Chapter 8

Basic Algorithms and Program Listings

The computer listings of the basic inductive network structures for multilayer, combinatorial and harmonical techniques, and their computational aspects are given here. Multilayer algorithm uses a multilayered network structure with linearized input arguments and generates simple partial functionals. Combinatorial algorithm uses a single-layered structure with all combinations of input arguments including the full description. Harmonical algorithm follows the multilayered structure in obtaining the optimal harmonic trend with nonmultiple frequencies for oscillatory processes. One can modify these source listings as per his/her needs. These programs run on microcomputers and SPARC stations of SUN microsystems. To some extent they were also previously given for NORD-100/500 systems [88].

1 COMPUTATIONAL ASPECTS OF MULTILAYERED ALGORITHM

The basic schematic functional flow of the multilayered inductive learning algorithm is given in Chapters 2 and 7.

As the multilayer network procedure is more repetitive in nature, it is important to consider the algorithm in modules and facilitate repetitive characteristics. The most economical way of constructing the algorithm is to provide three main modules: (i) the first module is for computations of common terms in the conditional symmetric matrix of the normal equations for all input variables. This is done at the beginning of each layer with all fresh input variables entering into the layer using the training set, (ii) the second module is for generating the partial functions by forming the symmetric matrices of the normal equations for all pairs of input variables, for estimating their coefficients, for computing the values of the threshold objective functions on the testing set, and for memorizing the information of coefficients and input variables of the best functions (this is done for each layer), and (iii) the third module is for computing the coefficients of the optimal model by recollecting the information from the associated units.

To initiate the program one has to specify the control parameters:

Ml	$-\quad$ no. of input variables
N	$-\quad$ total no. of data points
PE	$-\quad$ percentage of points on training and testing sets;
	$50<\mathrm{PE}<100 ;$ if $\mathrm{PE}=80$, then $\mathrm{A}=80 \%, \mathrm{~B}=80 \%$, \quadand $\mathrm{C}=20 \%$

The values of these parameters are supplied through the file "param.dat." The file "input.dat" supplies the output and input data measurements.

The "input.dat" file is to be supplied according to the specified reference function. If the reference function is a linear function (for example, $(\mathrm{Ml}=6)$), then

$$
\begin{equation*}
y_{1}=a_{0}+a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{6} x_{6}, \tag{8.1}
\end{equation*}
$$

where a are the coefficients; x_{1}, \cdots, x_{6} are the inputs to the network; and y_{1} is the desired output variable. One has to supply the data file with N rows of points as

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline y_{1} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{0} \\
\hline
\end{array}
$$

If the reference function is a nonlinear function (for example, ($M 1=5$), , then

$$
\begin{equation*}
y_{1}=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{1}^{2}+a_{4} x_{2}^{2}+a_{5} x_{1} x_{2} \tag{8.2}
\end{equation*}
$$

where a are the coefficients; $x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$ are the inputs to the network, and y_{1} is the desired output variable. One has to supply the data file with N rows of points as

The higher-ordered terms are to be calculated and supplied in the file. Data sets A and B are separated according to the dispersion analysis.

In the first module, common terms in the conditional matrix XH is computed using the P2 input variables and the output variable Y. P1 and PU indicate the number of functions to be selected at the first layer and number of the layer, correspondingly.

In the second module, it forms the matrices (HM1, HM2, HM3) of normal equations for each pair of input variables \mathbf{J} and I , and estimates the weights or coefficients (KO1, KO2, KO3) using the data sets A, B, and W $(=\mathrm{A} \cup \mathrm{B})$, correspondingly. All partial functions are evaluated by the combined criterion. It stores the information on coefficients (KOE) and input variables (NK) of the best P1 nodes. Subroutine RANG is used to arrange all values in ascending order. Standard subroutine GAUSS is used to estimate the coefficients of each partial function.

Futhermore, the estimated outputs (YY) of P1 functions are calculated to send it to the next layer. To repeat the above two modules, we have to convert the outputs (YY) as inputs (XX) and initialize with fresh control parameters of the layer-the number of the layer PU is updated as PU +1 , the number of input arguments P2 is equated to P1, and the number of functions to be selected (freedom-of-choice) is taken from $\mathrm{CHO}(\mathrm{PU})$ as specified at the beginning. This procedure is repeated until PU becomes the number of specified layers (PM).

Modules 1 and 2 with the subroutine NM, help in forming normal equations for each pair in a more economical of utilizing computer time.

In the third module, it recollects the information for the function that has achieved global minimum or FF functions. The parameter PDM is calculated in advance as an indicator of
the number of original input arguments u activating in the function at a particular layerin the first layer $\mathrm{PDM}=2$ and in consecutive layers $\mathrm{PDM}=\mathrm{PDM} * 2$. The coefficients and number of input arguments of the optimal function are computed using the stored information from KOE and NK.

The program listing and the sample output for a chosen example are given below.

1.1 Program listing

c
C***
C THIS FORTRAN VERSION IS DEVELOPED BY H. MADALA
C***
C MULTILAYER INDUCTIVE LEARNING ALGORITHM
C
C MAIN PROGRAM
C
INTEGER N, M, M1, PE, PM,N1,I,J,K,S, P,R,T, GG, PN,
1
2
REAL XS, XM, OSH,TL,TX,YB, C, C1, C2, YM, AL, OL, H21, H2 2, Y3, Y11, Y22, CTROO
REAL CML $(30,10), X(15,200), Y(1,200), K X(15), A X(200)$, XX $(15,200), \operatorname{KO1}(15), \mathrm{KO} 2(15), \mathrm{KO}(15), \operatorname{KO} 4(15), \mathrm{CM}(30)$, $\operatorname{HM} 1(15,16), \operatorname{HM} 2(15,16), \operatorname{HM} 3(15,16), \operatorname{CMM}(30,10)$, $\operatorname{KOE}(30,10,20), \operatorname{CT}(15), \operatorname{CTRO}(15), \mathrm{D} 2(15), \mathrm{AY}(200)$, XH $(15,10,10)$, YY $(20,200)$, SK (20), A (256), AD (256), D22 (200)
INTEGER NPP (200),NPl(200),NP2(200),NOl(200),NO2(200), CHO (10), NK $(30,10,20), N C(30), N D(15), \operatorname{ST}(20,5)$, $\operatorname{NDD}(200), \operatorname{AN}(256), \operatorname{AND}(256), \mathrm{OB}(200,5)$
C
$\operatorname{OPEN}(1$, FILE=' param.dat')
OPEN (8, FILE='input.dat')
$\operatorname{OPEN}(3$, FILE='output. dat')
C****************
$\mathrm{C}^{\star \star * * * * * * * * * * * * * * ~}$
$\operatorname{READ}(1, *) M 1, N, P E, P M, A L P H A$
$\operatorname{READ}(1, *)(\mathrm{CHO}(I), \mathrm{I}=1, \mathrm{PM}), \mathrm{FF}$
$\mathrm{XS}=\mathrm{PE} \mathrm{N}^{\mathrm{N}}$
$\mathrm{PE}=\operatorname{INT}(\mathrm{XS} / 100$.
$C *$
C M1 - NO. OF INPUT VARIABLES
C N - NO. OF DATA OBSERVATIONS
C PE - PERCENTAGE OF TOTAL PTS. ON TRAIN AND TESTING SETS
C PM - NO. OF LAYERS
C (CHO (I), I =l,PM) - CHOICE OF MODELS AT EACH LAYER
C FF - CHOICE OF OPTIMAL MODELS AT THE END
$C \star * * * * * * * * * *$
$M=1$
DO $91 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{READ}(8, *) Y(1, I),(X(J, I), J=1, M 1)$
91 CONTINUE
C
92 FORMAT (2X,'CONTROL PARAMS:'/2X,' \qquad 1/)
95 FORMAT (3x,'NO.OF INPUT VARIABLES (M1) ',I2)
97 FORMAT (3x,'NO.OF DATA POINTS (N) ',I3)
99 FORMAT (3X,'PERCENTAGE OF TRAIN AND TEST POINTS (PE) ',I2)

```
100 FORMAT (3X,'NO.OF LAYERS (PM) ',I2)
102 FORMAT (3X,'WEIGHTAGE VALUE IN COMBINED CRIT (ALPHA) ',F3.1)
104 FORMAT (3X,'FREEDOM-OF-CHOICE AT EACH LAYER(CHO) ',10I3)
106 FORMAT (3X,'NO.OF OPTIMAL MODELS (FF) ',I2)
108 FORMAT (3X,'NO.OF OUTPUT VARIABLES (M) ',I2)
110 FORMAT (//)
120 FORMAT (2X,10E10.3)
125 FORMAT (1X,'PERFORMANCE OF THE NET:'/1X,'---------------------'/)
130 FORMAT (2X,'EQUATION NUMBER= ',I2/)
140 FORMAT (3X,'LAYER=',I4,2X,'SELECTED DESCRIPTION=',I5)
150 FORMAT (5X,'ERROR GAUSS='I4)
160 FORMAT (5X,'COMBINED ERROR BEST= ',E10.3,4X,'WORST= ',E10.3)
165 FORMAT (5x,'RESIDUAL MSE= ',E10.3,'AT THE BEST COMBINED NODE')
170 FORMAT (5X,'RESIDUAL MSE BEST= ',E10.3,4X,'WORST= ',E10.3)
175 FORMAT (1X,'OPTIMAL MODELS:'/1X,'---------------'/)
180 FORMAT (2X,'MODEL',I3,1X,'(LAYER ',I2,3X,'COMBINED=',E10.3,1X,
    1 'MIN BIAS=',E10.3,1X,'MSE=',E10.3,1X,')')
    190 FORMAT (2X,'COEFFICIENTS=',/2X,E12.3)
    200 FORMAT (/(2X,10I10))
    210 FORMAT (2X,10E10.3)
    220 FORMAT (7X,' ----------------------------------------------
    230 FORMAT (10X,'----------------------')
    240 FORMAT (2X,'Y=')
    250 FORMAT (2X,'X=')
    260 FORMAT (/13X,'MULT
    WRITE (3,260)
    WRITE (3,92)
    WRITE (3,95)M1
    WRITE (3,97)N
    WRITE (3,99) PE
    WRITE (3,100) PM
    WRITE (3,102) ALPHA
    WRITE}(3,104) (CHO(I),I=1,PM
    WRITE (3,106)FF
    WRITE}(3,108)
C
PN=0
        P=S
N1=N
C
```

 P=M1
    ```
        P=M1
        S=M1
        S=M1
        CHO (0) =M1
        CHO (0) =M1
                WRITE (3,240)
                WRITE (3,240)
                DO 71 J=1,M
                DO 71 J=1,M
                WRITE (3,120) (Y (J,I),I=1,N1)
                WRITE (3,120) (Y (J,I),I=1,N1)
                CONTINUE
                CONTINUE
            WRITE (3,250)
            WRITE (3,250)
            WRITE (3,120) ((X(I,J), I=1,M1),J=1,N1)
            WRITE (3,120) ((X(I,J), I=1,M1),J=1,N1)
C NORMALIZATION AND RANGE OF DATA AS PER DISPERSION ANALYSIS
C******************
    DO 3 I=1,N1
3
AX(I) = ABS (X (J,I))
CALL NORM(AX,N1,XS)
KX(J)=XS
DO 4 I=1,N1
```

4
5
$6 \quad Y(1, I)=Y(1, I) / K X(1)$
$\mathrm{NI}=0$
$\mathrm{BM}=\mathrm{CHO}(0)$
DO 7 I=1, PM
IF (BM.LT.CHO (I)) BM=CHO (I)
CONTINUE
$Y P=1$
8
$\mathrm{P} 2=\mathrm{CHO}(0)$
P1=CHO (1)
DO $9 \mathrm{I}=1$, BM
DO $9 \mathrm{~J}=1, \mathrm{PM}$
NK $(I, I, J)=0$
WRITE $(3,110)$
$\operatorname{WRITE}(3,125)$
WRITE $(3,130) Y P$
IF (P2.EQ.P) THEN
DO $10 \mathrm{I}=1, \mathrm{P}$
$\mathrm{ND}(\mathrm{I})=\mathrm{P}-\mathrm{I}+1$
GOTO 13
ENDIF
DO $12 \mathrm{~J}=1, \mathrm{P}$
D2 (J) $=0.0$
DO $11 \mathrm{I}=1, \mathrm{~N} 1$
$11 \quad \mathrm{D} 2(\mathrm{~J})=\mathrm{D} 2(\mathrm{~J})+\mathrm{X}(\mathrm{J}, \mathrm{I}) * \mathrm{Y}(\mathrm{YP}, \mathrm{I})$
12
$\mathrm{D} 2(\mathrm{~J})=\operatorname{ABS}(\mathrm{D} 2(\mathrm{~J}))$
CALL RANG (D2,ND, P)
13
CONTINUE
DO $14 \mathrm{~J}=1, \mathrm{P} 2$
DO $14 \quad \mathrm{I}=1$, N1
$I 1=P-J+1$
MH1 = ND (I1)
$X X(J, I)=X(M H 1, I)$
PU=1
PDM $=2$

C FIRST MODULE TO CALCULATE COMMON TERMS IN CONDITIONAL MATRICES C*

15
DO $16 \mathrm{I}=1, \mathrm{~N} 1$
$\mathrm{D} 22(\mathrm{I})=0.0$
DO $16 \mathrm{~J}=1, \mathrm{P} 2$
16
$\mathrm{D} 22(\mathrm{I})=\mathrm{D} 22(\mathrm{I})+\mathrm{XX}(\mathrm{J}, \mathrm{I}) * * 2$
CALL RANG (D22,NDD,N1)
DO $17 \mathrm{I}=1, \mathrm{PE}$
NP1 (I) $=\operatorname{NDD}(\mathrm{I})$

$$
\mathrm{I} 1=\mathrm{N} 1-\mathrm{I}+1
$$

17
NP2 (I) =NDD (I1)
CALL OPE (NP1,NO1, PE,N1)
CALL OPE (NP2,NO2,PE,N1) $\mathrm{EG}=0$
$\mathrm{K}=0$
DO $18 \mathrm{I}=1, \mathrm{PE}$
$\mathrm{SH}=\mathrm{NP} 1 \quad(\mathrm{I})$
DO $18 \mathrm{~J}=1, \mathrm{PE}$
IF (SH.EQ.NP2 (J)) THEN
$\mathrm{K}=\mathrm{K}+1$
NPP (K) $=$ SH
GOTO 18

18

$\mathrm{OB}(\mathrm{J}, 2)=\mathrm{NO} 2(\mathrm{~J})$
DO $21 \mathrm{~J}=1, \mathrm{P} 2$
$\mathrm{XH} \quad(\mathrm{J}, 1,3)=0.0$
XH $\quad(J, 2,3)=0.0$
$\mathrm{XH} \quad(\mathrm{J}, 3,3)=0.0$
DO $75 \mathrm{~K}=1$, N1
$\mathrm{XH}(J, 1,3)=\mathrm{XH}(J, 1,3)+X X(J, K)$
XH $(J, 2,3)=X H(J, 2,3)+X X(J, K) * * 2$
$X H \quad(J, 3,3)=X H(J, 3,3)+X X(J, K) * Y(Y P, K)$
CONTINUE
DO $21 \mathrm{~T}=1,2$
$\mathrm{XH}(\mathrm{J}, 1, \mathrm{~T})=0.0$
$\mathrm{XH}(\mathrm{J}, 2, \mathrm{~T})=0.0$
$\mathrm{XH}(\mathrm{J}, 3, \mathrm{~T})=0.0$
DO $76 \mathrm{~K}=1$, R
$\mathrm{MH}=\mathrm{OB}(\mathrm{K}, \mathrm{T})$
$\mathrm{XH}(\mathrm{J}, 1, \mathrm{~T})=\mathrm{XH}(\mathrm{J}, 1, \mathrm{~T})+\mathrm{XX}(\mathrm{J}, \mathrm{MH})$
$\mathrm{XH}(\mathrm{J}, 2, \mathrm{~T})=\mathrm{XH}(\mathrm{J}, 2, \mathrm{~T})+\mathrm{XX}(\mathrm{J}, \mathrm{MH}) * * 2$
$X H(J, 3, T)=X H(J, 3, T)+X X(J, M H) * Y(Y P, M H)$
CONTINUE
CONTINUE
$X S=0.0$
$\mathrm{XM}=0.0$
DO $22 \mathrm{I}=1$, R
$\mathrm{MH} 1=\mathrm{NO} 1(\mathrm{I})$
$\mathrm{MH} 2=\mathrm{NO} 2$ (I)
$X S=X S+Y(Y P, M H 1)$
$\mathrm{XM}=\mathrm{XM}+\mathrm{Y}(\mathrm{YP}, \mathrm{MH} 2)$
22
$C \star *$
C SECOND MODULE FOR FORMING THE CONDITIONAL MATRICES FOR EACH
C PARTIAL FUNCTION
SH=1
$J=0$
23
$I=J+1$
24
HM1 $(1,1)=R$
$\operatorname{HM2}(1,1)=\mathrm{R}$
HM1 $(1,4)=X S$
$\operatorname{HM} 2(1,4)=X M$
$\mathrm{H} 21=0.0$
$\mathrm{H} 22=0.0$
DO $77 \mathrm{~K}=1$, R

