
Chapter 5
Clusterization and Recognition

1 SELF-ORGANIZATION MODELING AND CLUSTERING

The inductive approach shows that the most accurate predictive models can be obtained in
the domain of nonphysical models that do not possess full complexity. This corresponds
to Shannon's second limit theorem of the general communication theory. The principle of
self-organization is built up based on the Godel's incompleteness theorem. The term "self-
organization modeling" is understood as a sorting of many candidates or partial models by
the set of external criteria with the aim of finding a model with an optimal structure.

A "fuzzy" object is an object with parameters that change slowly with time. Let us
denote N as a number of data points and m as a number of variables. For N < m, the
sample is called short and the object "fuzzy" (under-determined). The greater the ratio
m/N, the "fuzzier" the object.

By describing the relationships, clustering is considered a model of an object in a "fuzzy"
language. Sorting of clusters with the aim of finding an optimal cluster is called "self-
organization clustering." Although self-organization clustering has not yet been developed
in detail, it has adapted the main principles and practical procedures from the theory of "self-
organization modeling." This chapter presents the recent developments of self-organization
clustering and nonparametric forecasting and explains how the principles of self-organi-
zation theory are applicable for identifying the structure of the most accurate and unbiased
clusterizations.

Analogy with Shannon's approach

Structural identification by self-organization modeling is directed not only toward obtaining
a physical model, but also toward obtaining a better, and not overly complicated, prediction
model. The theoretical basis of this statement is taken from the communication theory by
Shannon's second-limit theorem for transmission channels with noise. The optimal com-
plexity of clusterizations is required as the optimal frequency passband in a communication
system. Complexity must decrease as the variance of noise increases. The complexity of
the models to be evaluated is often measured by the number of parameters and the order
of the equation. The complexity of clusterization is usually measured by the number of
clusters and attributes. The complexity of a model or clusterization is determined by the
magnitude of the minimum-bias of the criterion as minimum of the Shannon-bias. The
greater the bias, the simpler the object of investigation. The measurement of bias represents
the difference of the abscissa of the characteristic point of the physical model. Bias is mea-
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sured for different models of varying complexities. However, without Shannon's approach,
it would be incomprehensible why one cannot find a physical model for noisy data and why
a physical model is not suitable for predictions. This is analogous to the noise immunity of
the criteria for template sorting in cluster analysis.

Godel and non-Godel types of systems

The inductive approach is fundamentally a different approach. It has a completely opposite
assertion to the deductive opinion of "the more complex the model, the more accurate it
is" with regard to the existence of a unique model with a structure of optimal complexity.
It is possible to find an optimal model for identification and prediction only by using the
external criteria.

The concept of "external criteria" is connected with the Godel's incompleteness theorem.
This means that the Godel type systems use a criterion realizing the support of the system on
an external medium, which is like an external controller in a feedback control system. There
is no such controller in the non-Godel type systems. Usually, the controller is replaced by
a differential element for comparison of two quantities without any explicit reference to the
external medium.

Let us recall some of the basic propositions of these theories of modeling. In case of ideal
data (without noise), both approaches produce the same choice of optimal models or cluster-
ing with the same optimal set of features. In case of noisy data, the advantage with Godel's
approach is that although the method is robust compared to the non-Godel type, it captures
the optimal robust model or clustering with its basic features. It conveys to the modeler
that it is simpler to follow traditional approaches without taking any complicated paths with
inductive approaches. However, an obvious affirmative solution to this question, in which
the training data sample does not participate, must be sought among external criteria.

One important feasibility of such a criterion that possesses the properties of an external
controller is the partitioning of data sample into two subsets A and B by the subsequent
comparison of the modeling or clustering results obtained for each of them. Various exam-
ples of constructing the criteria differ according to the initial requirement and in the degree
of fuzziness of the mathematical language.

Division of data as per dipoles

In self-organization modeling, usually the data points with a larger variance of the output
quantity are taken into the training set A and the points with a smaller variance are taken into
the testing set B. Such a division is not applicable in self-organization clustering because
"local clusters" of points for the subsamples are destroyed. The "dipoles" of the data sample
as point separations allow us to find (N/2 — 1) pairs of points nearest to one another, where
N denotes the total number of points in the sample. Figure 5.1 depicts six "dipoles" whose
vertices are used to form the sets A and B, as well as C and D. The points located closer to
the observation point / are taken into the set A, while those closer to the observation point
// are taken into the set B. The other vertices of the dipoles respectively form the sets C
and D. This is also demonstrated in one of the examples given in this chapter.

Clusterization using internal and external criteria

Cluster analysis is usually viewed as a theory of pattern recognition "without teacher"; i.e.,
without indication of a target function. The result of the process is called clusterization. We
know that the theory of clustering is not a new one. One can find a number of clustering
algorithms existing in pattern-recognition literature that allow clusterization to be obtained;
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Figure 5.1. Partitioning of data sets A, B from observation I and C, D from observation II

namely, to divide a given set of objects represented by data points in a multi-dimensional
space of attributes into a given number of compact groups or clusters. Most of the traditional
algorithms are used in the formation of clusters and in the determination of their optimal
number by using a single internal criterion having a meaning related to its accuracy or
information. With a single criterion, we obtain "the more clusters—the more accurate the
clusterization." It is needed for specifyng either a threshold or some constraints when the
choice of the number of clusters is made.

Here it describes algorithms for objective computer clusterization (OCC) in which clusters
are formed according to an internal, minimum-distance criterion. Their optimal number and
the composition of attributes are determined by an external, minimum-bias criterion called
a consistency or non-contradictory criterion. Any criterion is said to be external when it
does not require specification of subjective thresholds or constraints. The criteria regularity
(called precision or accuracy here), consistency, balance-of-variables, and so on, serve as
examples of external criteria. Internal criteria are those that do not form the minimum, and
therefore exclude the possibility of determining a unique model or clusterization in optimal
complexity corresponding to global minimum.

Explicit and implicit templates

The main difference between self-organization modeling and self-organization clustering
is the degree of detail of the mathematical language. In clustering analysis, one uses the
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language of cluster relationships for representing the symptoms and the distance measure-
ments as objective functions instead of equations. The synthesis of models in the implicit
form f ( x ) = 0 corresponds to the procedure of unsupervised learning (without teacher, in
the literature it is also notified as competitive learning) and in the explicit form
corresponds to the procedure of supervised learning (with teacher).

The objective system analysis (OSA) algorithm usually chooses a system that contains
three to five functions which are clearly insufficient for describing large scale systems. Such
"modesty" of the OSA algorithm is only superficial. Indeed, a small system of equations
is basic, but the algorithm identifies many other systems which embrace all the necessary
variables using the minimum-bias criterion. The final best system of equations is chosen by
experts or by further sorting of the best ones. What one really has to sort in the inductive
approach is not models, plans, or clusterings, but their explicit or implicit templates (Figure
5.2). This helps in the attainment of unimodality of the "criterion-template complexity." If
the unimodality is ensured, then the characteristics look as they do in Figure 5.3 for different
noise levels. The figures demonstrate the results of sorting of explicit and implicit templates;
i.e., in single and system models, correspondingly. These are obtained by computational
experiments that use inductive algorithms with regularity and consistent criteria. "Locus of
the minima" represents the path across the minimum values achieved at each noise level.

Self-organization of clusterization systems

The types of problems we discuss here—one is the sorting of partial models and other is
sorting of clusters—can be dealt with with some care and modeling experience. Figure
5.3b shows the curves that are characteristic for objective systems analysis. Here the model
is represented not by a single equation, but by a system of equations, and one can see a
gradual widening of the boundaries of the modeling region. There is a region which is
optimal with respect to the criterion. The problem of convolution of the partial criteria of
individual equations are encountered into a single system criterion.

The theory behind obtaining the system of equations also applies to clusterization in the
form of partial clusterization systems that differ from one another in the set of attributes and
output target functions. For example, in certain properties of the object, two independent
autonomous clusterizations of the form

have to be replaced by a system of two clusterizations being jointly considered

where and are the output components corresponding to certain properties of the object
first denote two data points corresponding to the m

input attributes.
This is analogous to the operation of going from explicit to implicit templates. The opti-

mal number of partial clusterizations forming the system is determined objectively according
to the attainable depth of the minimum of the criteria as achieved in the OSA algorithm.

Figure 5.4 illustrates the results of self-organization in sorting of clusterings by showing
a special shape of curve using two criteria: consistency and regularity. The objective based
self-organization algorithms are oriented toward the search for those clusterizations that are
unique and optimal for each noise level, although the overall consistency criterion leads to
zero as the noise variance is reduced. It is helpful to have some noise within the limits in the
data; however, the greater the inaccuracy of the data, the simpler the optimal clusterization.
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Figure 5.2. Representation of increase in complexity of (a) explicit, (b) implicit templates, and (c)
their movement in the data table (k indicates delayed index)
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Figure 5.3. Results of experiments with (a) explicit patterns using vector models and (b) implicit
patterns using objective systems analysis algorithm
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Figure 5.4. Results of experiments in clustering analysis, where LM stands for locus of the miniminima

Clusterization as investigation of a model in a "fuzzy" language

Clusterization algorithms differ according to their learning techniques that are categorized
as learning "without teacher" and learning "with teacher." This means that in the latter case,
the problem consists not only of the spontaneous division of the attribute space into clusters,
but also of establishing the correspondence of each cluster with some point or region in the
target function space. These algorithms are described for both the techniques as different
stages "with teacher" and "without teacher." In other words, it leads to clusterization not
only with the space of attributes X but also of the target function space Y, or of the united
space XY where the target function is one of the attributes. As a result, clusterization
< A r > < - > < F > o r < XY ><-»< Y > is obtained—considered a certain "fuzzy" analogue
of the model y = /(*) of the object under investigation. The obtained model is optimal
with respect to the criteria used and is unique for each object. In ideal data (without noise),
it corresponds to the true target of the physical model. In noisy data, it corresponds to
the nonphysical model—unique for that level of noise variance. Stability is considered
according to the Darwin's classification of species and Mendelev's table of elements which
confirm the uniqueness of classifications.

Artificial analogue of the target function

When the target function is not specified, it is sometimes necessary to visualize the output or
target function through certain analysis. Visualization here means to make visible that which
objectively exists but is concealed from a measurement process. This can refer to a person
making a choice of initial data, not intentionally making it nonrepresentative, arranging it
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along certain axes—"weak-strong," "many-few," "good-bad," etc.—even when the target
function is not completely known. A sample of conventionally obtained measurements thus
contains information about the target function. Therefore all clusters must be represented in
a sample for it to be representative. This is verified in various examples: in water quality
problems, samples without any direct indication of the quality spanned the entire range from
"purest" to "dirtiest" water. In tests of a person's intelligent quotient (IQ), it represents a
broad range of values (IQ = 10 - 170). Since it is also determined by experts, it is always
possible to check the idea of visualization of the target function. As results indicate, the
experimentally measured target function correlates with its artificial analogue of correlation
function (value ranges from 0.75 to 0.80), which is considered as adequate. Even for
some experiments these are of higher values. The component analysis or Karhunen-Loeve
transformation which is used to determine the analogue of the target function can be scalar,
two-dimensional or three-dimensional (not more than three) corresponding to visualization
of a scalar or a vector target function.

