
Mathematical literature reveals that the number of neural network structures, concepts,
methods, and their applications have been well known in neural modeling literature for
sometime. It started with the work of McCulloch and Pitts [93], who considered the brain
a computer consisting of well-defined computing elements, the neurons. Systems theoretic
approaches to brain functioning are discussed in various disciplines like cybernetics, pattern
recognition, artificial intelligence, biophysics, theoretical biology, mathematical psychology,
control system sciences, and others. The concept of neural networks have been adopted to
problem-solving studies related to various applied sciences and to studies on computer hard-
ware implementations for parallel distributed processing and structures of non-von Neuman
design.

In 1958 Rosenblatt gave the theoretical concept of "perceptron" based on the neural
functioning [105]. The adaptive linear neuron element (adaline), which is based on the
perceptron theory, was developed by Widrow and Hopf for pattern recognition at the start
of the sixties [131]. It is popular for its use in various applications in signal processing and
communications. The inductive learning technique called group method of data handling
(GMDH) and which is based on the perceptron theory, was developed by Ivakhnenko
during the sixties for system identification, modeling, and predictions of complex systems.
Modified versions of these algorithms are used in several modeling applications. Since then,
one will find the studies and developments on perceptron-based works in the United States
as well as in other parts of the world [3], [26], [82].

There is rapid development in artificial neural network modeling, mainly in the direc-
tion of connectionism among the neural units in network structures and in adaptations of
"learning" mechanisms. The techniques differ according to the mechanisms adapted in the
networks. They are distinguished for making successive adjustments in connection strengths
until the network performs a desired computation with certain accuracy. The least mean-
square (LMS) technique that is used in adaline is one of the important contributions to the
development of the perceptron theory. The back propagation learning technique has become
well known during this decade [107]. It became very popular through the works of the PDF
group who used it in the multilayered feed-forward networks for various problem-solving.

1 SELF-ORGANIZATION MECHANISM IN THE NETWORKS

Any artificial neural network consists of processing units. They can be of three types:
input, output, and hidden or associative. The associative units are the communication links
between input and output units. The main task of the network is to make a set of associations

286 INDUCTIVE AND DEDUCTIVE NETWORKS

of the input patterns x with the output patterns y. When a new input pattern is added to
the configuration, the association must be able to identify its output pattern. The units
are connected to each other through connection weights; usually negative values are called
inhibitory and positive ones, excitatory.

A process is said to undergo self-organization when identification or recognition cate-
gories emerge through the system's environment. The self-organization of knowledge is
mainly formed in adaptation of the learning mechanism in the network structure [5], [8].
Self-organization in the network is considered while building up the connections among
the processing units in the layers to represent discrete input and output items. Adaptive
processes (interactions between state variables) are considered within the units.

Linear or nonlinear threshold functions are applied on the units for an additional activation
of their outputs. A standard threshold function is a linear transfer function that is used for
binary categorization of feature patterns. Nonlinear transfer functions such as sigmoid
functions are used to transform the unit outputs. Threshold objective functions are used in
the inductive networks as a special case to measure the objectivity of the unit and to decide
whether to make the unit go "on" or "off." The strategy is that the units compete with each
other and win the race. In the former case the output of the unit is transformed according
to the threshold function and fed forward; whereas in the latter, the output of the unit is
fed forward directly if it is "on" according to the threshold objective function. A state
function is used to compute the capacity of each unit. Each unit is analyzed independently
of the others. The next level of interaction comes from mutual connections between the
units; the collective phenomenon is considered from loops of the network. Because of such
connections, each unit depends on the state of many other units. Such a network structure
can be switched over to self-organizing mode by using a statistical learning law. A learning
law is used to connect a specific form of acquired change through the synaptic weights—one
that connects present to past behavior in an adaptive fashion so that positive or negative
outcomes of events serve as signals for something else. This law could be a mathematical
function, such as an energy function that dissipates energy into the network or an error
function that measures the output residual error.

A learning method follows a procedure that evaluates this function to make pseudorandom
changes in the weight values, retaining those changes that result in improvements to obtain
the optimum output response. Several different procedures have been developed based on
the minimization of the average squared error of the unit output (least squares technique is
the simplest and the most popular).

(7.1)

where _y) is the estimated output of y'th unit depending on a relationship, and yj is the desired
output of the ith example. Each unit has a continuous state function of their total input
and the error measure is minimized by starting with any set of weights and updating each
weight w by an amount proportional to as where is a learning
rate constant.

