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This article presents the Robust Polynomial Neural Networks, a self-organizing multilayered iterative
GMDH-type algorithm that provides robust linear and nonlinear polynomial regression models. The
accuracy of the algorithm is compared to traditional GMDH and the multiple linear regression analysis
using artificial and real data sets in quantitative-structure activity relationship studies. The calculated data
shows that the proposed method is able to select nonlinear models characterized by a high prediction ability,
it is insensible to outliers and irrelevant variables and thus it provides a considerable interest in quantitative-
structure activity relationship studies.
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1. INTRODUCTION

Many methods can be used to extract knowledge from experimental data and to deter-
mine its mathematical description. Multiple linear regression analysis (MLRA) is widely
used in quantitative-structure relationship studies (QSAR) because of the rather simple
way to interpret the results. The QSAR studies represent an important part of the drug
design process and are used to reveal relationships between chemical structure of com-
pounds and their biological activities. The power of MLRA can be significantly
increased if it is combined with evolutionary algorithm [1]. Another widespread
method in QSAR study, the partial least squares [2] (PLS) represents a generalized
regression method based on latent vectors. It is a promising tool to analyze large data
sets with highly collinear variables [3]. However, both MLRA and PLS methods are
limited to linear regression models. The PLS algorithm is also sensitive to outliers or
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irrelevant variables. Contrary to these methods, the feed-forward artificial neural net-
works can be used to model complex nonlinear relationships and it is a useful method
in drug design studies [4,5]. However, a serious disadvantage of this method is that
the dependencies detected between parameters and responses are hidden within neural
network structure and therefore the interpretation of calculated results is difficult.

Group Method of Data Handling (GMDH) algorithms represent sorting-out
methods that can be used for analysis of complex objects having no definite theory
[6,7]. The choice of the appropriate GMDH algorithm depends on the specificity of
the problem to be solved. The specific features of the QSAR tasks can be summarized
as follows: there is a large number of input variables; some of these variables can be
irrelevant and highly correlated. While the GMDH approaches are well suited to
solve such problems, the results of MLS method are sensitive to outliers, not stable and, as
a rule, cannot be easily interpreted.

In this article we describe Robust Polynomial Neural Network, iterative GMDH type
algorithm that provides robust linear and nonlinear modeling in the presence of outliers
or/and correlated and irrelative variables. It allows controlling the complexity - number
and the maximal power of terms in the models. The algorithm calculates the stable
results that can be easily interpreted. Performance of the new approach is compared
with GMDH-type Neural Network and MLR algorithm.

2. METHOD

The important feature of the Iterative GMDH algorithm is its ability to identify both
linear and nonlinear polynomial models using the same approach. The iterative
GMDH-type algorithms can be described following Yurachkovsky [8].

Let us designate the set of input variables and n the number of
observations of vector X of input and y output variables. It is possible to determine
the class of models G that is characterized by the following properties:

1. Class G contains structures that are linear according to the parameters. Under
"structure" we assume any model with unidentified parameters.

2. There is (and it is known) a transform g() such as
3. Any element of class G is either constant, or one of initial input variables, or it is

calculated using transform g() applied to other elements of the class.

In the simplest case, the class G consists of linear functions only. The transformation
g() can be defined as in this case. Such a class contains only a limited
number of structures equal to 2A+I — 1, where k is the number of input variables. If class
G contains polynomials of arbitrary degree, the transformation g() can be defined for
example as . Such class
contains an infinite number of structures.

The purpose of the algorithms is to find a subset of variables and a
model that minimizes some criterion value (CR). Examples of
relevant criteria are

(1)
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and

(2)

where Ycalc and yexp are, respectively, the calculated and target values, n is the number
of observations in the data set, and N is the number of terms in the model. The first
criterion AR (Eq. (1)), known as the regularity criterion, has traditionally been used
in the GMDH approaches. This criterion should be calculated using the validation
(test) data set in order to provide regularization and to prevent overfitting of the
model [6]. However, selection of a representative validation set is usually a complex
problem for small data sets. The second criterion (Eq. (2)), known as Final
Prediction Error (FPE) criterion [9, 10], is also widely used to select regression and auto-
regression models. Depending on the noise the models selected using these criteria can
actually be mathematically simpler than the underlining physical model might demand,
thereby increasing the prediction ability of the method [7]. It should be noted that
other, more complex, criteria such as the Akaike information criterion [11] (AIC) or
Schwarz information criterion [12, 13] (SIC) can be used for the selection of unbiased
models.

The traditional GMDH algorithms are implemented as iteration procedures. Let us
denote is the set of polynomials of s-power, and
assume that transformations is specified as

or for example.

Step 1 All possible models of the form are considered,
The coefficients are estimated using method of least squares (MLS). The best models

are selected according to criterion CR and they form
the set Notice that for non-
linear transform g() considered below.

Step r The models of the form is considered for all combinations
The coefficients are estimated using MLS. The best models

are selected according to criterion CR and they form
the set

The procedure is terminated if there is no improvement of the criterion value. The
superposition of functions g() at each iteration increases the amount of term and the
power of the resulting polynomial in the nonlinear case. Since the number of itera-
tions can be large, the application of traditional GMDH algorithms generates very
complex models that cannot be easily interpreted except in the linear case. The algor-
ithms that generate polynomials of high power could be unstable and sensitive to
outliers.