True, undercomplex, and overcomplex clusterizations

The view of clusterization as a model allows us to transfer the basic concepts and procedures
of self-organization modeling theory into the self-organization theory of clusterization. A
true clusterization corresponds to the so-called physical model which is unique and can be
found in ideal and complete data using the first-level external criteria.

The consistent criterion expresses the requirement of clusterization structures as unbi-
ased. Clusterization obtained using the set A must differ as little as possible from the
clusterization obtained using the set B (A U B = W). The simplest among the unbiased
(overcomplex) clusterizations is called true clusterization—the point with the optimum set
of features denoted as "actual model" in Figure 5.3b. The overcomplex ones are located
to the right of that point. Optimal clusterization corresponding to the minimum of the cri-
terion is also unique, but only for a certain level of noise variance (the trivial consistent
clusterization where the number of clusters is equal to the number of given points is not
considered here). It is determined according to the objectives of the clusterization, and it
cannot be specified. This explains the word "objective" in "objective computer clusteriza-
tion." Optimal clusterizations are found by searching the set of candidate clusterizations
differing from one another in the number of clusters and attribute ensembles. The first-level
external criteria are explained previously in self-organization modeling. The basic criteria
for clusterizations are defined analogously.

The consistency criterion of clusterizations is given as

(5.1)

where p is the number of clusters or the number of individual points subject to clusterization
in the subsets A and B; A/: is the number of identical clusters in A and B [70]. The regularity
criterion of clusterizations is measured by the difference between the number of clusters (&#)
of the attribute space in the subset B and their actual number (k) indicated by the teacher.
This is represented as

It has been established that in the problem of sorting models the values of the minimum-
bias criterion depend on the design of the experiment and on the method of its partitioning
into two equal parts. For an ideal data (without noise), the criterion is equal to zero both
for the physical model and for all the overcomplicated models. The greater the difference
between the separated sets A and B, the greater the value of the criterion. It is recommended
that one can range the data points according to the variance of the output variable, then
partition the series into equal parts of A and B. In clustering (delayed arguments are not



SELF-ORGANIZATION MODELING AND CLUSTERING 173

considered), it is recommended that one choose a sufficiently small difference between the
sets to preserve the characteristics of different clusters. If the clusters on the sets A and B
are not similar, it is not worth using the consistent criterion. We cannot expect a complete
coincidence of subsets A and B, which is inadmissible. Consequently, the problem of sorting
clusters becomes a delicate one.

The consistent criterion is almost equal to zero for all the ensembles when the data are
exact. It is recommended that the data be partitioned in such a manner that the criterion does
not operate on the exact data. However, one can use various procedures to find the unique
consistent cluster: (i) according to regularity criterion, (ii) according to system criterion of
consistency by forming more supplementary consistent
criteria computed on other s partitions, (iii) by adding noise to the data and from there
finding the most noise-immune clustering, or (iv) by involving experts.

Necessity for regularization

Mathematical theory so far has not been able to suggest an expression for a consistency
criterion indicating the closeness of all properties of models and clusterizations for the
subsets A and B. The most widely used form of the criterion (minimum-bias criterion)
stipulates the idea that the number of clusters (kA = kB) be equal and that there be no
clusters containing different points (A/: = 0). The patterns of point divisions into A and B
must coincide completely in the case of consistent clusterization. The consistent criterion is
a criterion that is necessary but not sufficient to eliminate "false" clustrizations. This means
that a circumstance might occur that leads to nonuniqueness of the selection. Several "false"
clusterizations will be chosen along with the required consistent clusterizations. In these
situations, regularization is necessary to filter out false clusterizations.

When the consistency criterion is used in sorting, a small number of clusterizations is
found from which the most consistent one is selected—unique for each level of noise vari-
ance. For regularization, it is suggested that one use the consistent criterion once more, but
employ a different method of forming it. To obtain a unique sample while sorting and using
the consistency criterion, only a small number of clusterizations should be taken—chosen
by an auxiliary unimodal criterion. Such an auxiliary, regularizing criterion is provided
by a consistency criterion calculated on the other data sets C and D. For consistency of
clusterizations, the patterns of point divisions into A and fi, as well as C and D must com-
pletely coincide. In addition to this, the optimal consistent clusterization must be unique.
If more than one clusterization are obtained, then the regularization must be continued by
introducing another two-subselections until a single answer is obtained. If the computer
declares that there are no consistent clusterizations, then the sorting domain is extended by
introducing new attributes and their covariances (higher order of the terms), introducing
their values with delayed values in order to find a unique consistent clusterization.

High effectiveness of inductive algorithms

As in self-organization modeling, the model with optimal complexity does not coincide
with the expert's opinions. The best cluster, being consistent and optimal according to
the regularity precision, does not coincide with a priori specified expert decisions. Expert
decisions are related to complete and exact data. The self-organization clustering that
considers the effect of noise in the data, reduces the number of symptoms in the ensemble
and the number of clusters. The greater the noise variance, the greater will be the reduction
in the number. The computer takes the role of arbiter and judge in specific decisions
concerning the results of modeling, predictions and clustering analysis of incomplete and
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noisy data. This explains the presence of the word "computer" in the name "objective
computer clusterization."

It is simply amazing how much world-wide effort has been spent on building the most
complex theories oriented toward, surely, the hopeless business of finding a physical model
and its equivalent exact clusterizations by investigating only the domain of overcomplex
structures. The revolution associated with the emergence of the inductive learning approach
consists of the problem of identification of a physical model and clusterization. The prob-
lems of prediction are solved in the other direction—of proceeding from undercomplex
biased estimates and structures. Optimal biased models and clusterizations are directly rec-
ommended for prediction. Advancements in this direction propose a procedure for plotting
the "locus of the minima" (LM) of external criteria for identification of the physical model
and true clusterization.

Calculation and extrapolation of locus of the minima

The analogy between the theory of self-organization modeling and the theory of self-
organization clustering can be continued to find optimal undercomplex clusterizations. One
can use either search for variants according to external criteria or calculation of the locus
of the minima of these criteria.

The calculation and extrapolation of the locus of the minima of external criteria is an
effective method of establishing true clusterization from noisy or incomplete data. A special
procedure for extrapolating the locus of the minima or the use of the canonical form of the
criterion is recommended in various works [138] and [45] for finding a physical model or
an exact clusterization. (Refer to Chapter 3 for the procedures in case of ideal criteria.)
One can only imagine the effect of the analytical calculation of the locus of the minima on
various criteria. This is calculated for a number of values of the variance and for various
distributions of perturbation probabilities.

Usage of canonical form of the criterion for extrapolating LM. All the quadratic criteria
can be transformed into a normalized canonical form by dividing the trace of the matrix of
the criterion. The criterion is expressed as follows.

(5.2)

where CR indicates an external criterion in the canonical form. Y and YT are the output
vector and its transpose, correspondingly. is the canonical matrix of the criterion for
different structural complexities.

The mathematical expectation of the criterion for all the models is

(5.3)

For example, SQ corresponds to a physical model, then

and Ss corresponding to a nonphysical model, then

(5.4)

Hence,
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Theorem. The minimum of the mathematical expectation of the criterion in canonical
form for nonphysical models is greater than it is for a physical model [138].

It is shown that all the criteria in canonical form create LM which coincides with the
ordinate of the physical model (Figure 5.5). From a geometric point of view, transformation
of the criterion to canonical form means rotation of the coordinate axes around the point
SQ and some small nonlinear transformation of the coordinate scale. Figure 5.5 exhibits the
locus of the minima: (a) for an external criterion with the usual form and (b) for its canonical
form taking the values of CR/ trS. This shows that with the use of the canonical form of
the criteria, one can find a model in optimal complexity without adding any auxiliary noise
to the data.

The choice of a rule for restoring the actual or physical model depends on the number of
candidate models subject to descrimination, the perturbation level, and the type of criterion.

First rule. If the number of candidate models and the perturbation level are so small that
the noise level a2 is not exceeded; there is no need for special procedures. The actual
clustering is found by using the consistency criterion.

Second rule. If the number of models or candidate clusterings and the perturbation level
are comparatively large, a "jump" to the left by the locus of the minima is observed (Figure
5.5a). By imposing supplementary noise on the data sample, one can find several points
of the envelope of locus of the minima and use its extrapolation to determine the physical
model or actual clustering [45].

Third rule. Addition of auxiliary noise is not needed if the criterion is transformed into
canonical form. The ordinate of the minimum of the canonical criterion will indicate the
optimal structure (or template) of the physical model or of the clustering if the perturbation
variance is within considerable limits (Figure 5.5b).

Asymptotic theory of criteria and templates

In Chapter 3, we discussed the asymptotic properties of certain external criteria. For the
mathematical expectation of the external criterion with an infinitely long data sample, the
characteristic of the criterion-template sorting is unimodal which is required according to
the principle of self-organization. One should not conclude from this result that every
time-averaging of the criteria is well only in asymptotic behavior. But unimodality is
attained considerably within the limits for a sample length of five to ten correlation intervals;
however, a more accurate estimate of the required time-averaging of the criteria is to be
found analytically—a subject of theoretical interest.

Asymptotic theory of templates is also not yet developed, although it has been estab-
lished experimentally. The gradual increase in the number of models according to a specific
template leads to an increase in the probability (number of occurrences) of attaining uni-
modality. Figure 5.6 demonstrates the proposed dependence using the consistency criterion
in the plane of "perturbation variants-template complexity."

The future asymptotic theory of templates requires the investigation of the behavior
not of the average line of criterion variation, as one selects out of each cluster of feature
variants that comes for sorting only one model—the best. This is done by distinguishing
among the patterns of variation using a partial, solitary, and overall consistency criteria. For
features with noiseless data in clusterizations, the partial nonoverall consistency criterion
is identically equal to zero for the entire duration of sorting if the subsamples A and B
are close to each other, but nonetheless distinct. The interval of the zero values of the
consistency criterion shrinks with sufficiently high probability as the perturbation variance
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(a)

(b)

Figure 5.5. Locus of minima (LM) in transition (a) to the ordinary, and (b) to the canonical forms
of the criteria, depending on model complexity S and noise dispersion a.
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Figure 5.6. Proposed change in probability P of attaining unimodality of the consistency criterion:
(1) region of loss of unimodality, (2) region of unimodality without extension of determination, (3)
region in which extension of determination required

increases. When it becomes sufficiently small to distinguish between the templates, it
becomes expedient to extend the sorting by using an accuracy criterion or a series of
consistency criteria calculated for various partitions of data sample. For a larger perturbation
variance, it will be in the region of unimodality of a solitary criterion, where a larger
perturbation variance is required for more complex templates. Strictly speaking, this serves
as the basis for the asymptotic theory of templates. For excessively large perturbations, it
becomes impossible to find an optimal consistent model or clusterization, since the regular
nature of the curve disappears (Figure 5.6).

2 METHODS OF SELF-ORGANIZATION CLUSTERING

Unlike the sorting of partial models, which is almost always obtained, the sorting of clusters
can be implemented only for a sufficiently large number of points that are located favorably
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in the symptoms (variables). The importance of special experimental designs are enhanced
in this section.

If there are m symptoms, one can construct 2m different ensembles and evaluate them by
a suitable external criterion; for example, regularity criterion for an accurate approach and
the system criterion of consistency for a robust approach. This corresponds to unsupervised
learning because of the absence of specific objectives. If the objective is specified as
the ensembles are grouped to a known target function, then it corresponds to supervised
learning. The self-organization clustering methods vary according to the techniques used
for the reduction of computational volume.