The ultimate goal of any learning procedure is to sweep through the whole set of associ-
ations and obtain a final set of weights in the direction that reduces the error function. This
is realized in different forms of the networks [29], [77], [107], [131].

The statistical mechanism built in the network enables it to adapt itself to the examples
of what it should be doing and to organize information within itself and, thereby, to learn.
The collective computation of the overall process of self-organization helps in obtaining the
optimum output response.

Figure 7.1. Unbounded feedforward network where X and Y are input/output vectors and W and K
are weight matrices

This chapter presents differences and commonalities among inductive-based learning al-
gorithms, deductive-based adaline, and backpropagation techniques. Multilayered inductive
algorithm, adaline, backpropagation, and self-organization boolean logic techniques are con-
sidered here because of their commonality as parallel optimization algorithms in minimizing
the output residual error and for their inductive and deductive approaches in dealing with
the state functions. Self-organizing processes and criteria that help in obtaining the opti-
mum output responses in the algorithms are explained through the collective computational
approaches of these networks. The differences in empirical analyzing capabilities of the
processing units are described. The relevance of local minima depends on various activat-
ing laws and heuristics used in the networks and knowledge embedded in the algorithms.
This comparison study would be helpful in understanding the inductive learning mechanism
compared with the standard neural techniques and in designing better and faster mechanisms
for modeling and predictions of complex systems.

1.1 Some concepts, definitions, and tools

Let us consider a two-layered feedforward unbounded network with the matrices of con-
nected weights of W at first layer and K at output layer (Figure 7.1). The functional
algorithm is as follows:

Step 1, Initialize with random weights. Apply set of inputs and compute resulting
outputs at each unit.

Step 2. Compare these outputs with the desired outputs. Find out the difference,
square it, sum all of the squares. The object of training is to minimize this
difference.

Step 3. Adjust each weight by a small random amount. If the adjustment helps in
minimizing the differences, retain it; otherwise, return the weight to its previous
value.

288 INDUCTIVE AND DEDUCTIVE NETWORKS

Step 4. Repeat from step 2 onward until the network is trained to the desired degree
of minimization.

Any statistical learning algorithm follows these four steps. In working with such self-
organization networks, one has to specify and build certain features of the network such
as type of "input-output" processing, state function, threshold transfer function (decision
function), and adopting technique. Overall, the networks can be comprised according to the
following blocks:

1. "Black box" or "input-output" processing

• batch processing

• iterative processing

• deductive approach (summation functions are based on the unbounded form of
the network)

• inductive approach (summation functions are based on the bounded form of the
network)

• multi-input single output

• multi-input multi-output

2. Considering state functions

• linear

• nonlinear [29], [103], [132]

• boolean logic

• parallel

• sequential

3. Activating with threshold transfer functions

• linear threshold logic unit (TLU)

• nonlinear or sigmoid

• objective function (competitive threshold without transformations)

4. Adapting techniques

• minimization of mean square error function (simplest case)

• backpropagation of the output errors

• minimizing an objective function ("simulated annealing")

• front propagation of the output errors.

Some of the terminology given above are meant mainly for comparing self-organization
networks. The term "deductive approach" is used for the network with unbounded con-
nections and a full form of state function by including all input variables—contrary to the
inductive approach that considers the randomly selected partial forms.

State functions

Unbounded structure considers the summation function with all input variables at each node:

SELF-ORGANIZATION MECHANISM IN THE NETWORKS 289

where n is the total number of input variables; Sj is the output of the node; jc, are the input
terms; is the biased term, and are the connection weights.

Bounded structure considers the summation function with a partial list (r) of input vari-
ables:

(7.3)

where and r+1 is the number of the partial list of variables. A network with an
unbounded/bounded structure with threshold logic function is called deductive because of
its apriori fixedness. A network with a bounded structure and a threshold objective function
is inductive because of its competitiveness among the units with randomly connected partial
sets of inputs.

Parallel function is defined as the state function with the inputs from the previous layer or
iteration '/; whereas, the sequential form depends on the terms from the previous iteration
and the past ones of the same iteration:

(7.4)

The computationally sequential one takes more time and can be replaced by a parallel one
if we appropriately choose input terms from the previous layer.

