algorithms.

The physical and nonphysical models differ not only in their purpose but also in their
informational basis because of reasoning of the objective criteria. The arguments of phys-
ical model can be all input variables and their lagged values (for dynamic models). The
arguments of nonphysical predicting models can only include different intervals of averag-
ing and the time variables which are known on the entire interval of long-range prediction.
Physical models that are obtained are usually linear and nonphysical models are nonlinear
with respect to time.

Case of time series data

If an algorithm is used for obtaining a single "optimum" prediction (according to any criteria)
using pre-history data, then such algorithm is meant for only short-range or average-term
prediction (for one to two or three to five time intervals in advance respectively). If the
algorithm envisions the use of empirical data in order to obtain a single prediction over a
large averaging interval (for example, one year), and several predictions (in accordance to
multicriteria) over a small averaging interval of variables (for example, seasonal) in order
to use the balance criterion over the interval of predictions (ten to 20 years in advance),
then the choice of seasonal models on the basis of yearly model is done on the basis of
balance-of-predictions criterion [58], [65].
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In the same fashion one can build an algorithm which envisions over a very long av-
eraging interval (for example, 11 years) and at the same time several predictions over
shorter averaging intervals (for example, one year or one season); if the algorithm uses
a two-level balance-of-predictions criterion, then that would be successful for very long-
range predictions (40 or more years in advance) [58]. The choice of the yearly models
and the model which uses the averaging interval of 11 years is based on the following
balance-of-predictions criterion:

The rules for building up such algorithms realize the principle of "freedom of choice
of decisions" formulated by Gabor [22]. The basic long-term prediction is harmonic or
polynomial prediction of variables when the averaging interval is of maximum length.
The criterion of prediction balance "pulls up" the accuracy and the averaging time of
predictions for small averaging intervals to the accuracy and prediction time obtained when
the averaging interval is long.

Another issue where the self-organization stands firm is when a decision is to be made
in case of two or more contradictory requirements, which is called "Pareto problem." The
"Pareto region" is the region where the solutions contradict each other and which requires
the use of experts. This is achieved by the self-organization method yielding a new problem
formulation of multicriterion control selection done heuristically on the basis of physical
properties of the system to be predicted. The lead time of prediction interval usually reaches
the time of interval used for validity of the criterion. In order to eliminate multivalued
selection, scanning of forecasts for different intervals is replaced by multilevel algorithm
development as scanning of algorithms and models, generating a variety of predictions on
the basis of their external criteria.

4 DIALOGUE LANGUAGE GENERALIZATION

Complex systems analysis is based on modeling of a system with interactive elements in
order to identify the system structure and parameters, to perform various tasks like short-
and long-term predictions of processes, and to optimize the control task. Usually during
algorithm development, the computer has a passive role; that is, it is unable to participate in
creative modeling. Interpolation problems are multi-solution problems; additional data set
or a priori testing set is necessary to obtain a unique solution. Commonly used simulation
methods are based on a large volume of a priori information that is difficult to obtain.

Self-organization modeling is directed to reduce a priori information as much as possible.
The purpose of self-organization is not to eliminate human participation (it is impossible
unless a complete intelligence model is developed), but to make this participation less
laborious, reduce some specific problems, and avoid expert participation. This can be
achieved in ergatic information systems by using more generalized "man-machine" meta-
language, which uses general criteria given by man—the learning is done by the computer.
In addition to the generalized criteria, man provides the empirical data. In some cases man
may be involved in final model corrections. Here it is shown that many things still can
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4.2 Multilevel (objective) analysis

The idea of sorting many variants using some set of external criteria in the form of an
objective function in order to find a mathematical model of a given complex subject seems
unreal. Self-organization method tries to rationalize such sorting so that an optimal model
is achieved. Multilevel algorithgms of inductive learning serve just this purpose. They
allow changes of large number of variables to be considered. The model structure, which is
characterized by the number of polynomial elements and its order, is found by sorting a large
number of variants and by estimating the variants according to specific first level selection
criteria (regularity, minimum bias, balance of variables and others). If the objectivity of the
model is not achieved, then the high level criteria are used.

Here we give the concept of multilevel objective analysis under various conditions of
multicriteria. The single-level analysis using one of the basic network structures like com-
binatorial, multilayer or harmonic is sometimes not sufficient for detailed analysis and we
go for multistage analysis which is described as a multilevel algorithm. These prediction
algorithms operate in separate different languages simultaneously as the predictions at a
general language are used for obtaining a more detailed model at the next detailed lan-
guage. Several levels are very essential, as one is to overcome the limit of predictability
of detailed predictions and another is to avoid the multivalued choice of a model using the
general criteria. Thus, in the stages of these algorithms, three basic directions of dialogue
language are preserved; (i) the self-organization principle, which asserts that with gradual
increase in the complexity of model, the external criteria pass through their minima, en-
abling us to choose a model of optimum complexity, (ii) an algorithm for multilevel detailed
long-range predictions, and (iii) an algorithm for narrowing the "Pareto region" in case of
multi-criterion choice of decisions.