The first method is a selection-type of sorting method based on unsupervised learning
[39]. At the first step, all the symptoms at the time of succession are evaluated by the
specified basic criterion and the best of F (freedom-of-choice) are chosen (for example,
F = 3 and the symptoms are x\,x-] and JCQ). At the second step, all the ensembles that
contain two symptoms are evaluated. These ensembles include all the symptoms selected
at the first step.

(5.6)

The/7best ensembles (for example, F = 3, and they are X\X~I,XT,X-I, and x\xi) are selected. At
the third step, the ensembles that have three symptoms by including the ensembles selected
at the second step are evaluated. This evaluation continues until the 3 x m ensembles are
selected.

The second method, which is based on correlation analysis [70], is suitable for the
precision in the approach. Here, one can obtain a series of m symptoms which range
according to their effectiveness; only m different ensembles are evaluated by the criterion.

The third method uses one of the basic inductive learning algorithms, either combinatorial
or multi-layer, to find m effective ensembles. For example, one can use a device like
combinatorial type of "structure of functions" for generating all combinations of ensembles
by limiting the number of symptoms. The consistent criterion is used with the data sequences
of A and B that are close to each other.

The latter two methods correspond to the supervised learning (learning with teacher)
because they use information about the output vector Y based on the comparison among
the actual and the estimated data. One way of doing this is by specifying the output data
from the experiment and another way is by using the orthogonal Karhunen-Loeve projection
method for obtaining the artificial data.

The above methods does not limit the scope of all possibilities. They are feasible
only when the unimodality characteristic of the "criterion-clustering complexity" is ensured.
These we see in detail below.

2.1 Objective clustering—case of unsupervised learning

There are various computer algorithms that have been proposed for separating a set of
ensembles or clusters given in a multidimensional space of variables or symptoms. This
includes the classical algorithm of ISODATA (Iterative Self-Organizing Data Analysis Tech-
niques Algorithm) [124] that is based on comparing all possible clusters using the minimum
distance criterion. In this program, the number of clusters are specified in advance by the
expert.

Objective clustering is envisaged by the inductive approach in which a gradual increase
in the number of clusters is specified to the computer and are compared according to the



METHODS OF SELF-ORGANIZATION CLUSTERING 179

consistent criterion. In separating a multidimensional data space into clusters, the consistent
criterion may, for example, stipulate that the partitioned clusters differ from one another
as little as possible as they are partitioned according to the odd and even-indexed points
of initial data. As is well known, typographical images of some pattern consist of dots.
Even when the even or odd dots are excluded, it preserves the image with large numbers of
initial data points. If the original image is chaotic; i.e., even if it contains no information
conforming to some law, the criterion allows discovery of a physical law.

The object or image is given in a multidimensional space represented in the form of
observation data with symptoms xi,X2,---,xm. The first part of the problem consists of
dividing the space into a specified number of regions or clusters using the measurements
of distance between the points [124]. The number of clusters is specified in advance by
the experts. Self-organization involves iteration of such clusterings for various numbers of
clusters from k = 2 to k = N/2, where N is the number of data points. It also invloves
comparison of results by the consistent criterion—non-contradictory clusters are selected.
A single-valued choice is achieved by regularization. Here regularization is selecting the
single most appropriate cluster from several non-contradictory clusterings indicated by the
computer. The role of regularization criterion is to use the minimizing function which takes
into account the number of k and number of variables or symptoms m according to the
computer's and expert's clusterings.

(5.7)

where kexp is the number of clusters specified by the expert and kcomp is the number of
clusters in the process of computer clustering.

If kexp is known, then the computer completes the determination of clusters—for example,
by using the function L = k/m. This is also determined by other relations, in case it is
required by agreeing results on three equal parts of the selection.

Even if the kexp is not known, one can use the consistent criterion calculated in other
parts of the data sample. It evaluates the degree of non-contradiction on various clusters
and helps to choose the best one.

Example 1. Clustering of water quality indices (one-dimensional problem).
The initial data contain the following variables: x\—suspended matter in mg/liter, X2—

chemical consumption of oxygen (CCO), JC3—mineralization in mg/liter, x$—carbohydrates
in mg/liter, and ^5—sulphates in mg/liter. The data is normalized according to the formula

X; —X;

-. The measurements are averaged on seven years of data for each

station. The data sets A and B include all stations with even and odd numbers, respectively.
The algorithm is confronted with the problem of isolating all non-contradictory clusterings

using the given set of variables and all subsets which could be obtained from them. Thus,
the water quality expert could choose the most valid clustering and find the number of
clusters and the set of variables that are optimal under given conditions. It computes the
value of the criterion for all possible combinations of the set of given variables. In this case
the validity of clustering is not verified because of the absence of expert clustering. The
sorting process showed that it is not possible to obtain a non-contradictory cluster using
all five variables. For each identified cluster, the centers and boundaries are found and
the water quality at the given station using the corresponding variables from the cluster is
computed.

Example 2. Clustering of water quality along the series of water stations along a river
system.
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In this case, expert clustering is known. It is established based on the information
available on ecologic-sanitary classification of the quality of surface waters of dry land. It
differs from certain variables which are absent from the data (out of total of 21 variables,
only 14 participated in the example). The data of 14 variables is normalized and separated
into two sets A and B.

The number of clusters specified by experts is k = 9 with the variables m = 14. There
is no single set of variables chosen from the given 14 variables which would yield a non-
contradictory partition of the stations into nine clusters as required by the experts. This
means that the expert cluster is contradictory.

Non-contradictory partitions into eight clusters are given by a comparatively small num-
ber of variables which include Many sets of vari-
ables give non-contradictory partitions into seven clusters; eight such sets are

and 22 sets—each having three variables (from x\x2x^ to
x\x\2X\4). The following three sets each with 10 variables give a partition which is closest
to one of the expert's clusterings:

The sets with higher number of variables (11, 12, 13 and 14) do not increase the number
of clusters. The set of variables m = 9 is denoted as optimal in this example which gives
a non-contradictory partition into seven clusters. The boundaries, the stations making up
their composition, and the cluster centers are indicated for all non-contradictory clusters for
further analysis of water quality.

2.2 Objective clustering—case of supervised learning

Classification, recognition, and clusterization of classes are similar names given for process-
ing a measured input data. The space of measured data for input attributes X ( x \ , X 2 , • • • , ,vm)
with a given space of output Y(y\,y2, • • • ,>'/) representing a target or goal function (where

m) is common in these algorithms. The problem task is to divide both spaces into cer-
tain subspaces or clusters to establish a correspondence between the clusters of the attribute
space and goal function space X <-+ Y.

Unlike in traditional subjective algorithms, the number of clusters are not specified in
advance in objective clustering, but the number of clusters is chosen by the computer so
that clusterization is consistent. This means that it remains the same in different parts of
the initial input data. This number is reduced to preserve the consistency in case of noisy
and incomplete data.

As it is mentioned earlier, the objective computer clustering is based on the search for
the variants of ensemble of attributes and the number of clusters using the consistency
criterion on the given measured data assuming certain errors. The algorithm gives the
consistent clusterizations while all existing measurements are distributed over the clusters.
The new measurements that do not participate in the clustering also belong to certain cluster,
according to the nearest neighbor rule, or according to the minimum-distance rule from the
center of the cluster.

The search for the attribute ensembles and for the number of clusters leads to multiple
solutions: several variants of ensembles giving consistent clusterizations are found on the
plane "ensemble of attributes-number of clusters." This is solved by further determination
of consistent clusterings using some second-level criterion or by inquiring from experts.
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Table 5.1. Initial Data

No.
1
2
3
4
5

19
20
21
22
23
24

37
38
39
40

X]

2.131
2.031
2.076
2.084
2.057

2.109
2.143
2.115
2.150
1.919
2.046

2.005
2.047
2.013
2.123

X2

10.41
9.797
9.892
10.09
9.816

10.05
10.52
10.24
10.45
9.295
9.840

9.631
9.937
9.864
10.37

*3

69.22
69.26
69.06
69.02
68.97

68.81
68.76
68.77
68.71
68.66
68.63

68.01
68.06
68.06
68.03

X4

73.52
74.10
73.42
73.36
73.32

73.16
73.01
73.07
73.10
73.06
73.06

72.33
72.43
72.42
72.42

*5

4.43
4.84
4.36
4.34
4.45

4.31
4.25
4.30
4.39
4.40
4.43

4.32
4.37
4.36
4.39

y
12.23
11.86
11.72
11.83
11.47

12.05
12.48
12.22
12.38
10.96
11.64

11.50
11.67
11.60
12.30

Example 3. Objective clustering of the process of rolling of tubes [71].
Here the problem of objective partitioning of an m-dimensional space of features

• • -, xm into clusters corresponding to compact groups of images is considered; each image
is defined by a data sample of observations.

Objective clustering of images (data points) is done based on sorting a set of candidate
clusterings using the consistency criterion to choose the optimally consistent clusterings.
The data is divided into four subsets: Ar\B and CnD. Here the concept of dipoles (pairs of
points close to each other) is used; one vertex of a dipole goes into one subsample and the
other into another. Thus, the greatest possible closeness of points forming the subsamples
is achieved. This example demonstrates the various stages of self-organization clustering
algorithm which does not require computations of the mean square distances between the
points.

The table of initial data is given (Table 5.1), where x\ is the length of the blank, x2 is
the length of the tube after the first pass, ;c3 and *4 are the distances between the rollers in
front of the two passes, x$ (= x<\ — XT,) is the change in distance between the rollers, and

is the length of the tube.
The objective clustering is conducted in the five-dimensional space of the features

The clustering for which we obtain the deepest minimum of the consistency
criterion is the optimal one. The stage-wise analysis of the algorithm is shown below.

Stage 1. To compute the table of interpoint distances. The first TV = 34 data points from
the 40 points of the original sample are used to form the subsets The
remaining six points are kept as testing sample to check the final results of clustering and
for establishing the connection between the output variable y and the cluster numbers. The
initial data table is represented as a matrix
(here N = 34 and m = 5).
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Table 5.2. Interpoint distances between dipoles

No.
1
2
3
4
5
6

32
33
34

1
0

2
1.015

0

3
0.310
0.743

0

4
0.171
0.943
0.449

0

5
0.484
0.845

0.0325
0.092

0

6
0.344
1.434
0.399
0.636
0.318

0

32
3.779
5.211
2.547
2.503
2.115
1.990

0

33
1.952
2.339
1.195
1.150
0.895
1.465

0.966
0

34
3.484
5.376
2.561
2.391
2.169
2.361

0.111
0.954

0

The interpoint distances are calculated as

The results are shown in the Table 5.2.

(5.8)

Stage 2. To determine the pairs of closest points and partition into subsets. The clusterings
are to be identified in the two subsets of AC\B and CflD. Thus, the coincidence of clusters
is required, indicating that they are consistent. This leads to the attainment of a unique
choice of consistent clustering.

The subsets A n B and C n D are formed using the values of the dipoles. The dipoles
are arranged in increasing length: for N = 34, there are N(N — l)/2 = 561 dipoles. The
shortest dipoles are exhibited as

1) 11 0.0020 14, 2) 12 0.0038 13, 3)23 0.0850 25, ...