Transfer functions

These are used in the TLUs for activating the units. Various forms of transfer functions
are used by scientists in various applications. The analytical characteristics of linear type
TLUs are extensively studied by the group of Fokas [19]. Here is a brief listing of linear
and nonlinear TLUs for an interested reader.

Linear type TLUs or discrete-event transformations. The following are widely used thresh-
old logic functions in perceptron and other structures.

(i) Majority rule:

F(u) = 1 if u > 0

0 if u < 0;

(ii) Signum function:

F(u) = 1 if u > 0

-1 if w < 0 ;

(iii) Piecewise linear function:

F(u) = u if u > 0

0 if u < 0;

(iv) Signum-0-function:

F(u) - 1 if u > 0

0 if M = 0

- 1 if u < 0; and

290 INDUCTIVE AND DEDUCTIVE NETWORKS

(v) Parity rule:

F(u) = 1 if u is even

0 if M is zero or odd . (7.5)

This is used in cellular automata and soliton automata [19]. In all the cases u is unit output.

Nonlinear or discrete analogue transformations

(i) Here are some forms of sigmoid function (F(u) = tanh u) often used in various
applications. They provide continuous monotonic mapping of the input; some map
into the range of — 1 and 1, and some into the range of 0 and 1:

(7.6)

where in which g is the gain width. In all the nonlinear cases the curve has
a characteristic sigmoidal shape that is symmetrical around the origin. For example,
take the last one. When u is positive, the exponential exceeds unity and the function
is positive, implying preference for growth. When u is negative, the exponential is
less than unity and the function is negative, reflecting a tendency to retract. When u
is zero, the function is zero, corresponding to a 50-50 chance of growth or retraction.
For large positive values of u, the exponentials dominate each term and the expression
approaches unity, corresponding to certain growth. For large negative values of u,
the exponentials vanish and the expression approaches —1, corresponding to certain
retraction. Here are some other types of transformations:

(ii) Sine function:

The use of this function leads to a generalized Fourier analysis,
(iii) Parametric exponential function:

where a and b are the parameters;
(iv) Gaussian function:

where fj, is the mean value and a is the covariance term; and
(v) Green function:

(7.7)

where ca are coefficients which are unknown, and ta are parameters which are called
centers in the radial case [101].

NETWORK TECHNIQUES 291

Threshold objective functions. There are various forms of threshold objective functions
such as regularity, minimum-bias, balance-of-variables, and prediction criterion, used mainly
in inductive networks. These are built up based on objectives like regularization, forecasting,
finding physical law, obtained minimum biased model or the combination of two or three
objectives which might vary from problem to problem.

2 NETWORK TECHNIQUES

The focus here is on the presentation of emperical analyzing capabilities of the networks; i.e.,
multilayered inductive technique, adaline, backpropagation, and self-organization boolean
logic technique, to represent the input-output behavior of a system. The aspects considered
are: basic functioning at unit-level based on these approaches connectivity of units for
recognition and prediction type of problems.

2.1 Inductive technique

Suppose we have a sample of N observations, a set of input-output pairs
where N is a domain of certain data observations, and we have to train the

network using these input-output pairs to solve an identification problem. For the given
input of variables x corrupted by some noise is expected to reproduce the
output Oj and to identify the physical laws, if any, embedded in the system. The prediction
problem concerns the given input that is expected to predict exactly the output
from a model of the domain that it has learned during the training.

In the inductive approaches, a general form of summation function is considered Kolmo-
gorov-Gabor polynomial which is a discrete form of Volterra functional series [21]:

where the estimated output is designated by the external input vector x by
and a are the weights or coefficients. This is linear in parameters a and nonlinear in x. The
nonlinear type functions were first introduced by the school of Widrow [132]. The input
variables x could be independent variables or functional terms or finite difference terms;
i.e., the function is either an algebraic equation, a finite difference equation, or an equation
with mixed terms. The partial form of this function as a state functional is developed at
each simulated unit and activated in parallel to build up the complexity.

Let us see the function at the unit level. Assume that unit n receives input variables; for
the state function of the unit is a partial function in a finite form

of (7.8):

(7.9)

where w are the connection weights to the unit n. If there are ml input variables and two
of them are randomly fed at each unit, the network needs units at
first layer to generate such partial forms. If we denote as the actual value and as
the estimated value of the output for the function being considered for pth observation, the
output error is given by

eP = sP-f (peN). (7.10)

292 INDUCTIVE AND DEDUCTIVE NETWORKS

The total squared error at unit n is:

(7.11)

This corresponds to the minimization of the averaged error in estimating the weights w.
This is the least squares technique. The weights are computed using a specific training set
at all units that are represented with different input arguments of ml. This is realized at
each unit of the layered network structure.