```
    MH1=NO1 (K)
    MH2 = NO2 (K)
    H21=H21+XX(J,MH1)*XX(I,MH1)
    H22 =H22 +XX (J,MH2) * XX (I,MH2)
        CONTINUE
                            HM1 (2,3) =H21
                            HM1 (3,2) = H21
                            HM2 (2,3) = H2 2
                            HM2 (3, 2) = H2 2
                            HM2 (1,4) =XM
                            CALL NM (HM1,XH,1,J,I).
                            CALL NM (HM2,XH,2,J,I)
                            DO 25 K=1.3
                            DO 25 S=1,4
    25 HM3 (K,S) =HM1 (K,S) +HM2 (K,S)
C*********************************
C ESTIMATING COEFFICIENTS
C******************************
                            CALL GAUSS(HM1, 3,4,KO1,IFAIL)
                            IF (IFAIL.EQ.0)GO TO 29
                            CALL GAUSS(HM2,3,4,KO2,IFAIL)
                            IF(IFAIL.EQ.0)GO TO 29
                            CALL GAUSS (HM3,3,4,KO3,IFAIL)
                            IF (IFAIL.EQ.O)GO TO 29
C*************************************************
                            C1=0.0
                            C2=0.0
C C1 - MEAN SQUARED MINIMUM BIAS ERROR ON TOTAL POINTS
C C2 - MEAN SQUARED RESIDUAL ERROR ON EXAMIN SET
C C - ROOT MEAN COMBINED ERROR OF (C1 + C2)
C*********************************************************
DO \(78 \mathrm{~S}=1\),N1
            C1=C1+(KO1(1)-KO2 (1) +(KO1 (2) - KO2 (2))*XX (J,S) + (KO1 (3) -
    1
                KO2(3)) *XX(I,S))**2 CONTINUE
                            C1=C1/(Y22**2)
        Y11 =0.0
                            MH1=2 * PE-N1
                            DO 79 S=1,MH1
                            MH=NPP(S)
        C2=C2+(Y(YP,MH)-KO3(1)-KO3(2)*XX(J,MH)-KO3(3)*XX(I,MH))**2
        Y11 =Y11+Y(YP,MH)**2
        CONTINUE
            C2 =C2 / Y11
        C S SQRT( ALPHA*C1 + (1-ALPHA)*C2)
```

C
CALL NM (HM3, XH, 3, J, I)
HM3 (1, 1) =N1
$\operatorname{HM} 3(1,4)=Y 3$
$\operatorname{HM} 3(2,3)=0.0$
DO $80 \mathrm{~K}=1$, N1
$\operatorname{HM} 3(2,3)=\operatorname{HM} 3(2,3)+X X(J, K) * X X(I, K)$
80 CONTINUE
$\operatorname{HM} 3(3,2)=\operatorname{HM} 3(2,3)$
CALL GAUSS (HM3, 3, 4, KO4, IFAIL)
IF (IFAIL.EQ.O) GO TO 29
IF (SH.GT.P1) GO TO 27

```
```

 CM(SH)=C
    ```
```

 CM(SH)=C
 DO 26 K=1,3
    ```
            DO 26 K=1,3
```

```
    KOE (SH, K,PU})=\textrm{KO4}(\textrm{K}
```

 KOE (SH, K,PU})=\textrm{KO4}(\textrm{K}
 CMM (SH,1)=C1
 CMM (SH,1)=C1
 CMM (SH, 2) =C2
 CMM (SH, 2) =C2
 NK (SH, 2, PU) =J
 NK (SH, 2, PU) =J
 NK (SH, 3, PU) =I
 NK (SH, 3, PU) =I
 IF(SH.EQ.P1) CALL RANG(CM,NC,P1)
 IF(SH.EQ.P1) CALL RANG(CM,NC,P1)
 SH=SH+1
 SH=SH+1
 GO TO 30
 GO TO 30
 MH1 =NC (P1)
 MH1 =NC (P1)
 IF(C.GT.CM(MH1))GO TO 30
 IF(C.GT.CM(MH1))GO TO 30
 GG=NC (P1)
 GG=NC (P1)
 CMM (GG,1) =C1
 CMM (GG,1) =C1
 CMM (GG,2) =C2
 CMM (GG,2) =C2
 CM(MH1) =C
 CM(MH1) =C
 DO 28 K=1,3
 DO 28 K=1,3
 KOE (MH1,K,PU)=KO4 (K)
 KOE (MH1,K,PU)=KO4 (K)
 NK (MH1, 2,PU)=J
 NK (MH1, 2,PU)=J
 NK (MH1, 3, PU) = I
 NK (MH1, 3, PU) = I
 CALL RANG (CM,NC,P1)
 CALL RANG (CM,NC,P1)
 GO TO 30
 GO TO 30
 EG=EG+1
 EG=EG+1
 I=I +1
 I=I +1
 IF(I.LE.P2)GO TO 24
 IF(I.LE.P2)GO TO 24
 IF(J.LT.P2-1)GO TO 23
 IF(J.LT.P2-1)GO TO 23
 DO 33 S=1, P1
 DO 33 S=1, P1
 OSH=0.0
 OSH=0.0
 DO 32 J=1,N1
 DO 32 J=1,N1
 YB=KOE (S,1,PU)
 YB=KOE (S,1,PU)
 DO 31 I=2,3
 DO 31 I=2,3
 MH1=NK(S,I,PU)
 MH1=NK(S,I,PU)
 YB=YB+KOE (S,I,PU)*XX(MH1,J)
 YB=YB+KOE (S,I,PU)*XX(MH1,J)
 OSH=OSH+(Y(YP,J)-YB)**2
 OSH=OSH+(Y(YP,J)-YB)**2
 OSH=SQRT(OSH/N1)/Y22
 OSH=SQRT(OSH/N1)/Y22
 OSH =SQRT(OSH)/Y22
OSH =SQRT(OSH)/Y22
IF(S.EQ.1)THEN
IF(S.EQ.1)THEN
TX=OSH
TX=OSH
TL=OSH
TL=OSH
ENDIF
ENDIF
IF (NC (1).EQ.S)THEN
IF (NC (1).EQ.S)THEN
AL=OSH
AL=OSH
IF (PU.EQ.1)THEN
IF (PU.EQ.1)THEN
OL=OSH
OL=OSH
PL=1
PL=1
NL=S
NL=S
ENDIF
ENDIF
IF (OL.GE.OSH) THEN
IF (OL.GE.OSH) THEN
OL=OSH
OL=OSH
PL=PU
PL=PU
NL=S
NL=S
ENDIF
ENDIF
ENDIF
ENDIF
IF (OSH.LT.TL) TL=OSH
IF (OSH.LT.TL) TL=OSH
IF (OSH.GT.TX)TX=OSH
IF (OSH.GT.TX)TX=OSH
CONTINUE
CONTINUE

```
MH2 =NC (P1)
WRITE (3,140) PU, P1
WRITE (3,150) EG
WRITE (3,160) CM (MH1),CM(MH2)
WRITE (3,170)TL,TX
WRITE (3,165) AL
WRITE (3,230)
```

$X X(J, I)=Y Y(J, I)$
IF (PU.EQ.1)THEN
DO $39 \mathrm{I}=1, \mathrm{FF}$
IF (I.LE.P1) THEN
$\operatorname{CML}(I, 1)=C M(N C(I))$
$\operatorname{CML}(I, 2)=\mathrm{PU}$
$\operatorname{CML}(I, 3)=\operatorname{NC}(I)$
DO $38 \mathrm{~J}=1,2$
$\operatorname{CML}(I, J+3)=\operatorname{CMM}(N C(I), J)$
ELSE
$\operatorname{CML}(I, 1)=10000$.
ENDIF
CONTINUE
ELSE
$\mathrm{K}=1$
$I=1$
$C=\operatorname{CML}(1,1)$
DO $41 \mathrm{~J}=2, \mathrm{FF}$
IF (CML (J, 1). GT . C) THEN
$C=\operatorname{CML}(J, 1)$
$I=J$
ENDIF
41 CONTINUE
IF (C.LE.CM (NC (K))) GOTO 43
$\operatorname{CML}(I, 2)=P U$
$\operatorname{CML}(\mathrm{I}, 1)=\operatorname{CM}(\mathrm{NC}(\mathrm{K}))$
DO $42 \mathrm{~J}=1,2$
$\operatorname{CML}(I, J+3)=\operatorname{CMM}(N C(K), J)$
$\operatorname{CML}(I, 3)=\mathrm{NC}(K)$
$\mathrm{K}=\mathrm{K}+1$
IF (K.LE. PI) GOTO 40
ENDIF

```
IF (PU.EQ.PM)GO TO 44
PU}=\textrm{PU}+
P2 = P1
P1. = CHO(PU)
GO TO 15
```


C**

WRITE $(3,110)$
WRITE $(3,175)$
SS=0
PDM $=$ PDM -1
$\mathrm{PU}=\mathrm{CML}(\mathrm{SS}, 2)$
$\operatorname{NCDGE=CML}(S S, 3)$
$\mathrm{K}=0$
DO $47 \quad \mathrm{I}=1,10$
$S T(I, 1)=0$
$S T(I, 2)=0$
$S K(I)=0$
CONTINUE
$\operatorname{WRITE}(3,180) \operatorname{SS}, \operatorname{INT}(\operatorname{CML}(S S, 2)), \operatorname{CML}(S S, 1)$,
1SQRT (CML (SS, 4)), SQRT (CML (SS, 5))
$\mathrm{K}=0$
DO $48 \quad \mathrm{I}=0, \mathrm{P}$
$\operatorname{CTRO}(I)=0.0$
$C T(I)=0.0$
DO 49 I=1, PDM
$A(I)=0.0$
$A D(I)=0.0$
$\mathrm{AN}(I)=0$
$\operatorname{AND}(I)=0$
DO $50 \quad \mathrm{I}=1,3$
$A(I)=K O E(N C D G E, I, P U)$
$\mathrm{AN}(\mathrm{I})=\mathrm{NK}(\mathrm{NCDGE}, \mathrm{I}, \mathrm{PU})$
IF (PU.EQ.1)GO TO 55
$\mathrm{AD}(1)=\mathrm{A}(1)$
$\mathrm{SH}=1$
DO $53 \mathrm{I}=2$, PDM
IF (A (I). NE.0) THEN
IF (AN (I).EQ.0)THEN
$\mathrm{SH}=\mathrm{SH}+1$
$\mathrm{AD}(\mathrm{SH})=\mathrm{A}(\mathrm{I})$
$\operatorname{AND}(\mathrm{SH})=0$
ELSE
DO $86 \mathrm{~S}=1,3$
$A D(S H+S)=A(I) * K O E(A N(I), S, P U-1)$
$\operatorname{AND}(S H+S)=N K(A N(I), S, P U-1)$
CONTINUE
$\mathrm{SH}=\mathrm{SH}+3$
ENDIF
ENDIF
CONTINUE
DO $54 \mathrm{I}=2$, PDM
$\mathrm{A}(\mathrm{I})=\mathrm{AD}(\mathrm{I})$
$\operatorname{AN}(I)=\operatorname{AND}(I)$
CONTINUE
$\mathrm{PU}=\mathrm{PU}-1$
IF (PU.GT.1) GOTO 88
CONTINUE
DO $56 \mathrm{I}=1$, PDM
$S=A N(I)$
$C T(S)=C T(S)+A(I)$
CONTINUE
DO $57 \mathrm{I}=1, \mathrm{P}$
$\mathrm{IP} 1=\mathrm{P}-\mathrm{I}+1$
$\mathrm{MH}=\mathrm{ND}(\mathrm{IP} 1)$
$\operatorname{CTRO}(\mathrm{MH})=\mathrm{CT}(I)$
CONTINUE
$\operatorname{CTRO}(0)=\mathrm{CT}(0) * \mathrm{KX}(\mathrm{YP})$
$\mathrm{CTROO}=\mathrm{CTRO}(0)$
WRITE $(3,190)$ CTROO
$M P N=M 1+P N$

```
DO 60 J=1,MPN
IF (CTRO(J).NE.0.0) THEN
CTRO(J)=CTRO (J) * KX (YP)/KX (J)
K=K+1
ST (K,1)=J
SK (K) =CTRO (J)
                    IF (K.EQ.10) THEN
                    WRITE (3,200) (ST (K,1),K=1,10)
                WRITE (3,210) (SK (K), K=1,10)
                    DO 61 K=1,10
ST (K,1)=0
                    SK(K)=0
6 1
        CONTINUE
                    K=0
                    ENDIF
                ENDIF
                CONTINUE
                IF(K.NE.0)THEN
                WRITE (3,200) (ST (I, 1), I=1,K)
                WRITE (3,210) (SK(I),I=1,K)
                ENDIF
WRITE (3,220)
                IF(SS.LT.FF)GO TO 45
                YP=YP+1
                IF(YP.LE.M)GO TO }
                close(3)
                close(8)
                close(1)
                STOP
                END
```


Subroutines used

C
SUBROUTINE FMAX (X,N,XM,K)
DIMENSION X(200)
REAL XM
INTEGER N, K, I
$\mathrm{XM}=\mathrm{X}$ (1)
$\mathrm{K}=1$
DO $1 \mathrm{I}=2, \mathrm{~N}$
IF (XM.GE.X(I)) GOTO 1
$X M=X(I)$
$\mathrm{K}=\mathrm{I}$
CONTINUE
RETURN
END
C
C
SUBROUTINE NORM (XN, N, P)
DIMENSION XN(200)
INTEGER N,K
REAL P, XM
CALL FMAX (XN, N, XM, K)
$\mathrm{P}=1.0$
1
$P=P * 10$
IF (P.GT.XM)GO TO 2
GO TO 1
2