To form the subsets A and B, the shortest dipoles are chosen in such a
way that the data points are not repeated. In this specific example, it turns out that these 16
dipoles are obtained from the first 389 dipoles; the 17th dipole which satisfies the condition
is obtained at the end of the series; i.e., the 561st dipole connects the points 2 and 34 at a
length of = 5.376 units.

The following 16 shortest dipoles belong to the subsamples A and B.

From the remaining dipoles, the 16 shortest dipoles are chosen in an analogous manner to
form the subsamples C and D.
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The dipoles obtained in this way enable the formation of the set of points into the subsets
A, fl, C, and D.

A : 11,12,25,26, 16,15, 8,24,20,7,34,29,18,21,4, 30;
B : 14,13,23,27,19,10, 5, 17,22,3,31,33,6,9,1,28;
C : 23,21,16,10,14,19,5,22, 31,24,7, 34,27,25, 33,1;
D : 18,13,17,8,15,12,3,9,30,11,4,32,20,6,26,2.

Stage 3 To sort the clusterings according to the consistency criterion.
The following steps are followed:

1. Grouping the subsets into 16 clusters (k - 16). The points in subsets A and B are
indexed from 1 to 16 as vertex numbers, indicating a group of 16 clusters shown
below:

Number of corresponding vertices or clusters:

A* =1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 16.

In each subset A or B, the upper row denotes the actual data point and the lower row
denotes the number of the vertex of the dipole. If the number of the vertices coincide,
then those vertices are called "corresponding" vertices. Here, all vertices of subset
A correspond to the vertices of the subset B. The consistency criterion is computed
as r\c = (p — A/:)//? = (16 — 16)/16 = 0, where p is considered the total number of
vertices and A/: is the corresponding vertices which coincide.

2. Grouping the subsets into 15 clusters (k - 15). Tables of interpoint distances are to be
compiled for the points of each subset A and B (Tables 5.3 and 5.4, correspondingly).
Points 2-14 in subset A and points 1-8 in subset B are the closest to each other.

For the evaluation of the consistency criterion, it is grouped into 15 clusters in the
following form.

Number of corresponding vertices:

A*=0+0+1+1+1+1+1+0+1+1+1+1+1+0+1+1=12.

The double number of the vertices indicate the formation of a cluster consisting of
two points. Having the corresponding vertices as Afc = 12, the consistency criterion
is r/c = (16- 12)/16 = 0.25.
Grouping the subsets into 14 clusters (k = 14). Again the tables of interpoint distances
are compiled, considering the formed clusters from the previous step. According to
the nearest neighbor method, the distance from a cluster to a point is taken to be the



Table 5.3. Interpoint distances for subset A

No.
11
12
25
26
16
15
8

24
20
7
34
29
18
21
4
30

11
0

12
0.184

0

25
0.363
1.021

0

26
0.219
0.141
0.782

0

16
0.098
0.047
0.694
0.052

0

15
0.032
0.189
0.343
0.205
0.081

0

8
0.044
0.216
0.429
0.342
0.151
0.039

0

24
0.067
0.216
0.358
0.093
0.065
0.047
0.139

0

20
0.572
0.142
1.697
0.223
0.248
0.597
0.683
0.524

0

7
0.107
0.238
0.614
0.465
0.225
0.135
0.042
0.264
0.716

0

34
1.510
1.766
1.424
0.956
1.385
1.586
1.934
1.109
1.649
2.298

0

29
0.929
1.213
0.711
0.600
0.803
0.782
1.119
0.521
1.467
1.417
0.671

0

18
0.290
0.915
0.026
0.791
0.637
0.301
0.307
0.348
1.631
0.451
1.726
0.897

0

21
0.221
0.022
1.047
0.075
0.046
0.234
0.295
0.201
0.085
0.346
1.461
1.078
0.979

0

4
0.193
0.077
1.005
0.359
0.145
0.179
0.130
0.314
0.386
0.108
2.391
1.519
0.827
0.171

0

30
0.952
1.028
1.222
0.425
0.740
0.965
1.283
0.598
0.939
1.568
0.136
1.376
1.337
0.799
1.544

0



Table 5.4. Interpoint distances for subset B

No.
14
13
23
27
19
10
5
17
22
3

31
33
6
9
1

28

14
0

13
0.173

0

23
0.315
0.938

0

27
0.173
0.108
0.734

0

19
0.065
0.029
0.647
0.081

0

10
0.048
0.305
0.243
0.338
0.167

0

5
0.078
0.214
0.455
0.334
0.128
0.034

0

17
0.027
0.102
0.438
0.099
0.028
0.077
0.084

0

22
0.446
0.092
1.392
0.134
0.182
0.640
0.531
0.288

0

3
0.152
0.208
0.672
0.452
0.158
0.125
0.0325
0.160
0.542

0

31
1.156
1.404
1.156
0.738
1.220
1.412
1.718
1.099
1.296
2.086

0

33
0.739
0.918
0.802
0.533
0.765
0.723
0.895
0.580
0.862
1.195
0.606

0

6
0.296
0.849
0.185
0.900
0.608
0.218
0.318
0.475
1.442
0.399
1.966
1.465

0

9
0.623
0.144
1.764
0.291
0.288
0.841
0.663
0.451
0.036
0.612
1.729
1.231
1.691

0

1
0.685
0.292
1.823
0.746
0.427
0.761
0.484
0.590
0.446
0.310
2.968
1.952
0.344
0.323

0

28
1.021
0.946
1.546
0.522
0.924
1.362
1.503
0.958
0.801
1.745
0.410
1.108
2.014
1.040
2.117

0
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smaller of the two distances. For example, the distance from point 1 to cluster 2,14 is
the smaller of the two quantities d\-2 = 0.184 and d\-\^ = 0.221; ie., ^1-2,14 = 0.184.
Thus, the closest points to each other are 3-13 (subset A) and 5-1,8 (subset /?)•

The third candidate is grouped into 14 clusters of the form

Number of corresponding vertices:

A£ = 0 + 0 + 0 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 1 + 1+0 + 0-1-1 + 1 = 9

and ric = (16 -9)/16 = 0.437.
4. Fourth and subsequent steps. Continuation of the partitioning of the subsets into

clusters and evaluation by consistency criterion is followed from k = 13 to k = 2.
For the last two clusterings; i.e., in case of k = 2, rjc = (16 — 16)/16 = 0, and in

case of k = 3, rjc = (16 - 16)/16 = 0.

All groupings of the clusterings is complete. From the above evaluation, the consistent
clusterings for k = 2, 3, and 16 can be chosen because rjc = 0 in these groupings.

One can note that if the table of interpoint distances consists of two equal numbers,
then the number of clusters changes by two units. To avoid this, one must either raise the
accuracy of the measurement distances in such a way that there will not be equal numbers
in the table, or skip the given step of sorting of clusterings in one of the subsets. The
consistency criterion is used only when the number of clusters is the same on two subsets
A nB and CD/); otherwise, the amount of sorting increases and it ends up with bad results.

To reduce the computational time of the algorithm, the comparison of the variants of the
clusterings can be started with eight clusters instead of 16 clusters. This means that at the
first step the points are not combined by two, but by eight points.

Stage 4. Repetition of clustering analysis on subsets A and B for all possible sets of
variable attributes (scales) and compilation of the resulting charts (Figure 5.7a).

The cluster analysis described above should be repeated for all possible compositions
of the variable attributes. As there are m = 5 attributes, there are altogether 25 — 1 = 31
variants. The dots in the figure indicate the most consistent clusterings which are obtained
on the subsets A and B.

Stage 5. To single out the unique consistent clustering with the aid of experts or by using
the subsets C and D (regularization).

It is desirable to choose a single most consistent one from the clusterings obtained on
the subsets A and B. This can be done in two ways: One way of singling out is with the
help of experts for whom examination of a small number of variants of clusterings does
not constitute any great difficulty. The unique clustering suggested by the expert might not
be the most consistent clustering, but merely one of the sufficiently consistent clustering.
Another way is by repeating the clustering analysis on subsets C and D to obtain a clustering
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Figure 5.7. Results of search for the most consistent clusterings on (a) subsamples A and B and (b)
subsamples C and D

that will prove to be sufficiently consistent both for the subsets A n B and C n D. Figure
5.7b shows the results of choice of consistent clusterings on subsets C and D. The value of
the consistency criterion for the clustering corresponding to the point O2 is zero both on the
subsets A n B and C H D. For the clustering O\, it is zero only for C n D. Here clustering
02 is considered to be the true most consistent ones.

If unique clustering is not obtained, the points are further divided into three equal subsets,
thus forming another consistency criterion and so on until the goal of the regularization—a
single consistent clustering—is achieved.

Figure 5.7 shows less than eight clusters (out of the 16 possible ones) along the abscissa,
since further increase in their number yields an inadmissibly small mean number of points
in each of them (total 34 points are subjected to grouping in clusters).

For reducing the sorting of attributes, it is recommended that

1. the attribute sets for which half or more of the dipoles on A n B (or C n D) do not
coincide are not considered, and

2. for analysis on subsets C and D, one considers only those attribute sets for which
small values of the criterion during the analysis on the subsets A and B are obtained.

Stage 6. Results of the two clusterings corresponding to O\ and 02-
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Corresponding to the point O\, three clusters are obtained with respect to four scales of
attributes x\,x2,xi, and x4. The points of the original data sample are distributed among
the clusters as below (the point numbers and the mean values of the output variable y are
given):

Corresponding to the point #2, six clusters are obtained with respect to the two scales of
attributes x\ and KI-

Stage 7. To check the optimal clustering using the checking sample of data points (35 to
40) according to the prediction accuracy of required quality of the tube length.

The single consistent clustering can be used to predict the output variable y from the
cluster number. For example, let us consider the three clusters corresponding to the point
O\ with the attributes x\,X2,X3, and (the three clusters with the point numbers and mean
values of the variable y are given above). The mean values of y are arranged in an increasing
order and the regression line for y according to the groupings of clusters N is given in Figure
5.8. A new point belongs to the cluster for which the distance from it to the closest point
of the cluster is least; knowing the cluster, the estimated value of y can be obtained from
the figure. This type of prediction is checked for the testing sample points 35 to 40. Out
of six points, five are correctly predicted.

2.3 Unimodality—"criterion-clustering complexity"

We understand that the experimental design is feasible only when the unimodality of the
"criterion-clustering complexity" characteristic is ensured. This can be done in three ways to
determine the optimal consistent clustering: (i) extend the cluster analysis using a regularity
criterion for further precision, (ii) design the cluster analysis for using a overall or system
criterion of consistency by increasing the number of summed partial consistency criteria,
and (iii) design the experiment by applying a supplementary noise to the data.

The applicability of the first method is demonstrated in the preceding example.
The second method of attaining unimodality is when an increase in the number of partial

criteria which constitute the overall consistency criterion reduces the number of consistent
clusterings from which an optimal one is to be selected. Specially designing the experiment
can make this method very efficient in yielding a single consistent clusterization. The
following example demonstrates the usefulness of this method.

Example 4. Investigation of the consistent criterion by computational experiments [69].
Here is a test example to clarify whether (i) it is possible to select a data sample such
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Mean length
of strip (m)

11

10

N clusters

Figure 5.8. Regression line for prediction of mean strip length for the cluster number N for the set

that sorting of clusterings by the consistency criterion yields a unique solution and (ii) the
overall consistency criterion leads to a unique solution.