4.3 Multilevel algorithm

The multilevel system is subjected to all the general laws governing the behavior of mul-
tilevel decision-making systems which realize the principle of incomplete induction. As in
multilayer algorithm, here there is possibility of losing the best predictive model; an increase
of the "freedom of choice" decreases the possibility of such loss. Various principles related
to selection and optimization of "freedom of choice" in multilayer algorithm also apply to
the multilevel system of languages having different levels of details.

If we had a computer with large capacity, then the problem of selecting detailed models
could be solved by simply scanning all versions of partial models using combinatorial
algorithm with a large ensemble of criteria. Since the capacity is limited, it is necessary to
expose the basic properties of the models step by step.

In order to reduce the volume of scanning and to achieve uniqueness of choice, the
principle discussed above is realized in several levels whose schematic structure for one
version is shown in the Figure 2.14.

Let us explain the operations performed during these levels.

Objective systems analysis

The purpose of this level is to divide the system variables into output, input variables and
variables which have no substantial effect on the outputs. Here structure of and number of
equations is to be chosen in such a way that the overall model is consistent. The structure
as well as number of equations must not be changed significantly when a new data set
is added. The estimation of coefficients should not be changed. This type of sifting for





If one of the equations has high minimum bias value, then such an equation is considered
inconsistent and is excluded from the analysis. If none of the equations is good, then the
analysis fails. This can happen if the state variables are too noisy or if the given state
variables do not contain any characteristic variables. Noise immunity can be improved by
designing specific criteria; the noise immunity depends on the mathematical form of the
criterion and on the method of convolution of the criteria into general form. The second
level of such criteria are given below; the multicriteria analysis, symmetrical, and combined
criteria significantly improve the noise immunity of the algorithm.











Figure 2.17. Use of OSA for long-range predictions

Qw,qsP,qsif>qf are seasonal predicted values of same variable for winter, spring, summer,
and fall respectively.

Step-by-step integration of optimum system equations gives the desired long-term pre-
dictions simultaneously for all output variables. When there are several "leading" output
variables, the better set of models is selected on the basis of system criterion of balance of
predictions:

where s is the number of leading variables that have good and satisfactory annual predictions.
Some practical examples are presented in later chapters. The general scheme of the

multilevel algorithm is given in Figure 2.17: the first block indicates the supply of initial
data table, the second block denotes first-level analysis which is called an objective system
analysis (output variables are determined here), then onwards to two-level analysis; the third
and fourth blocks show the first stage of the two-level analysis, and fifth and sixth blocks
show the second stage of the analysis. In the first stage of two-level analysis, the third
block denotes the selection of F\ systems of equations for mean annual values of the output
variables. The fourth block denotes the choice of F2(< FI) systems of equations according
to an external criterion. In the second stage of two-level analysis the fifth block denotes
the selection of FT, systems of equations for mean quarterly or seasonal values of the output
variables. The sixth block denotes the sorting of the variants of the predictions in the space
of system structures according to the criterion of balance of predictions, and the seventh
block indicates the long-range predictions of a specific output variable.

The models used for two-level prediction with two-dimensional time count are considered
as nonphysical; for example, they include both yearly and seasonal values of the variables
simultaneously. The parameters of two-dimensional time coordinates (t and T) can also be
considered into the systems of equations for mean annual and mean seasonal data.

The reliability of choice of a better set of models will increase when the number of
scanned predictions is increased. Let p be the number of intervals of the detailed prediction
within a year (months, seasons, etc.), let s be the number of leading output variables,
and k be the number of models selected for each leading variable in accordance with the
combinatorial algorithm. Then the number of compared model sets will be C - (kp)s.



The freedom of choice can be increased by four to five times in the same length of
computer time by changing the averaging intervals to "season-year"; i.e., one can scan
through eight model versions for each season. The number of compared predictions (for
a single "leading" variable) will be Cseason-year = k& = 84 = 4096. Therefore seasonal
prediction models are preferred over monthly prediction models whenever they are adequate.

The improvement of ergatic or man-machine systems is based on the gradual reduction of
human participation in the modeling process. The human element involves errors, instability,
and undesired decisions. One approach to this problem is to specify the objectives, or—
using technical language—determine the set of criteria. Based on such objective criteria,
inductive learning algorithms are able to learn the complexities of the complex system.
In self-organization processing the experts must agree on the set of criteria of lower level
(regularity, minimum bias, balance of variables, and prediction criteria). If for some reason
they cannot come to an agreement, then the solution is to use second-level criteria based on
improvement of noise immunity. However, the important problems of sequential decision
making, (such as the set of criteria determining their sequence, level of "free choice" and
so on), are solved during this decade. Man still participates in the process but his task
is made easier. The second area is multicriteria decision making in the domain of more
"efficient solutions," where the criteria contradict each other. The solution is to use a
number of random process realizations for each probability characteristic like transition
graph, correlation function, probability distributions, etc. Additional a priori information is
needed in order to choose one realization. One may have to balance the realizations of two
processes that have two different averaging intervals for the variables (balance of seasonal
and yearly, etc).

We conclude this section by saying that the ergatic information systems do not have
any "bottle-neck" areas in which the participation of man, needed in principle, cannot be
reduced or practically eliminated by moving the decision-making process on the level with
a higher degree of generalization, where the solutions are obvious.