```
    IF(P.LT.XM)GO TO 3
    GO TO 2
    P}=\mp@subsup{P}{}{*}1
        RETURN
        END
C
C
    SUBROUTINE RANG(X,NP,N)
            DIMENSION X(200),XD(200)
            INTEGER NP(200),ND(200)
            INTEGER N,K,I,N1
            REAL XM
            DO 1 I=1,N
            XD(I) = X(I)
        ND(I) = I
            N1=N
        CALL FMAX(XD,N1,XM,K)
            NP(N1)=ND (K)
            K1=K+1
            DO 3 I=K1,N1
            XD(I-1)=XD(I)
        ND (I-1) =ND (I)
            N1=N1-1
            IF(N1.GE.2)GO TO 2
            NP(1)=ND(1)
            RETURN
            END
C
C
                    SUBROUTINE NM(HM,XH,T,J,I)
            INTEGER T,S,R
            DIMENSION XH (15,10,10), HM (15,16)
            S=2
            R=J
        HM (1,S)=XH(R,1,T)
        HM (S,1)=HM (1,S)
            HM (S,S) =XH (R, 2,T)
            HM (S,4) =XH(R,3,T)
            S=S+1
            R=I
            IF(S.EQ.3)GO TO 1
            RETURN
            END
C
C
            SUBROUTINE OPE (NP,NO, PE,N1)
            INTEGER I,J,Z,PE
            INTEGER NP(200),NO(200)
            Z=0
            I=1
DO 2 J=1,PE
                            IF(I.EQ.NP(J))GO TO 3
CONTINUE
        Z=Z+1
        NO(Z)=I
    I=I+1
            IF (I.LE.N1) GO TO 1
            RETURN
            END
```

C

```
            FUNCTION RND (S2)
            R1=(S2+3.14159)*5.04
Rl=Rl-INT(RI)
S2 = R1
            RND=R1
            RETURN
            END
```

C
C
SUBROUTINE GAUSS (A, N, L, X, IF)
DIMENSION A $(15,16), X(15)$
$\mathrm{IF}=1$
$\mathrm{NN}=\mathrm{N}-1$
DO $99 \mathrm{~K}=1$, NN
$\mathrm{J}=\mathrm{K}$
$\mathrm{KK}=\mathrm{K}+1$
DO 100 I=KK, N
$\operatorname{IF}(\operatorname{ABS}(A(J, K)) . L T \cdot A B S(A(I, K))) J=I$
CONTINUE
IF (J.EQ.K) GOTO 11
DO 300 I=l,L
$T=A(K, I)$
$A(K, I)=A(J, I)$
$A(J, I)=T$
CONTINUE
DO $88 \mathrm{~J}=\mathrm{KK}$, N
$\operatorname{IF}(A(K, K) . E Q .0$.$) GOTO 13$
$D=-A(J, K) / A(K, K)$
DO $400 \mathrm{I}=1$, L
$A(J, I)=A(J, I)+D^{\star} A(K, I)$
400
CONTINUE
CONTINUE
CONTINUE
IF (A (N,N).EQ.O.) GOTO 13
$X(N)=A(N, L) / A(N, N)$
$\mathrm{NN}=\mathrm{N}-1$
DO $500 \mathrm{~J}=1$, NN
$\mathrm{K}=\mathrm{N}-\mathrm{J}$
SUM $=0.0$
NNN $=\mathrm{N}-\mathrm{K}$
DO $200 \mathrm{JJ}=1$, NNN
$\mathrm{M}=\mathrm{K}+\mathrm{JJ}$
$S U M=S U M+A(K, M) * X(M)$
CONTINUE
IF (A (K, K).EQ.O.) GOTO 13
$X(K)=(A(K, L)-S U M) / A(K, K)$
CONTINUE
GOTO 14
IF=0
RETURN
END

C

1.2 Sample output

Example. The output data is generated from the equation:

$$
y=0.433-0.095 x_{1}+0.243 x_{2}+0.35 x_{1}^{2}-0.18 x_{1} x_{2}+\epsilon,
$$

where $x_{1}, X 2$ are randomly generated input variables, y is the output variable computed from the above equation, and ϵ is the noise added to the data. The data file "input.dat" is prepared correspondingly.

The control parameters are supplied in the file "param.dat"

| 5 | 100 | 75 | 7 | 0.5 | | | |
| :--- | ---: | ---: | :--- | ---: | :--- | :--- | :--- |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 8 |

The parameters take the values as $\mathrm{Ml}=5, \mathrm{~N}=100, \mathrm{PE}=75, \mathrm{PM}=7$, ALPHA $=\mathbf{0 . 5}$, $\mathrm{CHO}(1)=10, \mathrm{CHO}(2)=10, \ldots, \mathrm{CHO}(7)=10$, and $\mathrm{FF}=8$.

The program creates the output file "output.dat" with the results.
The results are given first with the control parameters, then the performance of the network at each layer that include the values of the combined criterion for the best and the worst models, the values of the residual mean-square error (MSE) for the best and the worst models, and the residual MSE value for the best model according to the combined criterion. The value of ERROR GAUSS indicates the number of singular nodes, if any in the layer, and the SELECTED DESCRIPTION is the freedom-of-choice at each layer. The EQUATION NUMBER indicates the number of the output variable. It is fixed as one (M $=1$) because it is dealt with as a single output equation. This can be changed to a number of output equations and the program is modified accordingly.

The coefficient values of optimal models as a number specified for FF are displayed with the constant term and the numbers of input variables with the layer number and the values of the criteria. The second model in the list, obtained at the seventh layer, is the best among all according to the combined criterion; this is read as

$$
\begin{equation*}
y=0.433-0.0948 x_{1}+0.248 x_{2}+0.340 x_{1}^{2}-0.00593 x_{2}^{2}-0.167 x_{1} x_{2} . \tag{8.3}
\end{equation*}
$$

The output is written in the file "output.dat" as below:

| M U L T I | L A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PERFORMANCE OF THE NET:

EQUATION NUMBER= 1

```
LAYER=1 SELECTED DESCRIPTION= 10
    ERROR GAUSS= 0
    COMBINED ERROR BEST= 0.644E-01 WORST= 0.275E+00
    RESIDUAL MSE BEST= 0.304E-01 WORST= 0.961E-01
    RESIDUAL MSE= 0.304E-01 AT THE BEST COMBINED NODE
```


OPTIMAL MODELS:

MODEL 1 (LAYER 7 COMBINED $=0.599 \mathrm{E}-02$ MIN BIAS $=0.713 \mathrm{E}-02$ MSE $=0.457 \mathrm{E}-02$)
COEFFICIENTS=
$0.431 \mathrm{E}+00$

| 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | :---: | :---: | :---: |
| $-0.813 \mathrm{E}-01$ | $0.245 \mathrm{E}+00$ | $0.326 \mathrm{E}+00-0.614 \mathrm{E}-02-0.161 \mathrm{E}+00$ | | |

COEFFICIENTS $=$
$0.433 \mathrm{E}+00$

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |

$-0.948 \mathrm{E}-01 \quad 0.248 \mathrm{E}+000.340 \mathrm{E}+00-0.593 \mathrm{E}-02-0.167 \mathrm{E}+00$
MODEL 3 (LAYER 7 COMBINED $=0.550 \mathrm{E}-02$ MIN BIAS $=0.654 \mathrm{E}-02$

```
MSE= 0.420E-02 )
```

COEFFICIENTS=
$0.433 \mathrm{E}+00$

```
    1 2 3 4
    4 5
-0.941E-01 0.250E+00 0.339E+00-0.749E-02-0.168E+00
MODEL 4 ( LAYER 7 COMBINED=0.570E-02 MIN BIAS=0.685E-02
                                    MSE=0.423E-02 )
```

COEFFICIENTS=
$0.432 \mathrm{E}+00$

```
    1 2 3 4
    4 5
-0.937E-01 0.250E+00 0.339E+00-0.795E-02-0.168E+00
MODEL 5 (LAYER 7 COMBINED = 0.580E-02 MIN BIAS = 0.663E-02
                                    MSE=0.483E-02 )
```

COEFFICIENTS=
$0.431 E+00$

```
        1 2 3 4 4 5
-0.813E-01 0.245E+00 0.326E+00-0.619E-02-0.161E+00
MODEL 6 ( LAYER 6 COMBINED=0.593E-02 MIN BIAS=0.702E-02
    MSE=0.458E-02 )
```

COEFFICIENTS=
$0.431 \mathrm{E}+00$
 COEFFICIENTS=
$0.432 \mathrm{E}+00$

```
    1 2 3 3 4 5
-0.923E-01 0.251E+00 0.338E+00-0.828E-02-0.169E+00
    -----------------------------------------------
MODEL 8 LAYER 7 COMBINED=0.578E-02 MIN BIAS=0.700E-02
    MSE=0.423E-02 )
```

COEFFICIENTS $=$
$0.432 \mathrm{E}+00$

| 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | :---: | :---: |
| $-0.915 \mathrm{E}-01$ | $0.251 \mathrm{E}+00^{2}$ | $0.338 \mathrm{E}+00-0.863 \mathrm{E}-02-0.169 \mathrm{E}+00$ | | |

2 COMPUTATIONAL ASPECTS OF COMBINATORIAL ALGORITHM

The algorithm given is for a single-layered structure. The mathematical description of a system is represented as a reference function in the form of discrete Volterra series in multivariate data and finite-difference equations in time series data.

$$
\begin{gather*}
y=a_{0}+\sum_{i=1}^{l} a_{i} x_{i}+\sum_{i=1}^{l} \sum_{j=1}^{l} a_{i j} x_{i} x_{j}+\sum_{i=1}^{l} \sum_{j=1}^{l} \sum_{k=1}^{l} a_{i j k} x_{i} x_{j} x_{k}+\cdots \\
y_{t}=a_{0}+a_{1} y_{t-1}+a_{2} y_{t-2}+\cdots, \tag{8.4}
\end{gather*}
$$

where y and x_{i} are the desired and input variables in the first polynomial; / is the number of input variables; y_{t} is the desired output at the time $t ; y_{t-1}, y_{t-2}, \cdots$ are the delayed arguments of the output as inputs in the finite-difference scheme.

The combinatorial algorithm frames all combinations of partial functions from the given reference function. If the reference function is a linear function; for example,

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}\right)=a_{0}+a_{1} x_{1}+a_{2} x_{2}, \tag{8.5}
\end{equation*}
$$

then it generates

$$
\begin{gather*}
y=a_{0}, y=a_{1} x_{1}, y=a_{2} x_{2}, y=a_{0}+a_{1} x_{1}, \\
y=a_{0}+a_{2} x_{2}, y=a \mid x \backslash+a_{2} x_{2}, \text { and } y=a_{0}+a \mid x \backslash+a_{2} x_{2} . \tag{8.6}
\end{gather*}
$$

Suppose there are $m(=3)$ parameters in the reference function, then the total combinations are $2^{m}-1(=7)$. The "structure of functions" is used to generate these partial models.

| a_{2} | a_{1} | a_{0} |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

where each row indicates a partial function with its parameters represented by "1," the number of rows indicates the total number of units, and the number of columns indicates total number of parameters in the full description. This matrix is referred further in forming the normal equations.

The weights are estimated for each partial equation by using the least squares technique with a training data set at each unit and computed at its threshold measure according to the external criterion using the test set. Then the unit errors are compared with each other and the better functions are selected for their output responses and evaluated further.

For simplicity, the external criteria used in this algorithm are the minimum-bias, regularity, and combined criterion of minimum-bias and regularity.

Three ways of splitting data are used here: sequential, alternative, and dispersion analysis. The user can choose one of them or experiment with them for different types of splittings.

The program works for time series data as well as multivariate data. If it is time series data, the user has to specify the number of autoregressive terms in the finite-difference function and supply the "input.dat" file with the time series data. If it is multivariate data, one has to specify the number of input variables and supply the "input.dat" file with the rows of the data points for output and input variables.

The program listing and an example with the sample output are given below.

2.1 Program listing

```
C*******************************************************
C
C M - TOTAL NO.OF DATA POINTS
C MP - NO.OF POINTS IN TEST SET
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE DATA - WHICH SUPPLIES THE DISCRETE SIGNAL
        DATA G(IH)
SUBROUTINE FORM - WHICH FORMS THE OUTPUT VECTOR Y1 (M)AND
        THE INPUT MATRIX X1(M,L)FROM THE
                            DISCRETE SIGNAL G(IH). THIS IS MAINLY
                                    FOR FORMING FINITE-DIFFERENCE
                                    EQUATIONS
MAIN PROGRAM
DIMENSION D(100)
INTEGER NP(9)
COMMON /GAMA/G(100)
COMMON /X1Y1/X1(100,15),Y1(100)
COMMON /XYUD/X(100,15),Y(100),UD(100,15)
COMMON /PS/NB,N,PS (15,16)
COMMON /INIT/M,MP,MA1,L
                    OPEN(3,FILE='results.dat')
OPEN(8,FILE='innl.dat')
        WRITE (3,12)
        FORMAT(8X,'SINGLE L A Y E R E D COMBINATORIAL ALGORITHM'///)
            WRITE (*,230)
230 FORMAT(2X,'GIVE TOTAL DISCRETE POINTS')
        READ(*,*) IH
C
        WRITE(*,235)
235 FORMAT (2X, 'TIME SERIES (1)/ MULTIVARIATE DATA (2)??')
        READ(*,301)IIH
        IF (IIH.EQ.2) GOTO 350
C
        CALL DATA(IH)
        WRITE (3,240)
        FORMAT (2X,'DATA:')
                                WRITE (3,100) (G(I),I=1,IH)
                                FORMAT (3X,5F12.2)
        WRITE (3,303)
```

```
C
    350
    245
C
```303300301

\section*{FORMAT (//)}
```

WRITE (*, 300)
FORMAT (//3X,'Give No of AR terms in model= ')
READ (*, 301) L
FORMAT (I2)
CALL FORM (IH,M,L)
IF (IIH.EQ.1) GOTO 355
$M=I H$
WRITE (*, 245)
FORMAT (2X, 'GIVE NO.OF INPUT VARIABLES??')
READ (*, 301) L
DO $91 \mathrm{I}=1$, M
$\operatorname{READ}(8, *) \mathrm{Y} 1(\mathrm{I}),(\mathrm{X} 1(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{~L})$
CONTINUE
WRITE $(3,250) \mathrm{M}$
WRITE (*, 250) M
FORMAT (//2X,'TOTAL NO. OF DATA PTS. $=$ ', I3//)
WRITE (*, 280)
FORMAT (2X,'GIVE NO. OF TRAINING PTS??')
READ (*, 290) ME
FORMAT (I2)
WRITE (*, 260)
FORMAT ( 2 X, 'GIVE NO.OF TESTING PTS??')
READ (*, 270) MP
FORMAT (I2)
$M A 1=M-(M P+M E)$
IF (MA1.LE. 0) MA1 $=0$
WRITE (*, 999)
FORMAT (1H\$,'DATA SETS BY (-1 DISP, 0 ALTER, 1 SEQUEN) ?')
READ (*, 220)IS
FORMAT (I2)

```
```

