Contents

1	Intr	oduction	1
	1	SYSTEMS AND CYBERNETICS	.1
		1.1 Definitions	2
		1.2 Model and simulation	4
		1.3 Concept of black box	.5
	2	SELF-ORGANIZATION MODELING	.6
		2.1 Neural approach	6
		2.2 Inductive approach	7
	3	INDUCTIVE LEARNING METHODS.	.9
		3.1 Principal shortcoming in model development	0
		3.2 Principle of self-organization	1
		3.3 Basic technique	1
		3.4 Selection criteria or objective functions	2
		3.5 Heuristics used in problem-solving	7
2	Indi	notive Learning Algorithms	7
4		SELE ODCANIZATION METHOD	27 27
	1	1.1 Pagia iterativa algorithm	27
	2	NETWORK STRUCTURES	.0 20
	2	21 Multilever algorithm 3	0
		2.1 Multilayof algorithm 3	2
		2.2 Combinatorial algorithm.	2 5
		2.5 Recursive scheme for faster combinatorial solung.	8
		2.5 Selectional-combinatorial multilayer algorithm 3	8
		2.5 Selectional-combinational mutitager algorithm.	0
		(front propagation algorithm)	1
		27 Harmonic Algorithm	2
		2.7 Harmonic Algorithms A	1
	3	LONG-TERM OUANTITATIVE PREDICTIONS 5	1
	5	31 Autocorrelation functions 5	1
		32 Correlation interval as a measure of predictability 5	3
		3.3 Principal characteristics for predictions	5
	4	DIALOGUE LANGUAGE GENERALIZATION	3
	F	41 Regular (subjective) system analysis	4
		4.2 Multilevel (objective) analysis	5
			5

		4.3 Multilevel algorithm	.65
3	Nois	e Immunity and Convergence	75
	1	ANALOGY WITH INFORMATION THEORY	.75
		1.1 Basic concepts of information and self-organization theories	77
		1.2 Shannon's second theorem	.79
		1.3 Law of conservation of redundancy.	.81
		1.4 Model complexity versus transmission band	.82
	2	CLASSIFICATION AND ANALYSIS OF CRITERIA	.83
		2.1 Accuracy criteria	.84
		2.2 Consistent criteria	.85
		2.3 Combined criteria	.86
		2.4 Correlational criteria	.86
		2.5 Relationships among the criteria	.87
	3	IMPROVEMENT OF NOISE IMMUNITY.	.89
		3.1 Minimum-bias criterion as a special case	.90
		3.2 Single and multicriterion analysis	.93
	4	ASYMPTOTIC PROPERTIES OF CRITERIA	.98
		4.1 Noise immunity of modeling on a finite sample.	.99
		4.2 Asymptotic properties of the external criteria	102
		4.3 Calculation of locus of the minima.	105
	5	BALANCE CRITERION OF PREDICTIONS	108
		5.1 Noise immunity of the balance criterion	I11
	6	CONVERGENCE OF ALGORITHMS	118
		6.1 Canonical formulation	118
		6.2 Internal convergence.	120
4	Phys	sical Fields and Modeling	125
	1	FINITE-DIFFERENCE PATTERN SCHEMES	126
		1.1 Ecosystem modeling	128
	2	COMPARATIVE STUDIES.	133
		2.1 Double sorting	135
		2.2 Example - pollution studies.	137
	3	CYCLIC PROCESSES	143
		3.1 Model formulations	146
		3.2 Realization of prediction balance	151
		3.3 Example - Modeling of tea crop productions	153
		3.4 Example - Modeling of maximum applicable frequency (MAP)	159
5	Clus	terization and Recognition	165
	1	SELF-ORGANIZATION MODELING AND CLUSTERING	165
	2	METHODS OF SELF-ORGANIZATION CLUSTERING	177
		2.1 Objective clustering - case of unsupervised learning	178
		2.2 Objective clustering - case of supervised learning.	180
		2.3 Unimodality - "criterion-clustering complexity".	188
	3	OBJECTIVE COMPUTER CLUSTERING ALGORITHM.	194
	4	LEVELS OF DISCRETIZATION AND BALANCE CRITERION	202
	5	FORECASTING METHODS OF ANALOGUES	207
		5.1 Group analogues for process forecasting	211
		5.2 Group analogues for event forecasting.	217

х

6	App	lications	223
	1	FIELD OF APPLICATION	.225
	2	WEATHER MODELING	.227
		2.1 Prediction balance with time- and space-averaging	.227
		2.2 Finite difference schemes	.230
		2.3 Two fundamental inductive algorithms.	.233
		2.4 Problem of long-range forecasting	. 234
		2.5 Improving the limit of predictability	235
		2.6 Alternate approaches to weather modeling.	238
	3	ECOLOGICAL SYSTEM STUDIES	.247
		3.1 Example - ecosystem modeling	
		3.2 Example - ecosystem modeling using rank correlations	253
	4	MODELING OF ECONOMICAL SYSTEM	.256
		4.1 Examples - modeling of British and US economies.	257
	5	AGRICULTURAL SYSTEM STUDIES	.270
		5.1 Winter wheat modeling using partial summation functions	.272
	6	MODELING OF SOLAR ACTIVITY.	. 279
_			
7	Indu	ictive and Deductive Networks	285
	1	SELF-ORGANIZATION MECHANISM IN THE NETWORKS	.285
		1.1 Some concepts, definitions, and tools.	287
	2	NETWORK TECHNIQUES	.291
		2.1 Inductive technique	291
		2.2 Adaline.	.292
		2.3 Back Propogation	293
		2.4 Self-organization boolean logic.	.295
	3	GENERALIZATION.	296
		3.1 Bounded with transformations	297
		3.2 Bounded with objective functions	.298
	4	COMPARISON AND SIMULATION RESULTS	.300
8	Raci	a Algorithms and Program Listings	311
0	1	COMPLITATIONAL ASPECTS OF MULTILAVERED ALGORITHM	311
	1	11 Program listing	313
		1.1 Frogram Institute	323
	2	COMPLITATIONAL ASPECTS OF COMBINATORIAL ALGORITHM	325
	2	21 Program listing	320
		2.1 Flogram listing.	336
	3	COMPUTATIONAL ASPECTS OF HARMONICAL ALCOPITHM	330
	5	21 Drogram listing	3/1
		3.1 Flogram Institut	353
	Epil	ogue	357
	Bibli	iography	359
	_		_
	Inde	X	365