Multilayered structure is a parallel bounded structure built up based on the connectionistic
approach; information flows forward only. One of the important functions built into the
structure is the ability to solve implicitly defined relational functionals. The units are
determined as independent elements of the partial functionals; all values in the domain of
the variables which satisfy the conditions expressed as equations are comprised of possible
solutions [15], [29]. Each layer contains a group of units that are interconnected to the units
in the next layer. The weights of the state functions generated at the units are estimated
using a training set A which is a part of N. A threshold objective function is used to activate
the units "on" or "off" in comparison with a testing set B which is another part of TV. The
unit outputs are fed forward as inputs to the next layer; i.e., the output of nth unit if it is in
the domain of local threshold measure would become input to some other units in the next
level. The process continues layer after layer. The estimated weights of the connected units
are memorized in the local memory. A global minimum of the objective function would be
achieved in a particular layer; this is guaranteed because of steepest descent in the output
error with respect to the connection weights in the solution space, in which it is searched
according to a specific objective by cross-validating the weights.

2.2 Adaline

Adaline is a single element structure with the threshold logic unit and variable connection
strengths. It computes a weighted sum of activities of the inputs times the synaptic weights,
including a bias element. It takes +1 or —1 as inputs. If the sum of the state function is
greater than zero, output becomes +1, and if it is equal to or less than zero, output is —1;
this is the threshold linear function. Recent literature reveals the use of sigmoid functions
in these networks [98]. The complexity of the network is increased by adding the number
of adalines, called "madaline," in parallel. For simplicity, the functions of the adaline are
described here.

Function at Single Element

Let us consider adaline with m input units, whose output is designated by y and with external
inputs xk(k - 1, • • • ,ra). Denote the corresponding weights in the interconnections by w^.
Output is given by a general formula in the form of a summation function:

(7.12)

where is a bias term and the activation level of the unit output is

5=/(5). (7.13)

Given a specific input pattern and the corresponding desired value of the output the
output error is given by

ep = sf-yp (peAO, (7.14)

NETWORK TECHNIQUES 293

where N indicates the sample size. The total squared error on the sample is

(7.15)

The problem corresponds to minimizing the averaged error for obtaining the optimum
weights. This is computed for a specific sample of training set. This is realized in the
iterative least mean-square (LMS) algorithm.

LMS algorithm or Widrow-Hopf delta rule

At each iteration the weight vector is updated as

(7.16)

where is the next value of the weight vector; is the present value of the weight
vector; is present pattern vector; is the present error according to Equation (7.14) and

equals the number of weights.

ptii iteration:

(7.17)

where T indicates transpose. From Equation (7.16) we can write

(7.18)

This can be substituted in Equation (7.17) to deduce the following:

(7.19)

The error is reduced by a factor of a as the weights are changed while holding the input
pattern fixed. Adding a new input pattern starts the next adapt cycle. The next error is
reduced by a factor a, and the process continues. The choice of a controls stability and
speed of convergence. Stability requires that A practical range for a is given
as

Suppose we want to store a set of pattern vectors by choosing the
weights w in such a way that when we present the network with a new pattern vector it
will respond by producing one of the stored patterns which it resembles most closely. The
general nature of the task of the feed-forward network is to make a set of associations of
the input patterns with the output patterns When the input layer units are put in the
configuration x?k the output units should produce the corresponding 5, are denoted as
activations of output units based on the threshold sigmoid function and are those of the
intermediate or hidden layer units.

294 INDUCTIVE AND DEDUCTIVE NETWORKS

(i) For a 2-layer net, unit output is given by:

(7.20)

(ii) For a 3-layer net:

(7.21)

In either case the connection weights w's are chosen so that This corresponds
to the gradient minimization of the average of (7.22) for estimating the weights. The
computational power of such a network depends on how many layers of units it has. If it
has only two, it is quite limited; the reason is that it must discriminate solely on the basis
of the linear combination of its inputs [95].

Learning by Evaluating Delta Rule

A way to iteratively compute the weights is based on gradually changing them so that the
total squared-error decreases at each step:

(7.22)

This can be guaranteed by making the change in w proportional to the negative gradient
with respect to w (sliding down hill in w space on the error surface).