YM=0.0

```
YM=0.0
 DO 5 I=1,M
 DO 5 I=1,M
 YM=YM+Y1 (I)
 YM=YM+Y1 (I)
 CONTINUE
 CONTINUE
 YM=YM/M
 YM=YM/M
 IF (IS) 15,16,17
 IF (IS) 15,16,17
 DO 7 I=1,M
 DO 7 I=1,M
 Y1(I) = (Y1 (I) -YM)/YM
 Y1(I) = (Y1 (I) -YM)/YM
 DO }8\textrm{I}=1,\textrm{L
 DO }8\textrm{I}=1,\textrm{L
 XM=0.0
 XM=0.0
 DO }9\textrm{J}=1,\textrm{M
 DO }9\textrm{J}=1,\textrm{M
 XM=XM+X1 (J, I)
 XM=XM+X1 (J, I)
 XM=XM/M
 XM=XM/M
 DO 10 J=1,M
 DO 10 J=1,M
 X1(J,I) = (X1 (J,I) -XM)/XM
 X1(J,I) = (X1 (J,I) -XM)/XM
 CONTINUE
 CONTINUE
 DO 11 I=1,M
 DO 11 I=1,M
 D(I)=Y1(I)**2
 D(I)=Y1(I)**2
 DO 13 J=1,L
 DO 13 J=1,L
 D}(I)=D(I)+X1(I,J)**
 D}(I)=D(I)+X1(I,J)**
 D(I) =D (I)/ (L+1)
 D(I) =D (I)/ (L+1)
 CONTINUE
 CONTINUE
 CALL RANG (D,NP,M)
 CALL RANG (D,NP,M)
 DO 14 I=1,M
 DO 14 I=1,M
 I2=M-I+1
 I2=M-I+1
 I1=NP(I2)
```

    I1=NP(I2)
    ```
\(\mathrm{Y}(\mathrm{I})=\mathrm{Y} 1(\mathrm{I} 1)\)
DO \(14 \mathrm{~J}=1, \mathrm{~L}\) \(X(I, J)=X 1(I 1, J)\)

CONTINUE
GO TO 3
I1 \(=0\)
DO 18 L1=1,2
DO \(18 \mathrm{I}=\mathrm{L} 1, \mathrm{M}, 2\)
\(\mathrm{II}=\mathrm{II}+1\)
\(Y(I 1)=Y 1(I)\)
DO \(18 \mathrm{~J}=1, \mathrm{~L}\)
\(X(I 1, J)=X 1(I, J)\)
CONTINUE
GO TO 3
DO \(19 \mathrm{I}=1, \mathrm{M}\) \(\mathrm{Y}(\mathrm{I})=\mathrm{Y} 1(\mathrm{I})\)
DO \(19 \mathrm{~J}=1, \mathrm{~L}\) \(X(I, J)=X 1(I, J)\) CONTINUE CONTINUE CALL COMBI
\(\mathrm{NOB}=\mathrm{NB}\)
STOP
END
C

\section*{Subroutines used}

SUBROUTINE DATA(IH)
COMMON /GAMA/G(100)
DO \(300 \mathrm{I}=1\), IH
\(\operatorname{READ}(8,100) \mathrm{G}(\mathrm{I})\)
format (f12.6)
100
300
CONTINUE
RETURN
END
C
SUBROUTINE FORM(IH,M,L)
COMMON /GAMA/G(100)
COMMON /X1Y1/X(100,15),Y(100)
M1 \(=0\)
\(\mathrm{L} 1=\mathrm{L}+1\)
DO 2 I=L1,IH
\(\mathrm{M} 1=\mathrm{M} 1+1\)
\(Y(M 1)=G(I)\)
DO \(1 \mathrm{~J}=1\), L
\(\mathrm{IJ}=\mathrm{I}-\mathrm{J}\)
X (M1, J) \(=G(I J)\)
CONTINUE
M=M1
RETURN
END
C
SUBROUTINE COMBI
REAL KCH,IQ
DIMENSION OS(16), OA(16),FS(15,16), FS1 \((15,16)\),
ID (15), P(15), P1(15), IA(15),IP(15)
COMMON /XYUD/X \((100,15), Y(100), \operatorname{UD}(100,15)\)
COMMON /PS/NB,N,PS \((15,16)\)
```

        COMMON /INIT/M,MP,MA1,L
            FORMAT(/2X,'MODEL ORDER (IT)=',I3/2X,'NO INPUT VAR.(L)=',
    1 I3/2X,'TOTAL NO.PTS. (M) =',I3/2X,'NO.PTS.TESTSET(MP) =',I3/2X,
    2 'NO.PTS.EXAM.SET (MA1)=',I3/)
        WRITE(*,64)
    64 FORMAT(2X,'GIVE ORDER OF THE MODEL??')
READ(*,*) IT
WRITE (3,65)IT,L,M,MP,MA1
N=1
DO 38 J1=1,L
N=N* (IT+J1)/J1
KCH=2.**N-1
WRITE (3,50)N,KCH
WRITE(*,50)N,KCH
FORMAT (/4X, 'NO.TERMS IN FULL MODEL=',I3/4X,
1 'NO.PARTIAL MODELS=',F12.0/)
WRITE(*,320)
320 FORMAT(///2X,'NO OF OPTIMAL MODELS (NB)??')
READ(*,330)NB
330 FORMAT (I2)
WRITE (3,321) NB
321 FORMAT(//2X,'NO OF OPTIMAL MODELS = ',I2)
C***********************************
C - FORMING CONDITIONAL EQUATIONS
C***********************************
N1=N+1
MA =M-MA1
MO}=MA-M
MPR=MO+1
C************************************
C STRUCTURE OF FULL POLYNOMIAL
C***********************************
CALL FORD(IT,L,M,N,IP)
WRITE(*,100)
FOO FORMAT(1H\$,'GIVE SELECT CRIT(1-REGUL,2-MINBIAS,3-COMBINED) ?')
READ(*,101)LM
101 FORMAT(I2)
C***********************************
C FORMING NORMAL EQUATIONS
C***********************************
CALL NOS(N,N1,M,1,MO,FS)
CALL NOS(N,N1,M,MPR,MA,FS1)
C***************************************
C SORTING OF PARTIAL DESCRIPTIONS
C***************************************
IQ=0.0
C**************************************************
C CALCULATION OF COEFFICIENTS OF THE MODELS
C**************************************************
41 IQ=IQ+1
CALL DICH(IQ,ID,N,2)
KB=0
DO 60 I4=1,N
6 0
KB=KB+ID (I4)
KB1=KB+1
CALL PAP(ID,N,N1,KB,KB1,FS,P,IA)
CALL PAP(ID,N,N1,KB,KB1,FS1,P1,IA)

```

IF (LM-2) 92, 93,92
\(\mathrm{OSH}=0.0\)
DO \(54 \mathrm{~J}=\mathrm{MPR}\), MA
\(\mathrm{Z}=0.0\)
DO \(55 \mathrm{I}=1, \mathrm{~N}\)
\(Z=Z+P(I)\) * \(U D(J, I)\)
\(\mathrm{OSH}=\mathrm{OSH}+(\mathrm{Z}-\mathrm{Y}(\mathrm{J})) * * 2\)
OSH1=SQRT (OSH)/MP
IF (LM-2)51,93,93
\(\mathrm{OSH}=0.0\)
DO \(56 \mathrm{~J} 3=1, \mathrm{MA}\)
\(Z=0.0\)
\(\mathrm{AF}=0.0\)
DO 57 I3 \(=1, N\)
\(\mathrm{Z}=\mathrm{Z}+\mathrm{P}(\mathrm{I} 3)\) * \(\mathrm{UD}(\mathrm{J} 3, \mathrm{I} 3)\)
57
\(\mathrm{AF}=\mathrm{AF}+\mathrm{P} 1(\mathrm{I} 3) * \mathrm{UD}(\mathrm{J} 3, \mathrm{I} 3)\)
56
\(\mathrm{OSH}=\mathrm{OSH}+(\mathrm{Z}-\mathrm{AF}) * * 2\)
OSH2=SQRT (OSH)/MA
IF (LM-2) 51, 52, 53
51
OSH=OSH1
GO TO 59
52
\(\mathrm{OSH}=\mathrm{OSH} 2\)
GO TO 59
\(\mathrm{OSH}=\mathrm{OSH} 1+\mathrm{OSH} 2\)
53
SELECTION OF THE NB BEST MODELS
C
C
\(59 \quad \mathrm{IF}\) (IQ-NB) \(42,42,43\)
42
\(J F=I Q\)
GO TO 47
\(43 \quad \mathrm{IF}(\mathrm{NB}-1) 45,44,45\)
44
R5 \(=0 \mathrm{~S}(1)\)
GO TO 49
45 CALL FMAX (OS,NB, R5, JF)
49 IF (OSH-R5) 47,41,41
47
OS (JF) =OSH
DO 48 I5=1,N
PS (I5, JF) \(=\mathrm{P}(\mathrm{I} 5)\)
IF (IQ.LT. KCH)GO TO 41

C SELECTION CRITERION FOR SORTING OUT THE BEST MODELS

IF (LM-2) 88, 89, 90
WRITE \((3,85)\)
GOTO 91
\(\operatorname{WRITE}(3,84)\)
FORMAT (/4X,'SORTING OUT BY MINIMUM-BIAS CRITERION')
GOTO 91
\(\operatorname{WRITE}(3,80)\)
80 FORMAT(/4X,'SORTING OUT BY COMBINED CRITERION')
91 CONTINUE
WRITE (3,75)
FORMAT (4X,'DEPTH OF THE MINIMUM')
\(\operatorname{WRITE}(3,68)(\mathrm{OS}(\mathrm{K}), \mathrm{K}=1, \mathrm{NB})\)
C
C
C
```

IF (PS (I6,K)) 72,73,72

```

C PRINTING OUT THE PARAMETERS OF BEST MODELS
WRITE (3, 67)

SUBROUTINE FMAX (G, JE, C, M)
DIMENSION G(16)
\(\mathrm{C}=\mathrm{G}\) (1)
\(M=1\)
\(\mathrm{I}=2\)
IF \((C-G(I)) 21,22,22\)
\(C=G(I)\)
\(\mathrm{M}=\mathrm{I}\)

IF (I-JE) \(20,20,23\)
RETURN
END
```

SUBROUTINE PAP(ID,N,N1,IS,IS1,FS,P,IA)
DIMENSION ID(15),FS(15,16),P(15),IA(15)
DIMENSION QN(15,16),R(15)
K=0
DO 34 I=1,N
P(I)=0.0
IF (ID(I)) 35,34,35
K=K+1
IA(K)=I
QN(K,IS1)=FS(I,N1)
CONTINUE
DO 36 I=1,IS
DO 36 J=1,IS
L1=IA(I)
L2=IA(J)
QN(I,J)=FS(L1,L2)
CALL GAUSS(QN,IS,IS1,R)
DO 37 K=1,IS
L3=IA(K)
P(L3)=R(K)
RETURN
END

```
SUBROUTINE DICH (JQ,ID, JN, JS)
DIMENSION ID(15)
REAL JQ,JL
JL=JQ
DO \(11 I=1\), JN
\(I D(I)=0\)
IF (JS-1) 15,19,15
\(\mathrm{I}=0\)
\(\mathrm{JN} 1=\mathrm{JN}+1\)
\(I=I+1\)
IF (JS-JL) \(17,17,18\)
JC=JL/JS
L1 = JN1-I
\(\operatorname{ID}(\mathrm{L} 1)=\mathrm{JL}-\mathrm{JC}{ }^{\star} \mathrm{J} S\)
JL \(=\) JC
GO TO 16
\(\mathrm{L} 2=\mathrm{JN} 1-\mathrm{I}\)
\(I D(L 2)=J L\)
RETURN
END
SUBROUTINE FORD (ICT,L,M,N,IP)
REAL IC
DIMENSION IP(15)
COMMON /XYUD/X \((100,15), Y(100), \operatorname{UD}(100,15)\)
WRITE \((3,24)\)
FORMAT (4X,'STRUCTURE OF THE FULL POLYNOMIAL')
\(\mathrm{IC}=0.0\)
\(J F=0\)
ICT1 \(=\mathrm{ICT}+1\)
CALL DICH (IC,IP,L,ICT1)
\(I C=I C+1\)
\(I S=0\)
```

26

```
```

DO 26 J1=1,L
IS=IS+IP(J1)
IF(IS-ICT)27,27,25
JF=JF+1
FORMAT (5X,17I3)
WRITE (3,28)(IP(J),J=1,L)
DO 32 I=1,M
UD (I,JF)=1.0
IF (JF-1) 32,32,81
DO 31 J=1,L
IF(IP(J))31,31,82
UD(I,JF)=UD(I,JF)*X(I,J)**IP(J)
CONTINUE
CONTINUE
IF(IP(1)-ICT) 25,30,30
RETURN
END
SUBROUTINE NOS (N,N1,ML,MB,M1,FS)
DIMENSION FS (15,16)
COMMON /XYUD/X(100,15),Y(100),UD (100,15)
DO 31 I=1,N
FS (I,N1) =0.0
DO 31 J=MB,M1
FS(I,N1)=FS(I,N1)+UD(J,I)*Y(J)
DO 32 II=1,N
DO 32 J1=1,N
FS(I1,J1)=0.0
DO 32 K=MB,M1
FS(I1,J1)=FS(I1,J1)+UD (K,I1)*UD (K,J1)
RETURN
END

```
SUBROUTINE RANG (X,NP,N)
DIMENSION X (100), XD (100)
INTEGER NP (100), ND (100)
DO \(1 I=1, N\)
\(X D(I)=X(I)\)
\(N D(I)=I\)
\(\mathrm{N} 1=\mathrm{N}\)
CALL FMAX (XD,N1, XM, K)
NP (N1) =ND (K)
\(\mathrm{K} 1=\mathrm{K}+1\)
DO \(3 I=K 1, N 1\)
\(\mathrm{XD}(I-1)=\mathrm{XD}(\mathrm{I})\)
\(\mathrm{ND}(\mathrm{I}-1)=\mathrm{ND}(\mathrm{I})\)
\(\mathrm{N} 1=\mathrm{N} 1-1\)
IF (N1.GE.2)GO TO 2
\(N P(1)=N D(1)\)
RETURN
END
SUBROUTINE GAUSS (A, N, L, X)
DIMENSION A \((15,16), X(15)\)
\(\mathrm{L}=\mathrm{N}+1\)
\(\mathrm{NN}=\mathrm{N}-1\)
DO \(88 \mathrm{~K}=1\), NN
\(J=K\)
\(K K=K+1\)
DO 100 I=KK,N
```

    IF(ABS(A(J,K)).LT.ABS(A(I,K)))J=I
    CONTINUE
    IF(J.EQ.K)GOTO }1
    DO 300 I=1,L
    T=A(K,I)
    A(K,I) =A (J,I)
    A(J,I) =T
    300 CONTINUE
11 DO 88 J=KK,N
IF(A(K,K).EQ.O.)GOTO 600
D=-A(J,K)/A(K,K)
DO }88\textrm{I}=1,\textrm{L
A(J,I) =A (J,I) +D*A (K,I)
CONTINUE
IF(A(N,N).EQ.0.)GOTO 600
X(N)=A (N,L)/A (N,N)
NN=N-1
DO 500 J=1,NN
K=N-J
SUM=0.0
NNN=N-K
DO 200 JJ=1,NNN
M=K+JJ
SUM=SUM+A (K,M)*X (M)
200
ONTINUE
IF(A(K,K).EQ.0.)GOTO 600
X(K) = (A (K,L) -SUM)/A (K,K)
500 CONTINUE
600 RETURN
END

```

\subsection*{2.2 Sample outputs}

\section*{Example.}
I. Here the case of multivariate data is considered. The output data is generated from theequation:
\[
y=0.433-0.095 x_{1}+0.243 x_{2}+0.35 x_{1}^{2}-0.18 x_{1} x_{2}+\epsilon,
\]
where \(x_{1}, x_{2}\) are randomly generated input variables \(y\) is the output variable, and \(\epsilon\) is the noise added to the data. The "input.dat" file is arranged for 100 measured points with the values of \(y, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\).