The consistency criterion is expressed as r)c = (k — A&)//:, where k is the number of
clusters and A& is the number of identical clusters in the subsets A and B.

According to the procedure involved in the experimental design of cluster analysis,
the original data sample is divided into two equal parts by ranking their distances from
the coordinate origin. Then the consistent clusterings are found by complete sorting of
hypotheses about the number of clusters, proceeding from k = N/2 to a single cluster,
where TV is the total number of points in the data sample. The initial data sample along
with their ranked distances are given in Table 5.5 and in Figure 5.9, where, for simplicity,
two variants of ten points (N = 10) on the plane of two attributes are shown.

Figure 5,10 shows the procedure for sorting of clusters using the tables of interpoint
distances for subsets A and B.

For each transition from one number of clusters to another, the tables of interpoint
distances for each subset are rewritten such that the newly formed row in the table contains
(when the poles of the dipoles are united) the shortest distance in the two cells of the
preceding table. The poles of the dipoles are united in pairs for each hypothesis according
to the minimum of the criterion of interpoint distance in this example.

The subsets A and B are taken into two equal parts. This is represented as an original



190 CLUSTERIZATION AND RECOGNITION

7,A,II

9.A.V

10.B.V

10,A,V

Figure 5.9. Location of the points of the two samples A, B in the plane; I, II, ..., V are the address
of dipoles
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Table 5.5. Two samples of initial data ranked by distances

No.

1
2
3
4
5
6
7
8
9
10

First sample of points
xi

0.00
0.00

-2.32
2.80

-2.70
2.60

-4.61
-4.70

5.50
5.85

*2
0.40

-0.40
-0.69

0.68
-1.25

1.60
0.93
0.25
0.60

-0.75

x\2+x2
2

0.16
0.16
5.86
8.30
8.85
9.32

22.12
22.15
30.61
34.78

Second

*t
0.00
0.00

-2.48
2.54

-2.76
2.52

-4.40
4.76

-4.99
5.44

sample of points
x2

0.40
-0.40
-0.69
0.785

-1.32
1.78
0.90

-0.10
0.99
0.75

n~ Uj

X^+X^
0.16
0.16
6.62
7.07
9.36
9.52

20.17
22.67
25.88
30.16

code:

(a) k = 4:

(b) * = 3:

(c) k = 2:

It is known that the consistency criterion indicates the false consistent clusterings with
the actual consistent clusterings. The false consistent clusterings; i.e., false zeros of the
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Figure 5.10. Calculation of consistency criterion on the two equal parts of the data sample

criterion can be removed by (i) a special experimental design, the purpose of which is to
form a data sample for which the criterion does not indicate false zeros and (ii) using the
overall consistent criterion, which is equal to the sum of partial criteria obtained for different
compositions of subsets A and B.

To sort among the hypotheses, the notations are introduced for the original data sample
and to the subsets (vertex numbers) as below:
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where / — V are the dipole addresses and 00000 is the initial code for the sample. A dipole
is a two-point subsample. Selected dipoles have the shortest dimension of all the feasible
points of the considered sample. The code changes if the corresponding dipole changes the
pole addresses in the subsets. For example,

The partial consistency criteria are calculated for all the variants of subset composition, and
their dependencies on the number of clusters are constructed. As shown in Figure 5.11,
some partitioning variants for the first sample of data points do indeed yield false zeros.
This gives rise to the problem of removing false zeros of the false clusterings. Repetition
of the experiment with the second sample of the data points showed that none of the 16
characteristics yields false zeros.

In this example, the consistency criterion for the selected original data sample is uni-
modal. One can see from Figure 5.9 that a very small variation in the locations of the
sample points disturbs the unimodality. So, the above experimental design aimed at attain-
ing criterion unimodality may lead to the required result, although it is still very sensitive.
This means that a small deviation in the data leads to the formation of false value of the
criterion.

Overall consistency criterion

The overall consistency criterion is the sum of the values of the partial criteria obtained for
all possible compositions of subsets A and B.

(5.9)

where
Figure 5.11 demonstrates the performance of the overall consistency criterion, which does

not lead to the formation of false zeros for various numbers of clusters. The experiment
explains the physical meaning of the stability of the overall criterion and substantiates the
basic conclusions of the coding theory as follows:

• if the overall criterion does not lead to the formation of complete zeros, then among
the partial codes there is at least one that ensures the same result;

• if at least one of the codes does not form false zeros, then the overall code will also
be effective; and

• for a complete sorting of the codes, one necessarily finds a partitioning into parts that
leads to false zeros (the unsuccessful partitioning).

Apparently, one can apply the optimal coding theory, developed in the communication
theory, for determining the optimal partitioning of a data sample into subsamples.

The goal of the experimental design is to attain the global minimum among the mod-
els. The high sensitivity to small variations in the input data and absence of unimodality
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Figure 5.11. Dependence of the criterion on the number of clusters for various compositions of
subsamples A and B

are characteristic symptoms of the noncorrectness of the problem of selecting a model or
clusterization on the basis of a single consistency criterion. The transition to an overall
consistency criterion can be viewed as one possible regularization method. With a robust
approach as demonstrated above, the main goal must be the attainment of the unimodality
of the consistency criterion. Sometimes, the use of the overall criterion might be insufficient
in removing all the composite zeros, even for all possible partitions of the data sample into
two subsets. This can be avoided by further splitting the data into subsets.

The third method of attaining unimodality consists of superimposing an auxiliary normal
noise to the data sample. Its variance is increased until the most noise-immune consistent
clusterization as the "locus of the minima" is achieved. One can obtain consistent clusteri-
zation without extending the experiment for regularization by the precision criterion or by
experts.

Further development of this method is done by appling the canonical form of the external
criterion. The locus of the minimum of the criterion coincides with the coordinates of the
optimal design of the experiments and the optimal model structure. The Shannon-bias as
displacement of the criterion becomes zero for all the designs and structures. This leads to
a new dimension of research which will be discussed in detail in our future works.

3 OBJECTIVE COMPUTER CLUSTERING ALGORITHM

The objective computer clustering (OCC) algorithm in a generalized form is given here.
The algorithm consists of the following blocks.
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Block 1. Normalization of variables

Normalization is done here for the input variables measured at N time in-
stances as

(5.10)

where ,j= 1,2, • • • , m are the mean values of corresponding variables;
are the normalized values. This can be done not only from the mean value

but also from a trend of the variable. It is also useful to extend the table of attributes with
the additional generalized attributes such as

(5.11)

where
In addition to the input attributes, information about the goal function can be included

into the original data in the form of columns with the deviated data of the output variables
where ml; and ml is the total number of primary and generalized

attributes. The information about the goal function is very useful for reducing the amount
of cluster search. In many clustering problems the dimension of the space / of the goal
function is known: constant. If it is not specified, it can be determined by the successive
test of Karhunen-Loeve projection on to an axis, a plane, a cube, etc. or by means of the
component analysis.

This is justified as follows: The modeler, while compiling the table of data, knows the
goal function without fully realizing it. There necessarily exists certain axes like "good-
bad," "strong-weak," "much-little," etc. These correspond to the axes serving as orthogonal
projection. The space of the goal function in certain cases is two-dimensional or three-
dimensional. For example, clustering of atmospheric circulation, is distinguished between
two axes: the "form" and "type" of circulation; the Karhunen-Loeve orthogonal projection
is applied on two variables Y(y\,y2).

Sub-block 1a: Choose dimension of goal function

The clustering target function may be expressed by a particular vector of qualities, rather
than by a scalar value. In most complex clustering problems, it is necessary to derive a
complete quality vector

There is a sample of observations Experts maintain that the target
function (at any rate, one of its components—the target index) may be determined from the
variance formula:

(5.12)

where is the mean value of the /th attribute.
The above formula represents the Karhunen-Loeve discrete transformation in the case

where m-dimensional space of factors is mapped into one average point ("center of gravity"
point, if each of the constituents has an identical mass), and the target formula is represented
as a single scalar value [137]. This way, more information is retained in projecting points
of an m-dimensional space onto a single axis y, although it remains a scalar quantity. The
y-axis is chosen in such a way that (i) it passes through the "center of gravity" of points
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that is the origin of the attributes jt,-, and (ii) the axis direction in the m-dimensional space
is such that the points have minimum moment of inertia around the y-axis.

In the same way, even more information is retained in projecting the m-dimensional
measurement space onto a two-, three-, or more dimensional spaces, to the state of projecting
it on itself and not loose information. To reduce the number of computations involved in
these operations, one can limit the comparisons of Karhunen-Loeve transformations to the
final stage at the point on the axis or on the two-dimensional plane. The target function
will be two-dimensional K(yi,y2), which is enough for many problems. The joint space
attributes correspond to the vector of XY(x\,X2,-• • ,xm,y\,y2). This might be excessive
for the optimal number of dimensions of the goal space in specific practical purposes. An
optimal number of measurements for the target function space is determined by comparing
the versions of the best number of coordinates that leads to consistent and accurate clusters,
and by positioning these closer to the number of clusters E specified by an expert.

A way of estimating the target index. An estimation method for a single dimensional axis
is developed as given below. The equation for the y-axis takes the form

(5.13)

where are the components of the unique target vector. The moment of inertia
is computed using the following criterion as

(5.14)

which amounts to the selection of The second term in the criterion Jmj is
maximal as max, with the constraints 1. The parameters

are found iteratively using the initial approximation of
This gives an equation for the y-axis. The projection of data points on the y-axis

are then found. The hyperplane passing through the ith point perpendicular to the y-axis
takes the orthogonal form

(5.15)

The coordinates for the projection are determined while solving the above equation
along with the equation for the y-axis. The function for allocating the projections along the
/-axis is found as

(5.16)

This is considered a target function and recorded in the input data.
For example, the input data corresponding to the nodes of a three-dimensional cube

are shown in the Figure 5.12. The minimum value of the criterion corresponds to the
maximum value of the function

(5.17)
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Figure 5.12. data for the given example

By iteration, l\ = 1, /2 = 1, and /3 = 1 are found. The equation of the j-axis is
Projections are allocated along the y-axis; at point 1, y = +y/3/2, at point 8, y = — A/3/2;
at points 2, 3, and 4, y = + A/3/6. At points 5, 6, and 7, y = — >/3/6. Here, it is better not
to use the Karhunen-Loeve transformation on the axis of the plane because of overlappings
of many point projections. Only two projections coincide on the plane. This is solved in a
different way in [124].

There is much in common between the successive application of Karhunen-Loeve pro-
jection and the method of principal components of factor analysis. The variance decreases
continuously as components are isolated. Specifing a threshold is required for choosing
the number of components. According to Shannon's second-limit theorem, there exists an
optimal number of factors which are to be isolated. In self-organization clustering, the
consistent criterion is recommended to select the optimal number of principal components;
consequently, the dimension of the goal function Y(y\,y2, • • • ,y/) is determined.

Block 2. Calculation of variances and covariances

The data sample is given in matrix form as
1,2, • • • , m. The matrix of variances and covariances G = jjX7X has the elements
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(5.18)

where jt/ and jc,- are the columns i and j of the matrix X.