(7.23)

where is a learning rate constant of proportionality. This implies a gradient descent of
the total error for the entire set p. This can be computed from Equations (7.20) or (7.21).

For a 2-layer net:

(7.24)

where is the state function and is the derivative of the activation function
/() at the output unit /. This is called a generalized delta rule.

For a 3-layer net: input patterns are replaced by of the intermediate units.

(7.25)

By using the chain rule the derivative of (7.21) is evaluated:

(7.26)

This can be generalized to more layers. All the changes are simply expressed in terms of the
auxiliary quantities and the for one layer are computed by simple recursions
from those of the subsequent layer. This provides a training algorithm where the responses
are fed forward and the errors are propagated back to compute the weight changes of layers
from the output to the previous layers.

NETWORK TECHNIQUES 295

2.4 Self-organization boolean logic

In the context of principle of self-organization, it is interesting to look at a network of
boolean operators (gates) which performs a task via learning by example scheme based on
the work of Patarnello and Carnevali [99].

The general problem of modeling the boolean operator network is formulated as below.
The system is considered for a boolean function like addition between two binary operands,
each of L bits, which gives a result of the same length. It is provided with a number of
examples of input values and the actual results. The system organizes its connections in
order to minimize the mean-squared error on these examples between the actual and network
results. Global optimization is achieved using simulated annealing based on the methods of
statistical mechanics.

The overall system is formalized as follows. The network is configured by NG gates and
connections, where each gate has two inputs, an arbitrary number of outputs, and realizes
one of the 16 possible boolean functions of two variables. The array
with integer values between 1 and 16 indicates the operation implemented by /th gate. The
experiments performed are chosen to organize the network in such a way that a gate can
take input either from the input bits or from one of the preceding gates (the feedback is
not allowed in the circuit). This means that = 0 when / > j. The incidence matrices

and represent the connections whose elements are zero except when gate j takes its

left input from output gate i; then = 1 and = 1 is for right input. The output bits
are connected randomly to any gate in the network.

The training is performed by identifying and correcting, for each example, a small
subset of network connections which are considered responsible for the error. The problem
is treated as a global optimization problem, without assigning adhoc rules to back propagate
corrections on some nodes. The optimization is performed as a Monte Carlo procedure
toward zero temperature (simulated annealing), where the energy or "cost" function e of the
system is the difference between the actual result and the calculated circuit output, averaged
over the number of examples NA fed to the system (chosen randomly at the beginning and
kept fixed during the annealing).

(7.27)

where is the actual result of the /th bit in the k\h example, is the estimated
output of the circuit. Thus, is the average number of wrong bits for the examples used in
the training for a random network of 1 /2.

The search for the optimal circuit is done over the possible choice for X by choosing
A randomly at the beginning and keeping it fixed during the annealing procedure and
performing the average. The optimization procedure proceeds to change the input connection
of a gate according to the resulting energy change If 0, the change is accepted;
otherwise, it is accepted with the probability where T is the temperature—a
control parameter which is slowly decreased to zero according to some suitable "annealing
schedule." The "partition" function for the problem is considered as

(7.28)

The testing part of the system is straight forward; given the optimal circuit obtained
after the training procedure, its correctness is tested by evaluating the average error over the

296 INDUCTIVE AND DEDUCTIVE NETWORKS

exhaustive set of the operations, in the specific case all possible additions of 2L-bit integers,
of which there are

(7.29)

where the quantities and are the same as those in the above formula.
The performance of the boolean network is understood from the quantities and

the low values of the mean that the system is trained very well and the small values
of mean that the system is able to generalize properly. So, usually one expects the
existence of two regimes (discrimination and generalization) between which possibly a state
of "confusion" takes place.

Experiments are shown [100] for different values and with L = 8. It is found
that a typical learning procedure requires an annealing schedule with approximately
Monte Carlo steps per temperature, with temperature ranging from down to

(roughly 70 temperatures for a total of ~ 200 million steps). The schedule
was slow enough to obtain correct results when is large, and is redundantly long when

is small. The system achieved zero errors as well as = 0; i.e., it finds a rule
for the addition) in some cases considered (NG = 160,A^ = 224 or 480). In these cases, as
not all possible two-input operators process information, one can consider the number of
"effective" circuits, which turn out to be approximately 40.