The initial control parameters of the program are fed through the terminal as it asks inputting the values, starting with

GIVE TOTAL DISCRETE POINTS

TIME SERIES (1)/MULTIVARIATE DATA (2)??
2

GIVE NO.OF INPUT VARIABLES??
 GIVE NO.OF TRAINING PTS??
:30
 GIVE NO.OF TESTING PTS??
IL5
 DATA SPLITTING BY (-1 DISP, 0 ALTER, 1 SEQUEN)??
 GIVE ORDER OF THE MODEL??
```

Then it on the screen displays information to the user on how to feed further information:

```
NO.OF TERMS IN FULL MODEL = 6
NO.OF PARTIAL MODELS = 63
```

The user has to feed further data such as the number of optimal models to be selected and the selection criterion to be used.

```
NO.OF OPTIMAL MODELS (NB)??
```

GIVE SELECT CRIT (1-REGUL, 2-MINBIAS, 3-COMBINED)?

The output is written in a file "results.dat" given here:

SINGLE L A Y E R E D COMBINATORIAL ALGORITHM
TOTAL NO. OF DATA PTS. $=100$
MODEL ORDER $(I T)=1$
NO INPUT VAR.(L) $=5$
TOTAL NO.PTS. (M) $=100$
N0. PTS.TESTSET (MP) $=15$
NO.PTS.EXAM.SET $($ MA1 $)=5$
NO.TERMS IN FULL MODEL= 6
NO.PARTIAL MODELS $=63$.
NO OF SELECT MODELS $=8$
STRUCTURE OF THE FULL POLYNOMIAL

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |


| 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |


| 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |


| 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |


| 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |

10000

SORTING OUT BY REGULARITY CRITERION
DEPTH OF THE MINIMUM

| $0.647 \mathrm{E}-04$ | $0.652 \mathrm{E}-04$ | $0.219 \mathrm{E}-02$ | $0.364 \mathrm{E}-02$ | $0.352 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- |
| $0.219 \mathrm{E}-02$ | $0.394 \mathrm{E}-02$ | $0.409 \mathrm{E}-02$ |  |  |


| COEFFICIENTS: |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | ---: |
| 0.434 | -0.180 | 0.000 | 0.350 | 0.243 | -0.095 |
| 0.434 | -0.180 | 0.000 | 0.350 | 0.243 | -0.095 |
| 0.417 | -0.192 | 0.005 | 0.266 | 0.242 | 0.000 |
| 0.442 | 0.000 | 0.000 | 0.174 | 0.161 | 0.000 |
| 0.437 | 0.000 | -0.030 | 0.173 | 0.190 | 0.000 |
| 0.416 | -0.191 | 0.000 | 0.265 | 0.247 | 0.000 |
| 0.458 | 0.000 | -0.033 | 0.293 | 0.196 | -0.127 |
| 0.463 | 0.000 | 0.000 | 0.292 | 0.163 | -0.126 |
| MSE AFTER | ADAPTATION |  |  |  |  |
| $0.469 \mathrm{E}-03$ | $0.470 \mathrm{E}-03$ | $0.116 \mathrm{E}-01$ | $0.306 \mathrm{E}-01$ | $0.303 \mathrm{E}-01$ |  |
| $0.116 \mathrm{E}-01$ | $0.260 \mathrm{E}-01$ | $0.264 \mathrm{E}-01$ |  |  |  |
| ERROR ON THE | EXAMIN SET |  |  |  |  |
| $0.516 \mathrm{E}-03$ | $0.527 \mathrm{E}-03$ | $0.901 \mathrm{E}-02$ | $0.268 \mathrm{E}-01$ | $0.266 \mathrm{E}-01$ |  |
| $0.900 \mathrm{E}-02$ | $0.182 \mathrm{E}-01$ | $0.182 \mathrm{E}-01$ |  |  |  |

The STRUCTURE OF THE FULL POLYNOMIAL helps to read the coefficients in order. For example, the first row indicates the constant term; the second row which contains 1 at the fifth column indicates that the second coefficient corresponds to the fifth variable; similarly, the third row for the fourth variable, and so on until the last row indicates the coefficient of first variable.

The COEFFICIENTS are given for eight optimal models; they are given according to the order of STRUCTURE OF THE FULL POLYNOMIAL as $a_{0}, a_{5}, a_{4}, a_{3}, a_{2}$, and $a_{1}$. The DEPTH OF THE MINIMUM for regularity criterion, MSE AFTER ADAPTATION, and ERROR ON THE EXAMIN SET are given for each model in the order. The first model is the best one among all; this is read as

$$
\begin{equation*}
y=0.434-0.180 x_{1} x_{2}+0.0 x_{2}^{2}+0.350 x_{1}^{2}+0.243 x_{2}-0.095 x_{1} \tag{8.7}
\end{equation*}
$$

II. The above example can also be solved alternatively by forming the "input.dat" with the variables $y, x_{1}$, and $x_{2}$ as

$$
\begin{array}{|l|l|l|}
\hline y & x_{1} & x_{2} \\
\hline
\end{array}
$$

The control parameter values are the same as above, except the number of variables and the value of the order of the model which must be fed as

GIVE NO.OF INPUT VARIABLES??
2

GIVE ORDER OF THE MODEL??
2

Then the output in "results.dat" is shown below:

```
SINGLE L A Y E R E D COMBINATORIAL ALGORITHM
```

TOTAL NO.OF DATA PTS. $=100$

MODEL ORDER $(I T)=2$
NO INPUT VAR. $(\mathrm{L})=2$
TOTAL NO.PTS. (M) $=100$
NO. PTS.TESTSET $(\mathrm{MP})=15$
NO.PTS.EXAM.SET $\quad($ MA1 $)=5$


Notice the change in the order of the coefficients. The first row of the STRUCTURE OF THE POLYNOMIAL indicates that the first coefficient term is the constant term; the second row indicates that the second coefficient term corresponds to the variable $x_{2}$; the third row indicates that the third coefficient term corresponds to the variable $x_{2}^{2}$; the fourth row indicates that the fourth coefficient term corresponds to the variable $x_{1}$; the fifth row corresponds to the variable $x_{1} x_{2}$; and the sixth row indicates the variable $x_{1}^{2}$. The second model is the best optimal model among the eight models; this is read as

$$
\begin{equation*}
y=0.434+0.243 x_{2}+0.0 x_{2}^{2}-0.095 x_{1}-0.180 x_{1} x_{2}+0.350 x_{1}^{2} . \tag{8.8}
\end{equation*}
$$

## 3 COMPUTATIONAL ASPECTS OF HARMONICAL ALGORITHM

This is used mainly to identify the harmonical trend of oscillatory processes [127]. It is assumed that the effective reference functions of such processes are in the form of a sum of harmonics with nonmultiple frequencies. This means that the harmonical function is formed by several sinusoids with arbitrary frequencies which are not necessarily related.

Let us suppose that function $f(t)$ is the process having a sum of $m$ harmonic components with distinct frequencies $w_{1}, w_{2}, \cdots, w_{m}$.

$$
\begin{equation*}
f(t)=\mathcal{A}_{0}+\sum_{k=1}^{m}\left[\mathcal{A}_{k} \sin \left(w_{k} t\right)+\mathcal{B}_{k} \cos \left(w_{k} t\right)\right] \tag{8.9}
\end{equation*}
$$

where $\mathcal{A}_{0}$ is the constant term; $\mathcal{A}_{k}$ and $\mathcal{B}_{k}$ are the coefficients; and $w_{i} \neq w_{j}, i \neq j, 0<w_{i}<$ $\pi, i=1,2, \cdots, m$. The process has discrete data points of interval length of $N(1<t<N)$.

A balance relation is derived using the trigonometric properties for a fixed point $i$ and any $p$;

$$
\begin{equation*}
\sum_{p=0}^{m-1} \mu_{p}[f(i+p)+f(i-p)]=f(i+m)+f(i-m) \tag{8.10}
\end{equation*}
$$

where $\mu_{0}, \mu_{1}, \cdots, \mu_{m-1}$ are the weighing coefficients. This is considered a balance relation of the process and is used as an objective function

$$
\begin{equation*}
b_{i}=[f(i+m)+f(i-m)]-\sum_{p=0}^{m-1} \mu_{p}[f(i+p)+f(i-p)] \tag{8.11}
\end{equation*}
$$

If the process is expressed exactly in terms of a given sum of harmonic components, then $b_{i}=0$; i.e., the discrete values of $f(t)$ which are symmetric with respect to a point $i(m+1 \leq i \leq N-m)$ satisfy the balance relation. The coefficients $\mu_{p}$ are independent of $i$. It is possible to determine uniquely the coefficients $\mu_{p}, p=0,1, \cdots, m-1$ from the balance relation for $i=m+1, \cdots, N-m .(N-m)-(m+1) \geq m-1$; i.e., $N \geq 3 m$.

The standard trigonometric relation which is used in deriving the balance relation,

$$
\begin{equation*}
\mu_{0}+\sum_{k=1}^{m-1} \mu_{p} \cos \left(p w_{k}\right)=\cos \left(m w_{k}\right) \tag{8.12}
\end{equation*}
$$

helps in obtaining the frequencies $w_{k}$. This could be formed as $m$ th degree algebraic equation in $\cos w$ :

$$
\begin{equation*}
\mathcal{D}_{m}(\cos w)^{m}+\mathcal{D}_{m-1}(\cos w)^{m-1}+\cdots+\mathcal{D}_{1}(\cos w)+\mathcal{D}_{0}=0 \tag{8.13}
\end{equation*}
$$

where $\mathcal{D}_{i}, i=0,1, \cdots, m$ are the functions of $\mu_{p}$.
Substituting the values of $\mu_{p}$, the above equation can be solved for $m$ frequencies $w_{k}$ of harmonics by using the standard numerical techniques. Various combinations of the harmonic components are formed with the frequencies $w_{k}$. The coefficients $\mathcal{A}_{0}, \mathcal{A}_{k}$, and $\mathcal{B}_{k}$ are estimated for each combination by using the least-squares technique. The best combination as an optimal trend is selected according to the value of the balance criterion.

The algorithm functions as below:
The discrete data is to be supplied as training set A and testing set B ; one can allot a separate checking set C for examining the final optimal trend; i.e., $N=N_{A}+N_{B}+N_{C}$. The maximum number of harmonics is chosen as $M_{\max }(<N / 3)$. The coefficients $\mu_{p}$ are estimated by using the least squares technique by forming the balance equations with the training set. The system of equations has the form:

$$
\begin{align*}
\sum_{p=0}^{m-1} \mu_{p}[y(i+p)+y(i-p)] & =y(i+m)+y(i-m) \\
i & =m+1, \cdots, N_{A}-m \tag{8.14}
\end{align*}
$$

By substituting the values of $\mu_{p}$ in the above $m$ th order polynomial in $\cos w$, the frequencies are estimated; the $m$ roots of the polynomial uniquely determine the $m$ frequencies $w_{k}$. These frequencies are fed through the input layer of multilayer structure where the complete sifting
of harmonic trends would take place according to the inductive principle of self-organization. This is done by a successive increase in the number of terms of the harmonic components $m=1, m=2, m=3, \cdots$ until $m=M_{\max }$. The linear normal equations are constructed in the first layer for any $1<m<M_{\max }$ number of harmonics. The coefficients $\mathcal{A}_{0}, \mathcal{A}_{k}$, and $\mathcal{B}_{k}$ are estimated for all the combinations based on the training set using the least squares technique; the balance functions are then evaluated. The best trends are selected. The output error residuals of the best trends are fed forward as inputs to the second layer. This procedure is repeated in all subsequent layers. The complexity of the model increases layer by layer as long as the value of the "imbalance" decreases. The optimal trend is the total combination of the harmonical components obtained from the layers. The performance of the optimal trend is tested on the checking set C .

The program listing and sample outputs for an example are given below.

### 3.1 Program listing

C
C
C THIS PROGRAM IS THE RESULT OF EFFORTS FROM VARIOUS GRADUATE STUDENTS C AND RESEARCH PROFESSIONALS AT THE COMBINED CONTROL SYSTEMS GROUP OF C INSTITUTE OF CYBERNETICS, KIEV (UKRAINE)


HARMONICAL INDUCTIVE LEARNING ALGORITHM

N - NO.OF TRAINING SET POINTS
NP - NO.OF TEST SET POINTS
NE - NO.OF EXAMIN SET POINTS
PT - NO.OF PREDICTION POINTS
JFM - MAX NO.OF FREQUENCIES
JF - FREEDOM OF CHOICE
NRM - NO.OF SERIES IN HARMONICAL TREND
$\mathrm{NN}=\mathrm{N}+\mathrm{NP}+\mathrm{NE}$
$\mathrm{NPT}=\mathrm{NN}+\mathrm{PT}$
G(NN) - DISCRETE SIGNAL DATA
APR (NPT) - HARMONICAL MODEL VALUES
MA - NO.OF LAG POINTS FOR SMOOTHING PROCEDURE (MOVING AVERAGE VALUE). IF IT IS ONE, DATA REMAINS SAME
C

C MAIN PROGRAM
C
INTEGER PT
DIMENSION GY(120)
COMMON /AB/G(120)
C
$\operatorname{OPEN}(3$, FILE='output.dat')
$\operatorname{OPEN}(8, F I L E=$ 'ts.dat')
WRITE $(3,4)$
FORMAT(5X,' L A Y E R E D HARMONICAL ALGORITHM'/)

```112
 FORMAT(3X,'GIVE NO.OF PRED PTS??')
 READ(*,*)PT
 NPT=NN+PT
 READ (8,*) (G (I), I=1,NN)
 FAX=G (1)
 DO 5 I=2,NN
 IF(G(I).GT.FAX)FAX=G(I)
```

```
CONTINUE
 DO 6 I=1,NN
 G(I)=G(I) /FAX
 CONTINUE
 WRITE(*,222)
 FORMAT(3X,'GIVE MOVING AVERAGE VALUE (=1 or >1)?')
 READ(*,111)MA
 FORMAT (I2)
 WRITE(*,333)
 FORMAT(3X,'HOW MANY SERIES?')
 READ(*,111)NRM
 WRITE(*,114)
 FORMAT (3X,'GIVE MAX NO.OF FREQS(<=15)??')
 READ(*,*)JFM
 JF2 = 2* JFM+2
 WRITE(*,115)
 FORMAT(3X,'GTVE FREEDOM OF CHOICE(< MAX FREQS)??')
 READ (* *) JF
 SMA=0.0
 DO }7\textrm{I}=1,M
 SMA=SMA+G (I)
 SMA = SMA/MA
 GY(1) =SMA
 IX=1
 MHR=MA+1
 DO }8\mathrm{ I=MHR,NN
 IX=IX+1
 IX1=IX-1
 IMA=I-MA
 GY(IX) =GY(IX1) +(G(I) -G(IMA)) /MA
 CONTINUE
 DO 9 I=1,IX
 G(I) =GY(I)
 CONTINUE
 CALL HARMAN (N,NP,NE,NN, PT,JF,JFM,NRM,0,1,JF2,NPT)
 STOP
 END
```


## Subroutines used