Block 3. Isolation of effective ensembles

This is done in one of the following three ways:

Sub-block 3a. Full search over all attribute ensembles

This refers to clustering without goal function. A full search of all possible clusterings
differing by the contents of the set is to be carried out in the absence of the numerical data
on the goal function. For each value of the number of clusters k, 2ml clusterings are to be
tested using the consistency criterion, where ml is the number of attributes—including the
paired or generalized attributes. This type of cluster analysis is feasible for a small number
of attributes of up to m 1 = 6. In a larger dimension of the attribute space, effective attribute
ensembles are selected using the inductive learning algorithms or correlation analysis. At
the same time, the goal function (scalar or vector form) must be determined experimentally
by orthogonal projection. This means that it leads to clustering with goal function.

Sub-block 3b. Selection by inductive learning algorithms

This is done by using the inductive learning algorithms. The consistency criterion is used
in selecting the effective attribute ensembles. The models are of the form:

(5.19)

where F denotes the quantity of "freedom-of-choice." It is the number of models selected
on the last layer. This indicates an ensemble of attributes for which we have to seek the
most consistent clustering.

Sub-block 3c. Selection by correlation algorithm

If there are many attributes (m is large) and the number of measurements are small (N < 2m),
then it is better to use the correlation algorithm (also called "Wroslaw taxonomy") instead of
inductive learning algorithms. Initially, a table of correlation coefficients of paired attributes
(G) is set up. Using this matrix, the graphs of interrelated attributes for different limit
values of the correlation coefficient are set up. One attribute that is correlated least with the
output quantity is chosen from each graph. Ultimately, an ensemble of attributes which are
correlated as little as possible with the output are determined. The limit of the correlation
coefficient is gradually reduced commencing from r^ = 1 until all attributes fall into a
single path; i.e., until an ensemble containing a single attribute y = /(*/) is obtained. This
way, discriminant functions which indicate effective ensembles of attributes are found:
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Block 4. Division of data points

The ensembles obtained for different values of the correlation coefficient are subjected to
a search for consistent clusterings. All ensembles are processed using the same search
algorithm [124]. A square table of distances between points (with a zero diagonal) corre-
sponding to the attributes is set up. Segments connecting any two points in the attribute
space is called dipoles. These are arranged according to their length to form a full series
of dipoles.

The next step is to select dipoles whose nodes form the subsets A — 5, and C — D. The
two nodes of the shortest dipole go into A and B; the next in magnitude go into C and D,
and so on, until all nodes are investigated. Alternatively, first dipoles are chosen for A and
B, and the remaining dipoles are chosen for C and D.

Half of the nodes of the dipoles go into A, while the other half go into B; subsets C and
D are simply different division of the same full set of points. Conventionally, the nodes
of dipoles located nearer to the coordinate origin are introduced into A and C, while those
more remote are into B and D.

Block 5. Search for clusterings by consistency criterion

The next step is to carry out a search for all clusterings on the subsets A and B. Nodes
belonging to the same dipole are considered equivalent. Commencing from the division of
subsets into N/2 clusters, the number of clusters decreases to unity. The subsequent cluster-
ings are formed by uniting into a single cluster of two points located closest to one another.
The consistency criterion is determined for all clusterings by r]c = (p — A£)/p, where p is the
number of clusters or the number of individual points subject to clusterization, and A& is
the number of identical clusters in the subsets A and B. As a result, all clusterings for which
r\c = 0 are identified. The search is repeated for all possible attribute ensembles and a map
is obtained, in which consistent clusterings are denoted by dots (for example, Figure 5.8).

Additional analysis and exclusion of clusters with single dipoles. The clusters containing
more than two points and the clusters containing two points belonging to the same dipole
are obtained from the search of consistency criterion. The latter ones are better assigned to
other clusters, or excluded from the analysis because they can represent long dipoles. Such
clusters containing a single dipole are located at the end of the series of the dipoles ordered
according to their length.

If the initial data table is sufficiently large (for example, N 100, in order to avoid
formation of two-points clusters), it is sufficient to use N/3 points instead of N/2 points
and leave the rest of them for examining the clustering results.

Block 6. Regularization

The search is repeated on subsets C and D for further confirmation. Only those clusterings
that are consistent both on A and B and on C and D are in fact considered. If we again find
not one but several of the consistent clusterings, then the clustering closest to the clustering
recommended by the experts is chosen. Usually, the clustering recommended by the experts
turns out to be contradictory.
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Block 7. Formation of output data table

The output data table that contains the division of the points of the original table into an
optimal number of clusters is formed.

Block 8. Recognition

At this step, assignment of new points (images) to some cluster with the indication of the
value of the goal function is carried out according to the "nearest neighbor" rule. This
means that this is based on the minimum distance from the image to a point belonging to
a set indicated in the initial data table.

Here we can say that the two-stage algorithm in image recognition is established in the
OCC algorithms. At the first stage (teaching) of , the data about the space
of measurements (attributes) and about the space of the goal function is used to obtain the
discriminant functions with the objective of dividing the space into clusters. At the second
stage (recognition), new points are assigned to some class or cluster. The number of clusters
and the attribute ensemble are identified objectively using a variant search according to the
consistent criterion. All the blocks given above form a schematic flow of the OCC algorithm.

Calculation of membership function of a new image to some cluster. A membership func-
tion (taken from the theory of fuzzy sets of Zadey) is given as

(5.20)

where dxj is the distance from the image to the center of the cluster x; d x j , j = 1,2, • • - , / :
are the distances to the centers of all clusters measured; k is the number of clusters.

The greater the membership function of an image to a cluster, the smaller is the distance
from the image to the center of the cluster. The measurement of distances is carried out in
the space of an effective attribute ensemble.

Example 5. Application of OCC algorithm.
The objective clustering of the rolling conditions of steel strip is considered. The original

variables (jf i , jC2,JC3,JC4, and x$) and the goal function (strip length, y) are given. It is
expanded to other sets of generalized paired variables (xf, — x\s).

Block 1. Table 5.6 has been obtained as a result of normalization of the variables as
deviations from their mean values.

Block 2. The matrix of variances and covariances is given in Table 5.7.
Block 3c Isolation of the effective attribute ensembles by the correlation algorithm of

"Wroslaw taxonomy" yielded the 15 effective ensembles shown in Table 5.8.
Block 4 Division of the data according to the dipole search for the ensemble *5*i 1*12*13

is as follows:

subset A: 12, 23, 38, 37, 14, 27, 15, 24, 39, 19, 28, 11, 16, 29, 20, 34, 3, 22, 25, 40;
subset B: 13, 18, 31, 32, 8, 26, 10, 17, 35, 4, 30, 7, 21, 33, 9, 36, 5, 1, 6, 2;
subset C: 32, 14, 23, 21, 38, 24, 16, 31, 22, 13, 17, 8, 34, 28, 26, 20, 18, 10, 33, 7;
subset D: 36, 11, 25, 12, 39, 15, 27, 35, 9, 4, 19, 3, 37, 40, 30, 1, 6, 5, 2, 29.

Block 5. The cluster search is carried out using the consistency criterion by dividing the
subsets into eight.
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Table 5.6. Normalized initial data

No.
1
2
3
4
5

37
38
39
40

Xl

0.286
-.055
0.098
0.125
0.034

-.144
0.000
-.117
0.250

X2

0.374
-.091
-.019
0.131
-.077

-.217
0.016
-.040
0.346

*3
0.302
0.322
0.222
0.202
0.675

-.300
-.275
-.276
-.200

X4

0.303
0.619
0.249
0.216
0.195

-.343
-.280
-.205
-.205

*5
-.137
0.706
-.043
-.075
0.097

-.106
-.026
-.043
0.004

*6 - *B *14

-.077
0.766
0.003
-.033
0.236

-.166
-.082
-.098
-.054

-*15
-.081
0.771
0.001
-.035
0.127

-.157
-.073
-.089
-.044

y
0.338
0.111
0.026
0.093
-.127

-.110
-.005
-.048
0.381

Table 5.7. Matrix of variances and paired variances

Attributes
x\
X2

XT,

X4

*5

*14

*15

y

x\
0.0518

*2

0.0525
0.0602

*3

0.0086
0.0051
0.0492

*4

0.0054
0.0022
0.0433
0.0519

xs
-.0078
-.0077
-.0028
0.0114
0.0481

*14

-.0059
-.0066
0.0072
0.0200
0.0474

0.0482

X\5

-.0064
-.0070
0.0045
0.0194
0.0474

0.0479
0.0480

y
0.0515
0.0553
0.0047
0.0044
-.0058

-.0049
-.0048
0.0569

Table 5.8. Effective attribute ensembles
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Block 6. The consistent clusters are further determined by the condition of their presence
on the maps obtained for the subsets A,B and C, D and summarized on the summary map
as shown in Figure 5.13. The clustering marked C in the figure is the most effective one.

Block 7. The following data points are grouped into clusters according to the mean strip
length by using the above result of objective clustering.

Cluster 1: Points 6, 18, 23, and 25 for y = 10.99;
Cluster 2: Points 2, 29, and 33 for y = 11.63; and
Cluster 3: Points 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24,

26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, and 40 for y = 11.77.

Block 8. In the recognition stage, let us assume that a new image is obtained with
the attribute values of xs = 4.373, Jtn = 26.986, *12 = 6.631, and *13 = 70.202. Then
the distances from the point obtained to all 40 initial points are calculated. The nearest
point is located as the point 30 with the attribute values of x$ = 4.410, x\\ = 26.96, =
6.65, and ;t13 = 70.28. This point belongs to the third cluster; consequently, the new point
image belongs to the third cluster. The values of the membership function reveal that the
first cluster z - 0.203, the second cluster z = 0.240, and the third cluster z = 0.553; i.e., the
input image affiliates more to the third cluster.

4 LEVELS OF DISCRETIZATION AND BALANCE CRITERION

The criteria of differential type are quite varied, but they, nonetheless, ensure the basic
requirement of Godel's approach. They are a clustering found by sorting according to a
criterion using a new data set which is not used with the internal criterion. In the algorithms
described above, the basic criterion used is consistency. Here is another form of differen-
tial criterion: the criterion of balance of discretization is proposed for selecting optimal
clusterings in self-organization clustering algorithms for a varying degree of fuzziness of
the mathematical description language [34]. The principle behind this criterion is that the
overall picture of the arrangement of the clusters in the multidimensional space of features
must not differ greatly from the type of discretization of the variable attributes. The optimal
clustering (the number of clusters and the set of features) must be the same—independent
of the number of levels of discretization of the variables indicated in the data sample.

Initial data sample is discretized into various levels on the coordinate axes to find the
optimal clustering. Hierarchical trees for sorting the number of clusters are set up from the
tables of interpoint distances. The optimal number of clusters coincides at the higher levels
of hierarchy of reading variables. The balance of discretization criterion is used like the
criterion of consistency; i.e., according to the number of identical clusters.

In self-organization modeling the criterion of consistency, which is called the minimum-
bias criterion to estimate the balance of structures, is computed according to the formula

The criterion requires that the model obtained for the subset
differs as little as possible from the model obtained for the subset . If the criterion
has several equal minima (balances), then we have to apply some method of regularization.