According to the annealing schedule, reaching T ~ 0 implies that learning takes place as
an ordering phenomenon. The studies conducted on small systems are promising. Knowing
Z exactly, the thermodynamics of these systems are analyzed using the "specific heat,"
which is defined as

(7.30)

The "specific heat" is a response function of the system and a differential quantity
that indicates the amount of heat a system releases when the temperature is infinitesimally
lowered. The interesting features of these studies are given below:

• for each problem there is a characteristic temperature such that has a maximum
value;

• the harder problem, the lower its characteristic temperature; and
• the sharpness of the maximum indicates the difficulty of the problem, and in very

hard problems, the peak remains one of the singularities in large critical systems.

In these networks, the complexity of a given problem for generalization is architecture-
dependent and can be measured by how many networks solve that problem from the trained
circuits with a reasonably high probability. The occurrence of generalization and learning
of a problem is an entropic effect and is directly related to the implementation of many
different networks.

3 GENERALIZATION

Studies have shown that any unbounded network could be replaced by a bounded network
according to the capacities and energy dissipations in their architectures [18]. Here two
types of bounded network structures are considered.

One of the important functions built into the feedforward structure is the ability to solve
implicitly defined relational functionals—the units of which are determined as independent

GENERALIZATION 297

elements of the partial functionals. All values in the domain of the variables that satisfy the
conditions, expressed as equations are comprised of possible solutions.

3.1 Bounded with transformations

Let us assume that unit k receives variables. For instance, that is, the state
function of the unit is a partial function in a finite form of (7.8):

(7.31)

where w are the connection weights to the unit k. There are n input variables and two of
them are consecutively fed at each unit. There are n units at each layer. If we denote as
the actual value and as the estimated value of the output for the function being considered
for the pth observation, the output error is given by

(7.32)

The total squared-error at unit k is:

(7.33)

This corresponds to the minimization of the averaged error in estimating the weights w.
The output is activated by a transfer function such as a sigmoid function F():

(7.34)

where is the activated output fed forward as an input to the next layer.
The schematic functional flow of the structure can be given as follows. Let us assume

that there are n input variables of x including nonlinear terms fed in pairs at each unit of
the first layer (Figure 7.2). There are n units at each layer. The state functions at the first
layer are:

(7.35)

These are formed in a fixed order of cyclic rotation. The outputs are
activated by a sigmoid function and fed forward to the second layer:

(7.36)

where are the activated outputs of first layer and are the outputs
of the second layer. The process is repeated at the third layer:

(7.37)

where are the activated outputs of the second layer fed forward
to the third layer; s" are the outputs; and jcj" are the activated outputs of the third layer.
The process goes on repetitively as the complexity of the state function increases as given

Figure 7.2. Bounded network structure with five input terms using a sigmoid function

below. For example, the state function at the unit k of the third layer with the activated
output of jt£" is described as:

(7.38)

where are the unit outputs at the first layer evaluated from the input variables of
The optimal response according to the transformations is obtained

through the connecting weights and is measured by using the standard average residual sum
of squared error. This converges because of the gradient descent of the error by least-squares
minimization and reduction in the energy dissipations of the network that is achieved by
nonlinear mapping of the unit outputs through the threshold function, such as the sigmoid
function.

3.2 Bounded with objective functions

Let us assume that unit j at the first layer receives variables. For instance, i.e.,
the state function of the unit is a partial function in a finite form of (7.8):

(7.39)

where w are the connection weights to the unity. If there are ml input variables and two
of them are randomly fed at each unit, the network needs units at
the first layer to generate such partial forms. If we denote as the actual value and as
the estimated value of the output for the function being considered for ptf\ observation, the
output error is given by (7.28). The total squared error at unit j is computed as in (7.29).

GENERALIZATION 299

This corresponds to the minimization of the averaged error in estimating the weights w.
Each layer contains a group of units, which are interconnected to the units in the next layer.
The weights of the state functions generated at the units are estimated using a training set A
which is a part of N. An objective function as a threshold is used to activate the units "on"
or "off" in comparison with a testing set B which is another part of N. The unit outputs are
fed forward as inputs to the next layer; i.e., the output of y'th unit—in the domain of local
threshold measure—would become input to some other units in the next level. The process
continues layer after layer. The estimated weights of the connected units are memorized
in the local memory. A global minimum of the objective function would be achieved in
a particular layer; this is guaranteed because of steepest descent in the output error with
respect to the connection weights in the solution space, in which it is searched according
to a specific objective by cross-validating the weights.