```
SUBROUTINE WB(N1,M,M1,IER,KA)
COMMON /BC/X(160),Y(160),Y1(31),Y2(31),A(31),C(31,32),W(15)
N=N1-2
 M1=M+1
NM=N-M
DO 1 I=1,N
Y(I) =X (I+2)-X(I)
DO 2 J=1,M1
Y1 (J) =0.0
DO 2 I=1,M
C(I,J)=0.0
```

2

	DO $3 \mathrm{I}=\mathrm{M1}$, NM
	$\mathrm{K}=\mathrm{I}-\mathrm{M}$
	$\mathrm{R}=\mathrm{K}$
	$\mathrm{E}=1.0 / \mathrm{R}$
	DO $4 \mathrm{~J}=1$, M1
	$\mathrm{I} 1=\mathrm{I}+\mathrm{J}-1$
	$\mathrm{I} 2=\mathrm{I}-\mathrm{J}+1$
	$\mathrm{Y} 2(\mathrm{~J})=\mathrm{Y} 1(\mathrm{~J})+\mathrm{Y}(\mathrm{I} 1)+\mathrm{Y}(\mathrm{I} 2)$
	IF (KA-0) 4, 10, 4
10	$\mathrm{Y} 2(\mathrm{~J})=\mathrm{Y} 2(\mathrm{~J})-\mathrm{Y} 1(\mathrm{~J})$
4	$\mathrm{Y} 1(\mathrm{~J})=\mathrm{Y} 2(\mathrm{~J})$
8	DO $5 \mathrm{Kl}=1, \mathrm{M}$
	DO $5 \mathrm{~J}=\mathrm{K} 1$, M1
	$\mathrm{E} 1=\mathrm{Y} 2$ (K1) * Y 2 ( J )
	IF (KA-2) 5, 11,5
11	$\mathrm{E} 1=\mathrm{E} 1$ * E
5	$C(K 1, J)=C(K 1, J)+E 1$
	IF (KA-2) $3,12,12$
12	$\mathrm{K}=\mathrm{K}-1$
	IF ( $\mathrm{K}-0) 13,3,13$
13	DO $7 \mathrm{~J}=1$, M1
	$I 1=I+J-1-K$
	$I 2=I-J+1-K$
7	$\mathrm{Y} 2(\mathrm{~J})=\mathrm{Y} 2(\mathrm{~J})-\mathrm{Y}(\mathrm{I} 1)-\mathrm{Y}(\mathrm{I} 2)$
	GOTO 8
3	CONTINUE
	IF (M-1) 14, 77, 14
14	DO $6 \mathrm{I}=2, \mathrm{M}$
	$\mathrm{I} 1=\mathrm{I}-1$
	DO $6 \mathrm{~J}=1$, I1
6	$C(I, J)=C(J, I)$
77	CALL GAUSS (C, M, M1, A, IER)
	RETURN
	END
C	
	SUBROUTINE COEF (M, N, IER)
	COMMON / BC/Y (160), Y1 (160), WK (31), B (31), A (31), HM (31, 32), W (15)
	$\mathrm{K}=2$ * M
	$\mathrm{K} 1=\mathrm{K}+1$
	DO 1 I=1, K1
	HM1 $=0.0$
	$\mathrm{IF}(\mathrm{I}-\mathrm{K}) 2,2,3$
2	$\mathrm{AI}=\mathrm{I}$
	$B I=(A I+1.25) / 2$.
	$I I=I N T(B I)$
	$B I=(A I+0.1) / 2$.
	$A I=I N T(B I)$
	$T I=B I-A I$
	DO $4 \mathrm{~J}=\mathrm{I}, \mathrm{K}$
	$A J=J$
	$B J=(A J+1.25) / 2$.
	$J J=I N T(B J)$
	$B J=(A J+0.1) / 2$.
	$A J=I N T$ ( BJ )
	$\mathrm{T} J=\mathrm{BJ}-\mathrm{AJ}$
	$W 1=W(I I)-W(J J)$
	$W 2=W(I I)+W(J J)$
	IF (II-JJ) 6, 5, 6
5	$\operatorname{IF}(\mathrm{ABS}(\mathrm{TI}-\mathrm{TJ})-0.01) 8,30,30$
30	$S 1=0.0$

GOTO 9
$\mathrm{S} 1=\mathrm{N}$
GOTO 9
$A N=N$
$\mathrm{CN}=\mathrm{AN} * \mathrm{~W} 1 / 2$.
$\mathrm{BN}=\mathrm{W} 1 / 2$.
$\mathrm{S} 1=\operatorname{SIN}(\mathrm{CN}) / \operatorname{SIN}(\mathrm{BN})$
$A N=N$
$\mathrm{CN}=\mathrm{AN} * \mathrm{~W} 2 / 2$.
$\mathrm{BN}=\mathrm{W} 2 / 2$.
$\mathrm{S} 2=\operatorname{SIN}(\mathrm{CN}) / \operatorname{SIN}(\mathrm{BN})$
AN $=\mathrm{N}+1$
$\mathrm{BN}=\mathrm{AN}^{\star} \mathrm{W} 1 / 2$.
$\mathrm{CN}=\mathrm{AN} * \mathrm{~W} 2 / 2$.
$\mathrm{CN} 1=\operatorname{COS}(\mathrm{BN})$
$\mathrm{CN} 2=\operatorname{COS}(\mathrm{CN})$
SN. $=\operatorname{SIN}(B N)$
SN2 $=\operatorname{SIN}(\mathrm{CN})$
IF (TI-0.25) 1.1, 10, 10
IF (TJ-0.25) 13, 12, 12
$\mathrm{HM}(\mathrm{I}, \mathrm{J})=\mathrm{S} 1$ * CN1-S2*CN2
GOTO 40
$H M(I, J)=S 2 * S N 2+S 1 * S N 1$
GOTO 40
IF (TJ-0.25) 15, 14, 14
HM (I, J ) $=$ S2 2 SN2-S $1 *$ SN1
GOTO 40
$\mathrm{HM}(\mathrm{I}, \mathrm{J})=\mathrm{S} 1 * \mathrm{CN} 1+\mathrm{S} 2{ }^{*} \mathrm{CN} 2$
$H M(I, J)=0.5 * H M(I, J)$
CONTINUE
$\operatorname{IF}(T I-0.25) 17,16,16$
Y1 (1) $=\operatorname{SIN}(W$ (II))
$Y 1(2)=\operatorname{SIN}(2 * W(I I))$
GOTO 18
$\mathrm{Y} 1(1)=\cos (\mathrm{W}(\mathrm{II}))$
$\mathrm{Y} 1(2)=\operatorname{COS}(2 * W(I I))$
WK1 $=\operatorname{COS}(\mathrm{W}(\mathrm{II}))$
DO $19 \mathrm{~J}=3, \mathrm{~N}$
$\mathrm{Y} 1(\mathrm{~J})=2 . * W K 1 * Y 1(\mathrm{~J}-1)-\mathrm{Y} 1(\mathrm{~J}-2)$
HM1 $=\mathrm{HM} 1+\mathrm{Y} 1(J) * Y(J)$
$\mathrm{HM}(\mathrm{I}, \mathrm{K}+2)=\mathrm{HM} 1+\mathrm{Y} 1(1) * \mathrm{Y}(1)+\mathrm{Y} 1(2) * \mathrm{Y}(2)$
$\operatorname{IF}(T I-0.25) 21,20,20$
$A N=N+1$
$\mathrm{AN}=\mathrm{AN} * \mathrm{~W}(\mathrm{II}) / 2$.
$\mathrm{H} 1=\mathrm{SIN}(\mathrm{AN})$
GOTO 22
$A N=N+1$
$A N=A N * W(I I) / 2$.
$\mathrm{H} 1=\mathrm{COS}(\mathrm{AN})$
$A N=N$
$B N=W(I I) / 2$.
$\mathrm{CN}=\mathrm{AN} * \mathrm{BN}$
$\mathrm{HM}(\mathrm{I}, \mathrm{K} 1)=\mathrm{H} 1 * \operatorname{SIN}(\mathrm{CN}) / \operatorname{SIN}(\mathrm{BN})$
GOTO 24
$H M(I, K 1)=N$
$\mathrm{H} 1=0$.
DO $23 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{H} 1=\mathrm{H} 1+\mathrm{Y}(\mathrm{J})$
$\mathrm{HM}(\mathrm{I}, \mathrm{K}+2)=\mathrm{H} 1$
$\operatorname{IF}(\mathrm{I}-2) 1,25,25$