In self-organization clustering, the data sample is discretized into different numbers of
levels according to the coordinates of the points for obtaining subsets A and B. It is then
sorted among the hypotheses as to the number of clusters for each of the subsets and the
results compared with one another. The optimal clustering corresponds to the minimum of
the consistency criterion; usually its zero value resembles the balance of clusterings on both
the subsets.
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Number of
attributes

Number of
attributes

Figure 5.13. Maps of location of consistent clusterizations
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(a)

(b)

Figure 5.14. Discretization of the coordinates jci and x2 at the levels of (a) five and (b) eleven
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Levels of discretization

Figure 5.14 illustrates the different levels of discretization of the coordinates of the points
;ci and x.2 according to Widrow's recommendations. It is suggested that the number of
discretization levels of the multiples correspond to obtaining the false zeros of the criterion;
for example, here it is = N = II and — 1 = 5 levels.

In computing the criterion of consistency or balance of discretizations, one has to carry
out a special procedure of superimposing square matrices of interpoint distances. The
following matrices are obtained according to the llth and 5th levels of discretizations.

The following matrix shows the inter-cluster distances of clusters from both of the above
tables. The table for five levels does not differ essentially from the table for eleven levels.

Calculation of the criterion

The criterion of balance of discretization is calculated in a special way, which is very
convenient for programming. This is done at each step of the construction of hierarchical

frees for sorting nypotneses as to tne number of clusters. The points tnat make a cfuster
are marked with indices (vertices) in a space of N x N matrices for subsets A and B. The
criterion is computed as
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where and is the number of coincidence points or indices on the marking spaces.
The final values are trivial and always hold good. It gives = 0 for the optimal clusters,

which corresponds to our human impressions when looking at the given arrangement of
points.

Regularization

If in the interval from k = 1 to k = N/2 several zero values of the criterion BL are formed
(excluding ends of the interval), it is necessary to determine which of the "zeros" are false
and which are true. This can be checked by repeating the construction of the sorting tree
for the hypotheses from some intermediate number of levels (for example, seven or eight if
it was checked for 11 before). The whole procedure does not cause any special difficulties
for larger number of points and levels.

Example 6. Optimal clustering using the criterion of balance of discretization.
The data is given in Figure 5.14b for the attributes x\ and X2 at the discretization level

of 11. The table of interpoint distances for the entire sample is measured as given in the
matrix

1
2
3
4
5
6
7
8
9
10
11

1 2 3
0 1 2

0 1
0

4
7
6
6
0

5
9
8
8
2
0

6
9
8
7
2
2
0

7
11
10
10
4
2
3
0

8
7
7
6
5
7
5
7
0

9
8
8
7
4
6
4
6
2
0

10
9
9
8
7
8
6
7
2
2
0

11
11
10
9
7
7
4
5
3
3
2
0

The dipoles are constructed so that they start with the shortest until all the points are in the
subsets A and B without repeating them. The following dipoles are obtained and formed
into subsets A and B.

They are addressed as The matrices of interpoint dis-
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tances are compiled for the subsets A and B separately as below:

Two hierarchical trees of sorting hypotheses as to the clusters (figure 5.15) are built up
using the compiled interpoint distance matrices. The criterion of balance of discretization is
calculated at each step of constructing the hierarchical trees. The vertices of the dipoles are
combined in the tree into a cluster. The elements of the clusters are marked with indices
or circles in the matrix form as mapped out in Figure 5.16. Superimposition of the matrix
constructed for subset A on the matrix constructed for subset B makes it possible to compute
the criterion is the number of cells that are
coinciding in the matrices.

The "zero" values for the criterion are found for = 1,3,5, and 11 by comparing
both the trees.

If there are several "zero" values of the criterion, then one has to "invert" certain dipoles
and calculate the overall criterion of consistency or one has to repeat the procedure with
the different number of levels of discretization.

The examples described in this chapter show that sorting according to the differential
criteria (having the properties of the external criteria), consistency, and balance of discretiza-
tion can replace a human expert in arriving at subjective notions regarding the number and
composition of points of the clusters.

In the traditional deductive methods of modeling, specifying the output and input variables
is usually required. The number of variables is equal to or less than the number of data



208 CLUSTERIZATION AND RECOGNITION

measurements. In regression analysis, there are additional limitations, such as the noise
factor affecting the output variable, the regressor set being complete, and the regressors
not taking into account the equation operate as additional noise. The theories of principal
component analysis and pattern analysis for predicting biological, ecological, economic, and
social systems which have proven to be possible in a fuzzy language are not new. Again,
this is based on the deductive principle that the more fuzzy the mathematical language of
prediction, the longer its maximum achievable anticipation time.

Unlike deductive algorithms, the objective system analysis (OSA) algorithm has addi-
tional advantages. This does not require an output variable to be specified. In turn, all
variables are considered as output variables and the best variant is chosen by the external
criterion. The weak point of the inductive learning algorithms is that the estimate of param-
eters is done by means of the regression analysis. The limitations of the regression analysis
cannot be overcome even by using the orthogonal polynomials. The resultant expectations
of estimators are biased both by noise in the initial data and the incomplete number of input
variables. A physical model is the simplest one among unbiased ones derived with the exact
data or with the infinitely large data sample.

Nonparametric inductive learning algorithms offer another possibility and promise to
be more effective than the deductive and parametric inductive ones. Its approach is to
clarify that in the area of complex systems modeling and forecasting where objects and
their mathematical models are ill-defined, the optimum results are achieved as the degree
of "fuzzyness" of a model is adequate to the "fuzzyness" of an object. This means that the

(a) (b)

Figure 5.15. Hierarchical trees of sorting hypotheses as to the number of clusters using different
discretization levels
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Ninth step: = (121 - 121)/121 = 0

Figure 5.16. Calculation of the consistency criterion from the mappings
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Figure 5.17. Four positions of the "sliding window" and coresponding four clusterizations (number
of clusters decreases from four to three)
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equal "fuzzyness" is reached automatically if the object itself is used for forecasting. This is
done by searching analogues from the given data sample as the clusterizations are tracked
using a "sliding window" that moves along the data sample in time axis. For example,
the data sample for the ecosystem of Lake Baykal contains measurements over an interval
of 50 years (Figure 5.17). One can obtain 40 clusterization forms used to track how the
ecological system varies by moving a 10-year wide sliding window in order to predict its
further developement. The longest anticipation time of a prediction is obtained without
using any polynomial formulations. The objective clusterization of the given data sample is
used to calculate the graph of the probability of transition from one class to another. This
makes it possible to find an analogue of the current state of the object in prehistory and,
consequently, to indicate the long-term prediction. It follows that the choice of the number
of clusters is a convenient method of changing the degree of fuzziness in the mathematical
language description of the object. By varying the width of the "sliding window," one can
realize an analogous action in the choice of the patterns. This approach has an advantage
over the clustering analysis given by the OCC algorithm and also the OSA algorithm for
having a minimum number of points.

5.1 Group analogues for process forecasting

The method of group analogues leads to the solution of the forecasting problem of a mul-
tidimensional process by pattern and cluster search with a subsequent development of a
weak into a detailed forecast by the forecasting method of analogues. A sample of obser-
vations (AO of a multidimensional process serves as the initial data, and the set of measured
variables is sufficiently representative; i.e., it characterizes the state of the
observed object and what has occurred in the past is repeated in the present if the initial
state has been analogous.

In the problems of ecology, economics, or sociology the available sample size is usually
small. The number of forecast characteristic variables ra is significantly larger than the
number of sample points N (N <C tri). Nevertheless, the forecasts are necessary and are of
the basic means of increasing their effectiveness through the use of the "method of group
analogues."

Forecasts are not calculated, but selected from the table of observation data. This opens
up the possibility of more successful forecasting of multidimensional processes.

Formula for forecast measure

The forecasting accuracy of each variable is characterized by the forecast variation of

(5.22)

where is the actual value of the /th variable, is the forecast obtained as explained
below, and is the mean value (for a quasi-stationary process) without taking the forecast
point into account. If the process is nonstationary; i.e., if some of the variables have a clear
expression of trend (they increase or decrease continuously), then Xjk equals the value of
the trend at each forecasting step. The above formula compares the average error of the
forecast by the analogues method with respect to the average error of the forecast as the
mean value or trend value.

The forecast of each variable is considered to be successful if the variation (or

in percentage, < 100%). Usually, only some variables forecast well. In the best case for
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all m variables 1.0 (or = 100%). To successfully increase this percentage of forecast
variables for a short sample of initial data, one has to go from a search for one analogue in
prehistory to the problem of combining several analogues.

Forecast space of several analogues

Here */ is the point in the multidimensional (Euclidean) space of variables and jc/, in the
space of forecasts, corresponds to each row of the table of initial data sample. The former
space is used for computing the interpoint distances, while the latter is used to approximate
the forecasts by splines or polynomial formulations.

The point B of the multidimensional spaces jc, and Jc,- is denoted as the output point
for forecasting. This is either the last point of the sample in time or the last one that
would be possible in estimating the variation of the obtained forecast by the last row. The
distances between the point B and all other points measured in the space jc,- determine the
possibility of using them as analogues. The closest point is called the first analogue,
the next one in distance A2 is called second analogue, and so on until the last analogue

A specific forecast corresponds in the forecast space to each analogue. The
number of analogues are combined—either specified by an expert or determined according
to an inductive algorithm. Various methods can be proposed. Here the method based on
extrapolating the forecast space by splines is considered. It is assumed that some forecast
value, which is determined by using the forecasts at adjacent points of the space, exists at
each point of the forecast space

"Combining" forecasts by splines

Here "combining" means approximating the data by splines or polynomial equations with a
subsequent calculation of the forecast at the point B. The forecast is defined with the help
of weighted summing of forecast analogues using spline equations

(5.23)

The splines are selected such that the point B approaches the optimal set of analogues
i.e., the difference between their forecasts decreases. The closer the points

in the forecast space are, the closer are the forecasts themselves at these points.
Distances between points for a short-range one-step forecast are measured in the space

X; as below:

(5.24)

where are the Euclidean distances of the point B from the analogues
is the first analogue (closest), is the second more distant analogue, is the third

even more distant analogue, and so on.
The Euclidean distance is a convenient measure of proximity of a point, but only for

a one-step forecast. The repetitive procedure of stepwise forecast can be used to obtain a
long-range forecast with a multi-step lead, in which a "correlative measure" is estimated
for the proximity of groups of points. The canonical correlation coefficient [104] is also
recommended as a proximity measure for forecasting more than four steps.

The interpoint distances are used for calculating the coefficients of the
following splines;
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1. for one analogue (F = 1):

(5.25)

2. when two analogues are taken into consideration (F = 2):

(5.26)

3. when the forecasts of three analogues are taken into account (F = 3):

(5.27)

4. when the forecasts of F analogues are taken into account:

(5.28)

The largest number of analogues that are taken into account is F < N. Here F behaves
like the "freedom-of-choice."

Alternatively, one can use a parametric inductive algorithm for combining the forecast
analogues in which a complete polynomial of the form

(5.29)

is used instead of the splines.
The following choices are to be considered to provide the most accurate forecasting

process:

• choice of the optimal number of complexed analogues

• choice of optimal set of features and

• choice of the permissible variable measurement step width

Method of reducing variable set size

The two-stage method given below enables us to find the optimal set of effective features.

Stage 1. Variables are ordered according to their efficiency F = 1, 2, 3, • • • (not more than
five) using the partial cross- validation criterion CVj —>• min, defined with the help of moving
a so-called "sliding window" (which is equal to one line) along the data sample (Figure
5.18). For each position of the "sliding line" its analogues are found in prehistory and the
common analogue forecast is calculated using the splines. The discrepancy between the
"sliding line" and the forecast analogue defines a forecast error for each variable. The error
is found for all positions of the "sliding line" in the sample. The results are summed and
averaged according to the following formulae:

TV
/=!