The schematic functional flow of the structure can be described as follows. Let us assume
that there are ml input variables of jc, including nonlinear terms fed in pairs randomly at
each unit of the first layer. There are units in this layer that use the state functions of
the form (7.35):

(7.40)

where x'n is the estimated output of unit and
w' are the connecting weights. Outputs of units are made "on" by the threshold
function to pass on to the second layer as inputs. There are units in the second layer
and state functions of the form (7.35) are considered:

(7.41)

where *" is the estimated output, and w" are the
connecting weights. Outputs of units are passed on to the third layer according
to the threshold function. In the third layer units are used with the state functions of
the form (7.35):

(7.42)

where jc"' is the estimated output, and w'" are
the connecting weights. This provides an inductive learning algorithm which continues
layer after layer and is stopped when one of the units achieves a global minimum on the
objective measure. The state function of a unit in the third layer might be equivalent to the
function of some original input variables of x:

(7.43)

where and are the estimated outputs from the second and
first layers, respectively, and are from the input layer (Figure 7.3). A
typical threshold objective function such as regularization is measured for its total squared

Figure 7.3. Functional flow to unit n of third layer in a multilayered inductive structure

error on testing set B as:

(7.44)

where y is the actual output value and x1" is the estimated output of unit n of the third
layer. The optimal response according to the objective function is obtained through the
connecting weights w, which are memorized at the units in the preceding layers [90]. Figure
7.4 illustrates the multilayered feedforward network structure with five input variables and
with the selections of five at each layer.

4 COMPARISON AND SIMULATION RESULTS

The major difference among the networks is that the inductive technique uses a bounded
network structure with all combinations of input pairs as it is trained and tested by scanning
the measure of threshold objective function through the optimal connection weights. This
type of structure is directly useful for modeling multi-input single-output (MISO) systems,
whereas adaline and backpropagation use an unbounded network structure to represent a
model of the system as it is trained and tested through the unit transformations for its optimal
connection weights. This type of structure is used for modeling multi-input multi-output
(MIMO) systems.

Mechanisms shown in the generalized bounded network structures are easily worked
out for any type of systems—MISO or MIMO. In adaline and backpropagation, input and

Figure 7.4. Feedforward multilayered inductive structure with ml = 5,m2 = 5, and m3 = 5 using
threshold objective function

output data are considered either {—!,+!} or {0, 1}. In the inductive approach, input and
output data are in discrete analogue form, but one can normalize data between { — !,+!} or
(0, 1}. The relevance of local minima depends on the complexity of the task on which the
system is trained. The learning adaptations considered in the generalized networks differ in
two ways: the way they activate and forward the unit outputs. In backpropagation the unit
outputs are transformed and fed forward. The errors at the output layer are propagated back
to compute the weight changes in the layers and in the inductive algorithm the outputs are
fed forward based on a decision from the threshold function. The backpropagation handles
the problem that gradient descent requires infinitesimally small steps to evaluate the output
error and manages with one or two hidden layers. The adaline uses the LMS algorithm
with its sample size in minimizing the error measure, whereas in the inductive algorithm it
is done by using the least squares technique. The parameters within each unit of inductive
network are estimated to minimize, on a training set of observations, the sum of squared
errors of the fit of the unit to the final desired output.

The batchwise procedure of least squares technique sweeps through all the points of the
measured data accumulating before changing the weights. It is guaranteed to move
in the direction of steepest descent. The online procedure updates the weights for each
measured data point separately [131]. Sometimes this increases the total error but by
making the weight changes sufficiently small the total change in the weights after a complete
sweep through all the measured points can be made to closely and arbitrarily approximate
the steepest descent. The use of batchwise procedure in the unbounded networks requires
more computer memory, whereas in the bounded networks such as multilayered inductive
networks, this problem does not arise.

Figure 7.5. Bounded inductive network structure with linear inputs using threshold objective function
(only activated links are shown)

Simulation experiments are conducted to compare the performances of inductive versus
deductive networks by evaluating the output error as a learning law [91], [92]. Here the
above general types of bounded network structures with inputs fed in pairs are considered.
One is deductive network with sigmoid transfer function where is the
gain factor and another is inductive network with threshold objective function which is
a combined criterion (c2) of regularity and minimum-bias. As a special case, sinusoidal
transformations are used for deductive network in one of the studies. In both the structures,
the complexity of state function is increased layer by layer. The batchwise procedure of
least squares technique is used in estimating the weights. Various randomly generated data
and actual emperical data in the discrete analogue form in the range { — !,+!} are used in
these experiments. The network structures are unique in that they obtain optimal weights
in their performances. Two examples for linear and nonlinear cases and another example
on deductive network without any activations are discussed below:

(i) In linear case, the output data is generated from the equation:

(7.45)

where are randomly generated input variables, y is the output variable, and
is the noise added to the data.