```
 I1=I-1
 DO 26 J=1,I1
 HM (I,J) =HM (J,I)
CONTINUE
 K11 = K1+1
 CALL GAUSS(HM,K1,K11,B,IER)
 RETURN
 END
```

    SUBROUTINE WB1 (M, M1, IER)
    COMMON /EC/YB(160),AP(160),WK(31),B(31),A(31),C(31,32),W(15)
    M1 \(=M+1\)
    DO \(1 \quad \mathrm{I}=1, \mathrm{M}\)
    DO \(1 \mathrm{~J}=1\), M1
    AJ \(=\mathrm{J}-1\)
    AJ \(=A J * W(I)\)
    \(C(I, J)=\operatorname{COS}(A J)\)
    CALL GAUSS (C,M,M1, A,IER)
    RETURN
    END
    SUBROUTINE RANG ( \(\mathrm{N}, \mathrm{B}\) )
    DIMENSION B(15)
    DO \(1 \quad \mathrm{I}=1, \mathrm{~N}\)
    \(\mathrm{I} 1=\mathrm{I}+1\)
    IF (I1-N) 7, 7, 3
    DO \(1 \mathrm{~J}=\mathrm{I} 1, \mathrm{~N}\)
    \(\operatorname{IF}(\mathrm{B}(\mathrm{I})-\mathrm{B}(\mathrm{J})) \mathrm{I}, 1,2\)
    $\mathrm{R}=\mathrm{B}$ (I)
$B(I)=B(J)$
$B(J)=R$
CONTINUE
RETURN
END
SUBROUTINE HARMAN(N,NP,NE,NN, PT, F, FM, NRM, KA, IP, F2, NPT)
INTEGER F, FM, PT, F2
REAL IB (6)
DIMENSION IST (6), PA $(15,120), \operatorname{PA1}(15,120), \operatorname{APR}(160)$
COMMON /AB/G(120)
COMMON /TIN/TIN $(15,48)$
COMMON /BC/YB(160), AP(160), WK (31), B(31), A(31),C(31,32),W(15)
FORMAT (//)
FORMAT (5X,' FREEDOM OF CHOICE',I3/)
FORMAT (5X,'MAX NO. OF FREQUENCIES', I3/)
FORMAT (5X,'MAX.NO.OF SERIES',I3/)
FORMAT (5X,'LENGTH OF EXAMINING SET (C)',I4/)
FORMAT (5X,'LENGTH OF TESTING SET (B)',I4/)
FORMAT (5X,'LENGTH OF TRAINING SET (A)', I4/)
FORMAT (5X,'NO.OF PREDICTION POIN'TS',I4/)
FORMAT (/)
FORMAT (2X, 7F11.3)
FORMAT ( 2 X, 'TIME SERIES')

FORMAT (3X,'SERIES',I3)
FORMAT ( 3 X, ' NO . OF FREQUENCIES', I3)
FORMAT (3X,'FREE TERM',F13.5)
FORMAT (3X,'FREQ',12X,'COEFFS A',9X,'COEFFS B', $8 \mathrm{X}, '$ 'AMPLITUDE')

117
118 FORMAT (2X,'ACTUAL VALUES:')
119 FORMAT (5F16.6)
120 FORMAT (2X,'ESTIMATED VALUES:')
121 FORMAT(5X,'PREDICTED VALUES:')
122 FORMAT(I8,2F28.5)
123 FORMAT (I8,F53.5)
124 FORMAT(/)
127 FORMAT(11X,'NO CORRECT DECISION')
C
$\mathrm{NK}=\mathrm{N}+\mathrm{NP}+\mathrm{NE}$
$\mathrm{N} 1=\mathrm{N}+\mathrm{NP}$
NKT $=\mathrm{NK}+\mathrm{PT}$
$\mathrm{PI}=3.1415926535 / 2$.
$\operatorname{WRITE}(3,100)$
WRITE $(3,106) \mathrm{N}$
$\operatorname{WRITE}(3,105) \mathrm{NP}$
$\operatorname{WRITE}(3,104) \mathrm{NE}$
$\operatorname{WRITE}(3,102) \mathrm{FM}$
$\operatorname{WRITE}(3,101) \mathrm{F}$
$\operatorname{WRITE}(3,107)$ PT
$\operatorname{WRITE}(3,103) \operatorname{NRM}$
WRITE (*, 109)
WRITE (*, 111)
WRITE(*, 110) (G(I), I=1, NN)
$\mathrm{NR}=1$
$\mathrm{IT}=0$
$\mathrm{IT}=\mathrm{IT}+1$
M=0
$\mathrm{M}=\mathrm{M}+1$
$\mathrm{MP}=2$ * M
DO 4 I=1,NK
IF (NR-1) 6, 6,5
$Y B(I)=G(I)$
GOTO 4
$\mathrm{YB}(\mathrm{I})=\mathrm{PA}(\mathrm{IT}, \mathrm{I})$
CONTINUE
CALL WB (N, M, M1, IER, KA)
IF (IER) 77, 998, 77
CALL FRIQ(M,M1)
DO $7 \mathrm{~J}=1, \mathrm{M}$
AN=1.-WK(J)**2
$\mathrm{BN}=\mathrm{WK}(\mathrm{J}) / \mathrm{SQRT}(\mathrm{AN})$
$W(\mathrm{~J})=\mathrm{PI}-\mathrm{ATAN}(\mathrm{BN})$
CALL WB1 (M, M1, IER)
IF (IER) 78,999,78
CALL COEF (M, N,IER)
IF (IER) 79,997,79
$\mathrm{B} 1=0$.
$B 2=0$.
$B 3=0$.
D1 $=0$.
D2 $=0$.
D3 $=0$.
M1 $=\mathrm{M}+1$
$\mathrm{NKM}=\mathrm{NK}-\mathrm{M}$
DO $11 \mathrm{I}=\mathrm{M} 1$, NKM
$\mathrm{R}=0$.
DO $12 \mathrm{~J}=1, \mathrm{M}$
$\mathrm{I} 1=\mathrm{I}+\mathrm{J}-1$
$I 2=I-J+1$
$R=R+A(J) *(Y B(I 1)+Y B(I 2)-2 * B(M P+1))$
$I M=I+M$
$M I=I-M$
$R=(Y B(I M)+Y B(M I)-R-2 * B(M P+1)) * * 2$
IF ( $\mathrm{I}-(\mathrm{N}-\mathrm{M})) 80,80,13$
$\mathrm{B} 1=\mathrm{B} 1+\mathrm{R}$
GOTO 11
IF (I-(N1-M)) 81, 81, 14
$\mathrm{B} 2=\mathrm{B} 2+\mathrm{R}$
GOTO 11
$\mathrm{B} 3=\mathrm{B} 3+\mathrm{R}$
CONTINUE
$\mathrm{AN}=\mathrm{N}-\mathrm{MP}$
$\mathrm{BN}=\mathrm{B} 1 / \mathrm{AN}$
$\operatorname{IB}(1)=S Q R T(B N)$
AN=NP
$\mathrm{BN}=\mathrm{B} 2 / \mathrm{AN}$
$\operatorname{IB}(2)=\operatorname{SQRT}(\mathrm{BN})$
DO $15 \mathrm{I}=1$, MP
$\mathrm{R}=0.0$
DO $16 \mathrm{~J}=1, \mathrm{M}$
$A I=I$
$D=W(J) * A I$
$\mathrm{J} 2=2 * J$
J21 = J2-1
$\mathrm{R}=\mathrm{R}+\mathrm{B}(\mathrm{J} 21) * \operatorname{SIN}(\mathrm{D})+\mathrm{B}(\mathrm{J} 2) * \operatorname{COS}(\mathrm{D})$
$\mathrm{D} 1=\mathrm{D} 1+(\mathrm{YB}(\mathrm{I})-\mathrm{B}(\mathrm{MP}+1)-\mathrm{R}) * * 2$
$\mathrm{AP}(\mathrm{I})=\mathrm{R}$
DO $17 \mathrm{I}=\mathrm{M1}, \mathrm{NKM}$
I1 $=I-M$
$\mathrm{R}=-\mathrm{AP}$ (I1)
DO $18 \mathrm{~J}=1, \mathrm{M}$
$\mathrm{I} 1=\mathrm{I}+\mathrm{J}-1$
$I 2=I-J+1$
$\mathrm{R}=\mathrm{R}+\mathrm{A}(\mathrm{J})$ * $(\mathrm{AP}(\mathrm{I} 1)+\mathrm{AP}(\mathrm{I} 2))$
$\mathrm{I} 2=\mathrm{I}+\mathrm{M}$
$\mathrm{AP}(\mathrm{I} 2)=\mathrm{R}$
$\mathrm{D}=(\mathrm{YB}(\mathrm{I} 2)-\mathrm{R}-\mathrm{B}(\mathrm{MP}+1)) \star \star 2$
IF (I2-N) $82,82,19$
$\mathrm{D} 1=\mathrm{D} 1+\mathrm{D}$
GOTO 17
IF (I2-N1) 83, 83, 20
$\mathrm{D} 2=\mathrm{D} 2+\mathrm{D}$
GOTO 17
D3 $=$ D3 + D
CONTINUE
$\mathrm{AN}=\mathrm{N}$
$\mathrm{BN}=\mathrm{D} 1 / \mathrm{AN}$
$\operatorname{IB}(4)=\operatorname{SQRT}(\mathrm{BN})$
$\mathrm{AN}=\mathrm{NP}$
$\mathrm{BN}=\mathrm{D} 2 / \mathrm{AN}$
$\operatorname{IB}(5)=S Q R T(B N)$
IF (NE) 21, 21, 22
$\operatorname{IB}(3)=0$.
$\operatorname{IB}(6)=0$.
GOTO 23
$\operatorname{IB}(3)=\operatorname{SQRT}(\mathrm{B} 3 / \mathrm{NE})$
$\mathrm{IB}(6)=\mathrm{SQRT}(\mathrm{D} 3 / \mathrm{NE})$
IF (IT-1) $25,84,25$

84	IF (M-F) $24,24,25$
24	$\mathrm{KP}=(\mathrm{NR}-1) * 8+1$
	IF (NR-1) $26,26,27$
26	$\operatorname{TIN}(\mathrm{M}, \mathrm{KP})=0$.
	GOTO 28
27	$\operatorname{TIN}(\mathrm{M}, \mathrm{KP})=I \mathrm{~T}$
28	$\operatorname{TIN}(\mathrm{M}, \mathrm{KP}+1)=\mathrm{M}$
	DO $29 \mathrm{I}=1,6$
	$\mathrm{KS}=\mathrm{KP}+1+\mathrm{I}$
29	TIN ( $\mathrm{M}, \mathrm{KS}$ ) $=1 \mathrm{~B}(\mathrm{I})$
	DO $30 \mathrm{I}=1$, NK
30	$\operatorname{PA1}(\mathrm{M}, \mathrm{I})=\mathrm{YB}(\mathrm{I})-\mathrm{AP}(\mathrm{I})-\mathrm{B}(\mathrm{MP}+1)$
	GOTO 34
25	$\mathrm{R}=0$.
	$\mathrm{IZ}=0$
	DO $31 \mathrm{I}=1, \mathrm{~F}$
	$K P=(N R-1) * 8+I P+2$
	$\mathrm{D}=\mathrm{TIN}(\mathrm{I}, \mathrm{KP}$ )
	IF (R-D) 85, 85, 31
85	$\mathrm{R}=\mathrm{D}$
	$\mathrm{IZ}=\mathrm{I}$
31	CONTINUE
55	IF ( $\mathrm{R}-\mathrm{IB}(\mathrm{IP}$ ) ) $34,34,86$
86	DO $32 \mathrm{I}=1$, NK
32	PA1 (IZ, I $)=\mathrm{YB}(\mathrm{I})-\mathrm{AP}(\mathrm{I})-\mathrm{B}(\mathrm{MP}+1)$
	$K P=(N R-1) * 8+1$
	DO $33 \mathrm{I}=1,6$
	KS $=\mathrm{KP}+1+\mathrm{I}$
33	$\operatorname{TIN}(\mathrm{IZ}, \mathrm{KS})=\mathrm{IB}(\mathrm{I})$
	TIN(IZ, KP ) $=$ IT
	TIN(IZ, KP + 1 ) $=\mathrm{M}$
	IF (NR-1) $34,87,34$
87	$\operatorname{TIN}(\mathrm{IZ}, \mathrm{KP})=0.0$
34	IF (M-FM) 3, 88, 88
88	IF ( $\mathrm{NR}-1$ ) $89,35,89$
89	IF (IT-F) $2,35,35$
35	CALL PRI (NR,IP,F)
	$\mathrm{NR}=\mathrm{NR}+1$
	DO $136 \mathrm{~J}=1, \mathrm{~F}$
	DO $136 \mathrm{I}=1$, NK
136	PA $(J, I)=P A 1(J, I)$
	IF (NR-NRM) 1,1,90
90	WRITE $(3,100)$
	WRITE (3,112)
	IZ $=1$
	$\mathrm{NR}=1$
	$\mathrm{P} 1=\mathrm{TIN}(1, I P+2)$
	DO $36 \mathrm{I}=1$, NRM
	$\mathrm{KS}=(\mathrm{I}-1) * 8+\mathrm{IP}+2$
	DO $36 \mathrm{~J}=1, \mathrm{~F}$
	$\mathrm{D}=\mathrm{TIN}(\mathrm{J}, \mathrm{KS}$ )
	IF (D-P1) 91, 36,36
91	$\mathrm{NR}=\mathrm{I}$
	P1 $=$ D
	$\mathrm{IZ}=\mathrm{J}$
36	CONTINUE
	$\mathrm{KP}=(\mathrm{NR}-1) * 8+2$
	$\operatorname{IST}(\mathrm{NR})=\mathrm{TIN}(\mathrm{IZ}, \mathrm{KP})$
	$\mathrm{I} 1=\mathrm{NR}-1$
	IF (I1) 92,382,92

```
92 CONTINUE
 DO 37 I=1,I1
 I2 =NR-I
 KS=I2*8+1
 IZ=TIN(IZ,KS)
 KS=(I2-1)*8+2
 IST (I2) =TIN(IZ,KS)
 DO 38 I=1,NKT
 APR (I) =0.0
 IF (I-NK) 39,39,40
 YB(I) =G(I)
 GO TO 38
 YB}(I)=0.
 CONTINUE
 IZ=1
 M=IST(IZ)
 MP=2*M
 CALL WB(N,M,M+1,IER,KA)
 IF(IER) 999,999,42
4 2 ~ C A L L ~ F R I Q ~ (M , M + 1)
 DO 43 J=1,M
 AN=1.0-WK(J)**2
 BN=WK(J)/SQRT (AN)
 W(J) = PI-ATAN (BN)
 CALL RANG (M,W)
 CALL WB1 (M,M+1,IER)
 IF (IER) 93,998,93
 CONTINUE
 CALL COEF (M,N,IER)
 IF (IER) 94,997,94
 CONTINUE
 WRITE (3,113)IZ
 WRITE (3,115) B (MP+1)
 WRITE (3,114)M
 WRITE(3,116)
 DO 46 I=1,M
 I2 = I*2
 I21 = I2-1
 BN=B(I21)**2+B(I2)**2
 P1=SQRT (BN)
 WRITE(3,117)W(I),B(I21),B(I2),P1
 DO 47 I=1,MP
 R=0.0
 DO 48 J=1,M
 AI=I
 D=W(J) *AI
 J2 = J*2
 J21 = J2-1
 R=R+B(J21)*SIN(D)+B(J2)*COS (D)
 APR(I)=APR(I)+R+B(MP+1)
 AP(I) =R
 M1 =M+1
 NKM=NK+PT-M
 DO 53 I=M1,NKM
 I1=I-M
 R=-AP(I1)
 DO 49 J=1,M
 IJ1=I+J-1
 IJ2 = I - J +1
 R=R+A(J)* (AP(IJ1) +AP(IJ2))
```

    \(I 2=I+M\)
    \(A P(I 2)=R\)
    \(\mathrm{APR}(\mathrm{I} 2)=\mathrm{APR}(\mathrm{I} 2)+\mathrm{AP}(\mathrm{I} 2)+\mathrm{B}(\mathrm{MP}+1)\)
    DO \(50 \quad \mathrm{I}=1\), NK
    \(\mathrm{YB}(I)=\mathrm{YB}(I)-\mathrm{AP}(I)-B(M P+1)\)
    \(I Z=I Z+1\)
    IF (IZ-NR) 41, 41,95
    CONTINUE
    \(\operatorname{WRITE}(3,100)\)
    \(\operatorname{WRITE}(3,118)\)
    \(\operatorname{WRITE}(3,110)(G(I), I=1, N N)\)
    \(\operatorname{WRITE}(3,109)\)
    \(\operatorname{WRITE}(3,120)\)
    \(\operatorname{WRITE}(3,110)(\operatorname{APR}(I), I=1, N N)\)
    \(\mathrm{GM}=0.0\)
    DO 54 IH=1,NN
    \(\mathrm{GM}=\mathrm{GM}+\mathrm{G}(\mathrm{IH})\)
    CONTINUE
    \(\mathrm{GM}=\mathrm{GM} / \mathrm{NN}\)
    \(\mathrm{CN}=0.0\)
    \(\mathrm{CD}=0.0\)
    DO 10 IH=1, NN
    \(\mathrm{CK}=\mathrm{G}(\mathrm{IH})-\mathrm{APR}(\mathrm{IH})\)
    \(\mathrm{CN}=\mathrm{CN}+\mathrm{CK} * * 2\)
    \(C D=C D+(G(I H)-G M) * * 2\)
    \(C K=S Q R T(C N / C D)\)
    WRITE \((3,133) \mathrm{CK}\)
    FORMAT (/5X,'RESIDUAL SUM OF SQUARES \(=\) ', 5X, E18.7/)
    WRITE \((3,100)\)
    WRITE \((3,121)\)
    \(\mathrm{I} 1=\mathrm{N} 1+1\)
    \(\mathrm{I} 2=\mathrm{NK}+\mathrm{PT}\)
    DO \(51 \mathrm{I}=\mathrm{I} 1, \mathrm{I} 2\)
    IF (I-NK) \(96,96,52\)
    CONTINUE
    \(\operatorname{WRITE}(3,122) I, G(I), A P R(I)\)
    GO TO 51
    WRITE \((3,123) I, \operatorname{APR}(I)\)
    CONTINUE
    GO TO 1001
    WRITE (*, 124)
    GO TO 1000
    WRITE (*, 124)
    GO TO 1000
    WRITE (*, 124)
    WRITE (*, 127)
    RETURN
    END
    C
C
10

```
 SUBROUTINE PRI(NR,IP,F)
 INTEGER F
 DIMENSION SERV(6)
 COMMON /TIN/TIN(15,48)
 FORMAT (//,1X,'SERIES',I2)
 FORMAT (2X,'TRNO', 2X,'FRNO',4X,'BAL A',
 1 6X,'BAL B',6X,'BAL C',6X,'ERR A',6X,'ERR B',6X,
 2 'ERR C',/)
 FORMAT (3X,I3,2X,I4,6E11.3)
 FORMAT (3X,'---
```

$$
K=1
$$

$K \mathrm{P}=(\mathrm{NR}-1) * 8+\mathrm{IP}+2$
$\mathrm{P}=\operatorname{TIN}(1, \mathrm{KP})$
IF $(F-1) 7,4,7$
DO $1 \mathrm{I}=2, \mathrm{~F}$
$\operatorname{IF}(\mathrm{TIN}(I, K P)-P) 2,1,1$
$P=T I N(I, K P)$
$\mathrm{K}=\mathrm{I}$
CONTINUE
WRITE $(3,10) \mathrm{NR}$
$\operatorname{WRITE}(3,11)$
$\mathrm{KP}=(\mathrm{NR}-1) * 8+1$
DO $3 I=1, F$
DO $5 \mathrm{~J}=1,6$
$K S=K P+1+J$
$\operatorname{SERV}(J)=\operatorname{TIN}(I, K S)$
$M T=T I N(I, K P)$
$M F=T I N(I, K P+1)$
$\operatorname{WRITE}(3,12) \mathrm{MT}, \mathrm{MF},(\operatorname{SERV}(J), \mathrm{J}=1,6)$
$\operatorname{IF}(I-K) 3,6,3$
$\operatorname{WRITE}(3,13)$
CONTINUE
RETURN
END

SUBROUTINE NEW (N1,N,MAX, EPS, EPS1)
DIMENSION DB(31)
COMMON / BC/YB(160), AP (160), C(31), AD (31), A(31), FI (31, 32), W(15)
DO $11 \mathrm{I}=1$, N1
$\mathrm{DB}(I)=\mathrm{AD}(I)$
DO $12 \mathrm{I}=1$, N1
$\mathrm{I} 1=\mathrm{N} 1+1-\mathrm{I}$
$\mathrm{AD}(\mathrm{I} 1)=\mathrm{DB}(\mathrm{I})$
$\mathrm{I}=\mathrm{N}$
$J=1$
$\mathrm{N} 2=\mathrm{N} 1$
IF (I-1) 20, 20, 2
$\mathrm{R}=1.0$
$M=0$
DO 3 I1=1, I
$\mathrm{DB}(\mathrm{I} 1)=(\mathrm{N} 2-\mathrm{I} 1) * \mathrm{AD}(\mathrm{I} 1)$
$\mathrm{F} 2=1.0$
CALL FUNC (AD,N2, R,F)
CALL $\operatorname{FUNC}(D B, I, R, F 1)$
$\mathrm{IM}=\mathrm{M}+1$
$\operatorname{IF}(\operatorname{ABS}(\mathrm{F} 1)-\mathrm{EPS} 1) 7,7,8$
$\mathrm{F} 2=\mathrm{F} 1$
$\mathrm{R}=\mathrm{R}-\mathrm{F} / \mathrm{F} 2$
$M=M+1$
$\operatorname{IF}(M-M A X) 10,5,5$
$\operatorname{IF}(\mathrm{ABS}(F)-E P S) 5,5,4$
$C(J)=R$
$J=J+1$
DO $6 \mathrm{I} 1=1, \mathrm{I}$
$\mathrm{AD}(\mathrm{I} 1)=\mathrm{AD}(\mathrm{I} 1)+\mathrm{AD}(\mathrm{I} 1-1) \star \mathrm{R}$
$I=I-1$
$\mathrm{N} 2=\mathrm{N} 2-1$
GO TO 1
$C(J)=-A D(2) / A D(1)$