(5.30)
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Figure 5.18. Schematic flow of the algorithm corresponding to process forecasts for calculating the
cross-validation criterion when two analogues complexed, where fi-current position of sliding
window, S-spline, and |AJc|—absolute errors.
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where i,j are numbers of data rows and columns respectively
is the cross-validation criterion for choosing optimal set of input variables (features),

|Aiy| are the absolute values of errors, and |AjCy|min are the minimal value of |AJc,y| in the
lines of sample. In general, a different series of features ordered according to the criterion
CVj are produced for different numbers F of complex analogues. This is analyzed on a
plane of F versus m.

Stage 2. The feature series are arranged as per the values of the criterion CVj. A small
number of feature sets are selected from all possible sets for further sorting out using the
complete cross-validation criterion,

(5.31)

The ordered feature set shows which sets should remain and which should be excluded. The
complete set of feature sets is divided into groups, containing an equal number of features.
Only one set, in which less efficient features are absent, remains in each group.

For example, there exists an ordered feature series of (the best feature is the
worst one is jt4); then the following sets are to be sorted out:

one set containing all four features:
one set containing three features:
one set containing two features:
one set consisting of one variable:

The whole number of sets tested is equal to four, being equal to the number of features.

Algorithm for optimal forecast analogue

The schematic flow of mode of operation of the algorithm for optimal forecast analogue
is illustrated in Figure 5.19. The overall algorithm consists of two levels: the first one
corresponds to obtaining the optimal parameter set by using the two- stage method and the
second one corresponds to the process forecasting. Figure 5.19a illustrates the analogue
search and evaluation of the forecast error for each position of the "sliding window"
and the process observation. Figure 5.19b illustrates the efficiency estimation and ordering
of variables using the criterion min. Figure 5.19c illustrates how to obtain Fopt and
mopt with the help of the criterion CV —>• min. The variable sets are obtained using the
criterion min, and the complete cross-validation criterion min is calculated
for them as explained above. The results are plotted on the plane of F — m, where the
minimum value of the criterion is found. Optimization of the criterion for set of variables
is evaluated as

The point of the plane which gives the criterion minimum, defines the optimal parameters
and sought for.

Variable set optimization enables the so called "useful" and "harmful" features in an
initial sample to be highlighted; i.e., it makes possible the exclusion of some data sample
columns. The forecast sought for is then read out from the sample using only those optimal
parameter values. Figure 5.19d illustrates the forecast at the output position of the "sliding
window" B.
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(a) (b)

(c)

(d)

forecast

Figure 5.19. Modes of operation of recognition/forecast algorithm when two analogues and
are complexed; (a) and (b) calculation of errors and criteria, (c) optimization of the criterion ̂  CV,

and (d) application mode; where max.
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Pattern width optimization

This concerns the choice of permissible variable measurement width hmax. One observation
point in the data table is called a pattern—in other words, it is a complete line of expansion.
These lines of expansions can be transformed by summing up two, three, etc. adjoining
lines and averaging the result. Due to overlapping of the number of lines in each junction,
it is only reduced by unit; i.e., a sample containing twenty lines can be transformed into
a sample containing nineteen doubled lines, or a sample containing eighteen tripled lines,
and so forth. The sorting out of data sample makes it possible to select a permissible
pattern width. Thus, the amount of sorting of the ensemble variants is reduced substantially
if one succeeds in ranking the predictor-attributes (placing them in a row according to
their effectiveness) in advance. The solution for the problem becomes simple. When the
algorithm for optimal forecast analogue is used, one estimates each predictor separately
according to the forecast measure This simplifies substantially the problem of
choosing an effective ensemble of predictor-attributes. This means that one should identify
the pattern width which provides a forecast variance value less than unity for all
variables treated. To estimate the value of the forecast is to be calculated for the
penultimate pattern.

We conclude that, in general, the optimization of the process forecast analogue algorithm
is done in a three-dimensional space of the choices for Y = 0, where F is the
number of complexed analogues, m is the number of features taken into account, h is the
data sample pattern width, and Y is the target function which is not specified.

5.2 Group analogues for event forecasting

The above procedure of process forecasting is described without specifying the output vector
Y (target function); i.e., it deals only with the data sample of the variable attributes of X.

We extend this problem to a forecasting event where the output vector Y is defined as an
event. In solving this type of problem, it is important that there be a correlation between
the columns of the samples X and Y. However, it is usually absent. For successful events
forecasting, samples X and Y must be complete and representative. In other words, the data
sample has to contain a complete set of events of all types. For instance, when a crop harvest
is forecasted, examples of "bad," "mean" and "good" harvests should be represented in Y.
The data is complete if it contains a complete set of typical classes of observed functions.
In addition, the sample should be representative. This means that clusters of matrices X and
Y must coincide in time.

One of the tests for completeness and representativeness is that the matrices X and Y be
subjected to cluster analysis using one of the known criteria. If identical correspondence
clusters are obtained on the matrices (for example, good harvest has to correspond to good
weather conditions and proper cultivation), then the sample is representative.

The problem of event forecasting is formulated in a more specific cause and effect manner
and it has wider field of applications. In the formulation, the sample of attribute variables
X is given in (N+1) time intervals, and the event factor Y is given in N intervals, if forecast
of event Y in the (N + l)st step is required. Some of the examples are:

1. sample X —observations of cultivation modes and weather conditions for (N + 1)
years.
sample Y —harvest data for N years.
It is necessary to predict the harvest for (N + l)st year.

2. sample X —design and production features of (N + 1) electronic devices.
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sample Y —"life-time" and damage size data for N devices.
It is to predict the duration of uninterrupted operation of the (N + l)st device.

3. to forecast the result of a surgical cancer treatment;
sample Y —used as a loss vector containing three binary components; y\ (recovery),
>>2 (relapse), yj, (metastases), and >>4 (the extent of disease, evaluated by the experts
as a continuous quality).
matrix X —includes various features (about 20), describing the state and method of
surgical treatment for 31 patients.

The results are known for 30 patients. These results are then used to predict the
surgical treatment result for the recently operated 31st patient after the operation.

These are some typical examples of the event forecasting.
In order to predict the events, it is necessary to consider the following aspects to provide

the accurate event forecasting;

• choice of the optimal number of complexed analogues F = Fopt;
• choice of the optimal set of features m = mopt\ and
• choice of the optimal target function vector Y = Yopt.

The first two entities describe the process forecasting algorithm, whereas the latter is a
specific aspect of the event forecasting problem.

Here, the pattern width (measurement step) h - 1 should not be changed. It is strictly
equal to one line of an initial sample and the data sample cannot be transformed as explained
before. Instead it is expedient to sort out the components of the vector Y (output value).
For example, the harvest can be represented in the data sample not only by crops weight,
but also by its sort and quality. The sorting out procedure allows only those components
which give the minimal value for the criterion CV leading to a more accurate forecast to
remain.

First, it is necessary to reduce the number of feature sets involved in the sorting. This
is demonstrated in the Figure 5.20. The distinction from the method described in Figure
5.18 is that here two matrices X and Y are participating. Instead of getting the difference
between sliding line and complexed analogue forecast, the differences of the vectors Y (not
their forecasts) are calculated as

|A*,y| = xij(B)-xij(Al,A2,A3). (5.33)

The logic of feature choice is that the value of an effective feature at the current line and
its analogues must be as close to each other as possible. A large discrepancy in the value
means the feature does not define the output value Y; i.e., it is ineffective. The criterion
CVj is calculated as the difference of feature values of the line, and the analogues averaged
over the sample columns.

1 N

CVj = -^lAj^l-nniii. (5.34)
1=1

Analogues are searched to find the matrix Y. At least one component of Y must be measured
continuously and accurately for a unique analogue. However, if the analogue is not unique
as defined, then the two components of a target function, which are derived from the
Karhunen-Loeve algorithm, are added to the vector Y.

The schematic explanation to the algorithm is exhibited in Figure 5.21. Here "a" is the
analogue choice, "b" is the calculation of the partial cross-validation criterion CVj —>• min for
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Figure 5.20. Schematic flow of the algorithm corresponding to events forecasts for calculating the
cross-validation criterion when two analogues complexed as per the occurring events, where B-
current position of sliding window, and S-spline; the criteria evaluated are CV —> mm, min,
and max.
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(a)

new vector forecast

Figure 5.21. Modes of operation of an events forecast algorithm when two analogues A\ and A 2
complexed (a) choice of analogue, (b) calculation of partial cross-validation criterion (c) arranging
on the plane to obtain optimal point, and (d) the second stage of the event recognition/ forecast

(b)



FORECASTING METHODS OF ANALOGUES 221

ordering features, "c" is the calculation of values of the complete cross-validation criterion
max. with the purpose of defining the optimal values of

and r is the forecast of the event corresponding to the (N + l)st sample line under
optimal algorithm parameter values.

Note that matrices X and Y are used in one direction (anti-clockwise) at the optimization
stage, and in the opposite one (clockwise) at the forecast stage.

Other features

Use of convolution for an analogue choice in sorting out the vector components of Y.
One can use a convolution of components in the target function instead of calculating the
analogues in the multidimensional space. This helps the modeler to include components
which lead to more accurate forecast. The analogues will be the same, but the calculations
are simpler. The target function Y must have a continuous scale for a unique definition
of the analogues. Thus, when at least one of the components of Y has such a reading
scale, it is recommended that the convolution of the normalized component values Y =

for analogue searching be used. If all components are binary variables
(equal to 0 or 1), it is necessary to expand the component set by introducing one or two
components of the orthogonal Karhunen-Loeve transform (for the joint sample XY).

(5.35)

where z\ and 12 are components of the artificial target function [137]. Sorting out of the
target function is meant for excluding some items from the expression.

The complete sorting of variants of criterion values CV —> min is carried out in a three-
dimensional space of as h = 1, where F is the number of complex analogues, m is
the number of feature sets, and / is the number of components in the target function.

Correlation measure of distances beftveen points and "Wroslaw taxonomy. " The simplest
measure to calculate the distance between the points of the multidimensional feature space
is the Euclidean distance for continuous features and Hamming distance for binary ones. If
the data are nonstationary, for example, values will show an increasing or decreasing trend.
The trend is then defined either as an averaged sum of normalized values of the variables
or each variable trend is found separately (by a regression line in the form of polynomial
of second- or third-order). Deviation of the variable from its trend is read out individually.
The correlation coefficient of the deviation of each of the two measured points serves as a
correlation measure of distance between them.

When the distance correlation measure is used, it is logical to apply the "Wroslaw
taxonomy" algorithm for feature-ordering according to their efficiency. This algorithm is
based on the partial cross-validation criterion min and makes it possible to order
features according to their efficiency, and then excludes them one by one in the optimization
process of the events-forecasting procedure to find the optimal feature set and the optimal
number of complexed analogues.

The "Wroslaw taxonomy" algorithm is applicable only when the target function is defined
in the problem. For this reason it is useful only in event forecasting, but not in the process
forecasting.

Once the system is trained for a specific problem of event forecasting, it can be considered
as the algorithm for recognition of new images. Thus, the event forecasting algorithm is
treated as a particular case of the more general problem of image recognition; i.e., when
recognizing the (N + l)st vector of the target function Y is necessary.