(a) Five input variables are fed to the inductive network through
the input layer. The global measure is obtained at a unit in the sixth layer
(c2 = 0.0247). The mean-square error of the unit is computed as 0.0183.
Figure 7.5 shows the iterations of the self-organization network (not all links
are shown for clarity). The values of c2 are given at each node.

(b) The same input and output data are used for the deductive network; unit outputs
are activated by sigmoid function. It converges to global minimum at a unit
in the third layer. The residual mean-square error (MSE) of the unit is 0.101.

Figure 7.6. Bounded network structure with linear inputs and sigmoid output activations; is the
biased term at each node

Figure 7.6 gives the evolutions of the generation of nodes by the network during
the search process and residual MSE at each node is also given. indicates
the node which achieved the optimum value in all the networks given.

(ii) In a nonlinear case, the output data is generated from the equation:

(7.46)

where are randomly generated input variables, y is the output variable, and
is the noise added to the data.

(a) are fed as input variables. In the inductive case the global
measure is obtained at a unit in the third layer (c2 = 0.0453). The residual MSE
of the unit is computed as 0.0406. Figure 7.7 gives the combined measure of
all units and residual MSE at the optimum node. Table 7.1 gives the connecting
weight values the value of the combined criterion, and the
residual MSE at each node.

(b) The same input/output data is used for the deductive network; sigmoid function
is used for activating the outputs. It is converged to global minimum at a unit in
the second layer. The average residual error of the unit is computed as 0.0223
for an optimum adjustment of g = 1.8. Figure 7.8 gives the residual MSE at
each node. Table 7.2 gives the connecting weight values and
the residual MSE at each node.

(c) In another case, the deductive network with the same input/output data is acti-
vated by the transfer function where u is the unit output and g
is the gain factor. The global minimum is tested for different gain factors of g

where varies from 0.0 to 1.0. As it varies, optimal units are shifted
to earlier layers with a slight change of increase in the minimum. For example,
at = 0.5 the unit in the third layer achieves the minimum of 0.0188 and at

= 0.8 the unit in the second layer has the minimum of 0.0199. The global
minimum of 0.0163 is achieved at the second unit of the sixth layer for = 0.0
(Figure 7.9).

Figure 7.7. Bounded inductive network structure with nonlinear inputs using threshold objective
function (only activated links are shown)

Figure 7.8. Bounded network structure with nonlinear inputs and sigmoid output activations; WQ is
the biased term at each node

Figure 7.9. Bounded network structure with nonlinear inputs and sinusoidal output transformations;
is the biased term at each node

(iii) Further, the network structures are tested for their performances without any threshold
activations at the units; i.e., the unit outputs are directly fed forward to the next layer.
Global minimum is not achieved; the residual error is reduced layer-by-layer as it
proceeds—ultimately, the network becomes unstable. This shows the importance of
the threshold functions in the convergence of these networks.

The resulting robustness in computations of self-organization modeling is one of the
features that has made these networks attractive. It is clear that network models have a
strong affinity with statistical mechanics. The main purpose of modeling is to obtain a better
input-output transfer relationship between the patterns by minimizing the effect of noise in
the input variables. This is possible only by providing more knowledge into the network
structures; that is, improving the network performance and achieving better computing
abilities in problem solving. In the inductive learning approach the threshold objective
function plays an important role in providing more informative models for identifying and
predicting complex systems. In the deductive case the unit output transformation through
the sigmoid function plays an important role when the functional relationship is sigmoid
rather than linear. Over all, one can see that the performance of the neural modeling can
be improved by adding one's experience and knowledge into the network structure as a
self-organization mechanism. It is an integration of various concepts from conventional
computing and artificial intelligence techniques.

306 INDUCTIVE AND DEDUCTIVE NETWORKS

COMPARISON AND SIMULATION RESULTS 307

308 INDUCTIVE AND DEDUCTIVE NETWORKS

Table 7.2. Network structure with sigmoid function

COMPARISON AND SIMULATION RESULTS 309