```
RR=-AD(2)/AD(1)
RETURN
END
C
C
 SUBROUTINE FUNC(A,N1,R,F)
 DIMENSION A(31)
 N=N1-1
 F=A (1)
 DO 1 I=1,N
 F=F*R+A (I+1)
 RETURN
 END
C
1
1 1
1 2
4
3
2
5
2 7
6
SUBROUTINE GAUSS(A,N,L,X,KGA)
DIMENSION A(31,32),X(31)
KGA = 1
L}=N+
NN=N-1
DO 99 K=1,NN
J=K
KK=K+1
DO 100 I=KK,N
IF(ABS (A(J,K)).LT.ABS (A (I,K))) J=I
```

```
100 CONTINUE
 IF(J.EQ.K)GOTO }1
 DO 300 I=1,I,
 T=A(K,I)
 A (K,I) =A (J,I)
 A}(J,I)=
 CONTINUE
 DO }88\textrm{J}=\textrm{KK},
 IF(A(K,K).EQ.0.)GOTO 600
 D=-A (J,K)/A (K,K)
 DO 400 I=1,L
 A}(J,I)=A(J,I)+D*A(K,I
 400 CONTINUE
 88 CONTINUE
 99 CONTINUE
 IF(A (N,N).EQ.0.)GOTO 600
 X(N)=A (N,L)/A (N,N)
 NN=N-1
 DO 500 J=1,NN
 K}=\textrm{N}-\textrm{J
 SUM=0.0
 NNN}=\textrm{N}-\textrm{K
 DO 200 JJ=1,NNN
 M=K+JJ
 SUM=SUM+A (K,M)* X (M)
 CONTINUE
 IF(A(K,K).EQ.0.)GOTO }60
 X(K) = (A (K,L) -SUM)/A (K, K)
 CONTINUE
 GOTO 800
 KGA = 2
 WRITE(*,700)
 FORMAT(5X,' SINGULAR')
 RETURN
 END
```


### 3.2 Sample output

Example. The time series data sample is supplied with a file "ts.dat." The data corresponds to the air-temperature data that is collected at an interval of one day. The control parameters are fed as input:

```
 GIVE NO.OF TRAIN, TEST & EXAM PTS?
451 1
 GIVE NO.OF PRED PTS??
5
 GIVE MOVING AVERAGE VALUE (=1 or >1)?
1
 HOW MANY SERIES?
3
 GIVE MAX NO.OF FREQS (<=15)??
8
 GIVE FREEDOM OF CHOICE(< MAX FREQS)??
7
```

One can choose the MOVING AVERAGE VALUE to smooth out the noises in the data; if it is 1 , then it takes the data as it is. SERIES indicates the number of layers in the algorithm. Usually, one or two layers are sufficient to obtain the optimal trend. Even if
the user chooses more number of layers, it selects the optimal trend from the layer where it achieves the global minimum of the balance relation. MAX NO.OF FREQS which has the limit of less than or equal to 15 indicates the maximum number of distinct frequencies $M_{\text {max }}$ to be determined. FREEDOM OF CHOICE denotes the number of optimal trends to be selected at each layer.

The performance of the algorithm is given for each layer. The values of the balance function for training, testing, and examining sets (BAL A, BAL B, BAL C) and their error values (ERR A, ERR B, ERR C) are given correspondingly for each selected trend. The best trends or combinations of the freedom-of-choice are shown. The best one among them according to the balance relation on training set (BAL A) is underlined. TRNO indicates the trend number or combination number from the previous layer and FRNO indicates the number of harmonical components in the current trend. For example, the optimum trend underlined for SERIES 1 has seven frequencies (see output below). The best trend underlined for SERIES 2 has also seven (FRNO $=7$ ) harmonical components. This is based on the seventh trend or combination (TRNO $=7$ ) of the SERIES 1. Similarly, the best trend in SERIES 3 has one frequency ( $\mathrm{FRNO}=1$ ) and is based on the second trend or combination (TRNO $=2$ ) of the SERIES 2.

The OPTIMAL TREND is collected starting from the SERIES, where the global minimum on the balance relation (BAL A) is achieved, to the first layer. For the output given below, the global minimum is achieved at the SERIES 3 with the value of BAL A equal to $0.101 \mathrm{E}+01$; it has one harmonical component. This is the follow up of the second combination (TRNO $=2$ ) of the SERIES 2. The second combination of the SERIES 2 has eight harmonical components and is the follow up of the sixth trend (TRNO $=6$ ) of the SERIES 1. The sixth one in the SERIES 1 has six harmonic components. This means that the recollected information of the optimal trend includes six harmonical components from the SERIES 1, eight from the SERIES 2, and one from the SERIES 3 along with a FREE TERM from each SERIES; the OPTIMAL TREND is printed giving the values of the FREE TERMs, the frequencies (FREQ), and the coefficients (COEFFS A and B) at each layer along with the AMPLITUDE values. This is represented as

$$
\begin{equation*}
\hat{y}_{t}=\sum_{j=1}^{s}\left[A_{0 j}+\sum_{k=1}^{m_{j}}\left(A_{j k} \sin \left(w_{j k} t\right)+B_{j k} \cos \left(w_{j k} t\right)\right)\right], \tag{8.15}
\end{equation*}
$$

where $\hat{y}_{t}$ is the estimated output value; $s$ denotes the number of series in the optimal trend; $m_{j}, j=1,2, \cdots, s$ denote the number of harmonic components at each series; $A_{0 j}$ is the free term at $j$ th SERIES; $A_{j k}$ and $B_{j k}$ are the estimated coefficients of the $k$ th component of the $j$ th SERIES; and $w_{j k}$ are the corresponding frequency components.

ACTUAL and ESTIMATED VALUES are given for comparison and the RESIDUAL SUM OF SQUARES (RSS) is computed as

$$
\begin{equation*}
\operatorname{RSS}=\sum_{i=1}^{N} \frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{\left(y_{i}-\bar{y}\right)^{2}} \leq 1 \tag{8.16}
\end{equation*}
$$

where $y$ and $\hat{y}$ are the actual and estimated values and $\bar{y}$ is the average value of the time series.

The PREDICTED VALUES are given as specified using the optimal trend; this includes the predictions for the points $N_{C}$.

The output is written in the file "output.dat" below.

LENGTH OF TRAINING SET (A) 45
LENGTH OF TESTING SET (B) 1
LENGTH OF EXAMINING SET (C) 1
MAX NO. OF FREQUENCIES 8
FREEDOM OF CHOICE 7
NO. OF PREDICTION POINTS 5
MAX.NO.OF SERIES 3

SERIES 1
TRNO FRNO BAL A BAL B BAL C ERR A ERR B ERR C

0	1	$0.464 \mathrm{E}+01$	$0.620 \mathrm{E}+00$	$0.709 \mathrm{E}+01$	$0.455 \mathrm{E}+01$	$0.131 \mathrm{E}+01$	$0.365 \mathrm{E}+01$
0	2	$0.651 \mathrm{E}+01$	$0.381 \mathrm{E}+01$	$0.654 \mathrm{E}+01$	$0.427 \mathrm{E}+01$	$0.304 \mathrm{E}+01$	$0.687 \mathrm{E}+01$
0	8	$0.408 \mathrm{E}+01$	$0.149 \mathrm{E}+02$	$0.358 \mathrm{E}+01$	$0.271 \mathrm{E}+01$	$0.628 \mathrm{E}+01$	$0.950 \mathrm{E}+01$
0	4	$0.607 \mathrm{E}+01$	$0.650 \mathrm{E}+01$	$0.555 \mathrm{E}+01$	$0.419 \mathrm{E}+01$	$0.300 \mathrm{E}+00$	$0.462 \mathrm{E}+01$
0	5	$0.486 \mathrm{E}+01$	$0.994 \mathrm{E}+01$	$0.512 \mathrm{E}+00$	$0.442 \mathrm{E}+01$	$0.278 \mathrm{E}+01$	$0.548 \mathrm{E}+01$
0	6	$0.373 \mathrm{E}+01$	$0.883 \mathrm{E}+01$	$0.320 \mathrm{E}+01$	$0.354 \mathrm{E}+01$	$0.133 \mathrm{E}+01$	$0.111 \mathrm{E}+01$
0	7	$0.356 \mathrm{E}+01$	$0.121 \mathrm{E}+02$	$0.463 \mathrm{E}+01$	$0.296 \mathrm{E}+01$	$0.522 \mathrm{E}+01$	$0.588 \mathrm{E}+01$

SERIES 2
TRNO FRNO BAL A BAL B BAL C ERR A ERR B ERR C

7	7	$0.215 \mathrm{E}+01$	$0.606 \mathrm{E}+01$	$0.360 \mathrm{E}+01$	$0.158 \mathrm{E}+01$	$0.401 \mathrm{E}+01$	$0.454 \mathrm{E}+01$
$--\cdots-\cdots-\cdots$	8	$0.236 \mathrm{E}+01$	$0.575 \mathrm{E}+01$	$0.385 \mathrm{E}+01$	$0.919 \mathrm{E}+00$	$0.443 \mathrm{E}+00$	$0.207 \mathrm{E}+00$
6	8	$0.354 \mathrm{E}+01$	$0.829 \mathrm{E}+01$	$0.338 \mathrm{E}+01$	$0.101 \mathrm{E}+01$	$0.447 \mathrm{E}+01$	$0.407 \mathrm{E}+01$
7	8	0.254					
6	7	$0.252 \mathrm{E}+01$	$0.673 \mathrm{E}+01$	$0.588 \mathrm{E}+01$	$0.157 \mathrm{E}+01$	$0.275 \mathrm{E}+01$	$0.152 \mathrm{E}+01$
3	7	$0.235 \mathrm{E}+01$	$0.885 \mathrm{E}+01$	$0.203 \mathrm{E}+01$	$0.183 \mathrm{E}+01$	$0.681 \mathrm{E}+01$	$0.902 \mathrm{E}+01$
3	5	$0.261 \mathrm{E}+01$	$0.981 \mathrm{E}+01$	$0.151 \mathrm{E}+01$	$0.190 \mathrm{E}+01$	$0.842 \mathrm{E}+01$	$0.972 \mathrm{E}+01$
7	6	$0.255 \mathrm{E}+01$	$0.809 \mathrm{E}+01$	$0.313 \mathrm{E}+01$	$0.258 \mathrm{E}+01$	$0.671 \mathrm{E}+01$	$0.732 \mathrm{E}+01$

SERIES 3
TRNO FRNO BAL A BAL B BAL C ERR A ERR B ERR C

3	3	$0.120 \mathrm{E}+01$	$0.457 \mathrm{E}+01$	$0.164 \mathrm{E}+01$	$0.909 \mathrm{E}+00$	$0.435 \mathrm{E}+01$	$0.443 \mathrm{E}+01$
2	4	$0.133 \mathrm{E}+01$	$0.236 \mathrm{E}+01$	$0.490 \mathrm{E}+00$	$0.784 \mathrm{E}+00$	$0.170 \mathrm{E}+00$	$0.929 \mathrm{E}+00$
3	2	$0.133 \mathrm{E}+01$	$0.563 \mathrm{E}+01$	$0.359 \mathrm{E}+01$	$0.971 \mathrm{E}+00$	$0.467 \mathrm{E}+01$	$0.428 \mathrm{E}+01$
2	3	$0.123 \mathrm{E}+01$	$0.171 \mathrm{E}+01$	$0.226 \mathrm{E}-01$	$0.838 \mathrm{E}+00$	$0.386 \mathrm{E}+00$	$0.150 \mathrm{E}-01$
2	2	$0.116 \mathrm{E}+01$	$0.159 \mathrm{E}+01$	$0.115 \mathrm{E}+01$	$0.874 \mathrm{E}+00$	$0.101 \mathrm{E}+01$	$0.200 \mathrm{E}+00$
3	8	$0.116 \mathrm{E}+01$	$0.456 \mathrm{E}+01$	$0.503 \mathrm{E}+00$	$0.537 \mathrm{E}+00$	$0.361 \mathrm{E}+01$	$0.256 \mathrm{E}+01$
2	1	$0.101 \mathrm{E}+01$	$0.596 \mathrm{E}-01$	$0.132 \mathrm{E}+01$	$0.902 \mathrm{E}+00$	$0.323 \mathrm{E}+00$	$0.389 \mathrm{E}+00$

## OPTIMAL TREND

SERIES 1
FREE TERM -0.56199
NO. OF FREQUENCIES 6

0.7902706	-2.265249	-1.351049	2.637553
1.0355266	-0.320283	1.655817	1.686509
1.8367290	-0.274392	-0.120682	0.299759
2.1455603	1.113026	0.479222	1.211809
2.5376661	0.573313	-0.212797	0.611531
SERIES 2			
FREE TERM	-0.09219		
NO.OF FREQUENCIES 8		AMPLITUDE	
FREQ	COEFFS A	COEFFS B	3.863858
0.1195246	-3.281033	-2.040643	1.285768
0.6629882	1.209835	-0.435315	2.002644
0.9145533	-1.877773	-0.696096	0.108051
1.3779728	-0.100550	-0.039555	0.302110
1.8496013	-0.052124	-0.297579	0.263203
2.0773623	0.101575	0.242814	0.497493
2.3273549	0.492773	0.068364	0.353144
2.7066665	0.342581	-0.085725	
SERIES			
FREE TERM	-0.00055		AMPLITUDE
NO.OF FREQUENCIES	1	COEFFS A	COEFFS B

actual values:

-5.000	-10.000	-1.000	-1.500	-1.000	2.000	-8.500
-12.500	-10.000	-9.000	-4.000	0.000	-0.250	-5.000
-7.500	-8.000	-7.000	-2.000	2.000	1.000	2.000
2.000	2.500	3.000	1.750	1.000	0.000	1.000
4.000	8.000	6.000	2.500	1.500	-2.500	-0.250
3.000	0.000	3.500	3.000	-0.250	-2.000	1.750
-0.250	1.000	4.000	1.000	3.000		

ESTIMATED VALUES:

-3.638	-8.640	-1.738	-0.811	-0.339	1.102	-7.365
-12.481	-11.739	-9.539	-4.904	1.292	-0.541	-6.119
-7.006	-8.557	-6.686	-0.882	0.505	0.457	2.355
1.528	2.405	4.178	2.263	0.802	1.061	1.741
3.362	8.525	5.694	1.881	2.656	-3.908	-0.646
3.155	0.691	3.938	1.978	-0.462	-0.409	-0.207
-0.136	1.278	2.909	1.323	2.611		

PREDICTED VALUES:

47	3.00000	2.61100
48	0.34542	
49	-2.28130	
50		-0.90668
51	-1.17158	
52	1.71091	