The main objective of the work was to create a stable algorithm for nonlinear model
selection such that its results are easily interpreted by users. To achieve this purpose
we added some restrictions on the class G used to select the best model. This made it
possible to specify maximum degree of polynomials and the number of terms in
the equations. Such restrictions made it also possible to incorporate preliminary
information and to specify desired properties of the expected solution. The developed
algorithm represents a GMDH-type algorithm with the control of the complexity of
the model.
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The main features of the algorithm can be summarized as follows:
(1) Fast learning The transforms with two coefficients only are used, for example

in the linear case. Irrespectively of the power of resulting model
and the number of terms the second order matrices are only inverted. This provides
fast learning of the algorithm.

(2) Results in the parametric form The polynomial structures are coded using vector
of simple numbers [8] that provides the presentation of the results in the parametric
form. Let us associate the set of input variables with the corre-
sponding set of simple numbers . Each term in
the equation is coded as a multiplication of the appropriate powers of simple numbers

(Gedel's number) i. e. xi, - is substituted by the corresponding simple number .
Thus the polynomial is coded using a vector of Gedel's numbers. Transform g() con-
tains multiplication and summation. To multiply two terms it is enough to multiply
their Gedel's numbers. To add the term it is enough to add the appropriate nonzero
number to the vector. Because of one-to-one correspondence of the terms of poly-
nomials to their Gedel's numbers this coding scheme can be used to transform the
neural net results to the parametric form of equation. Vector of Gedel's numbers is
calculated for each intermediate model. This vector can also be used to detect and
exclude redundant models.

(3) Complexity control Let us denote vector (power, c)T as a complexity, power is the
power of the polynomial and c is the number of terms. As it was mentioned above, the
number of terms in the equation is given simply by the number of non-zero elements in
the vector of their Gedel's numbers. The power of the new model is controlled by the
condition that if, for example, , then

where power() designates the power of the polynomial. Both power and number of
terms are calculated for each intermediate model. It gives us the possibility to restrict
the class of the models under consideration by power(w i)<p and to search models
among the polynomials with power less than p. The maximum complexity is defined
by the user or can be automatically selected using a full cross-validation method.

(4) Twice-hierarchical neural net structure Twice-hierarchical neural net structure is
an important feature of PNN. One of the problems is that power of polynomials
increases too fast in the traditional GMDH algorithm. At the step r of iteration
procedure one can have models of power . The control of complexity
gives us an opportunity to implement the iteration procedure without an increase of the
power of polynomials or/and the number of terms. PNN is implemented as a twice-hier-
archical neural net. External iterative procedure controls the complexity, i. e. the
number of the terms and the power of the polynomials in the intermediate models,
and discards models that are out of the specified range. The best models form initial
set for the next iterative procedure. This procedure realizes a wide search without the
complexity increase. Besides that the twice-hierarchical neural net structure provides
the convergence of the coefficients. The models that are calculated as a
result of several transformations have the coefficients that are close to the appropriate
regression coefficients. This fact was proved mathematically for algorithm with linear
transform [14] and it was confirmed by calculating experiments for nonlinear cases [15].
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The algorithm with the aforementioned properties was realized by us earlier [16] and
we will refer to it as traditional PNN algorithm.

(5) Robust estimation In the presence of large errors (outliers) the noise can be
described as a mixture of normal distributions. Let us assume that the observation
y,-,i= 1 ,2 , . . . ,n are the independent random variables with distribution determined
from the model of large errors

where is the normal distribution density are the distribution
density and the level of the large errors respectively; is the variance. The density
function is symmetrical over jy-axis and it has heavy tails. In the presence of outliers
the multiple regression parameters can be calculated following maximum-likelihood or
A/-estimation, as a result of functional minimization [17].

The most known Huber's approach consists of using the function p() that minimizes
the variance of estimation

where constant C is determined by the level of the large errors. It is important to
mention that the tests of hypotheses for M-regression are not yet elaborated sufficiently
even for linear M-regression structure identification [18]. There are also other methods
for robust estimations, such as L- or R-estimates [19].

In the current work we have developed the PNN algorithm for nonlinear
M-regression model identification. This made it possible to improve the stability of
PNN algorithm to large errors. We will refer to the new method as Robust PNN
or RPNN.

3. DATA SETS AND RESULTS

The performance of the developed algorithms was demonstrated using examples of
artificial and real QSAR data sets.

Analysis of an Artificial Data Set

A first set was generated from a nonlinear model of fourth power Y = X1*(X5**3) + 10
that is traditionally used for the testing of GMDH-type algorithms [15]. Random noise
and three further random variables ( X 2 - X 4 ) were added and 13 observations were
generated (n=13; m=5). The comparison of RPNN algorithm was done with the
traditional PNN algorithm.
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Ten and three observations were used as training and test sets, respectively. The
model with excellent approximation and low prediction error were calculated by
PNN: Y1=0. 19*X1*X5 + 0. 22*(X5**2) + X1*(X5**3), RMSE = 7. 18 for training set
and RMSE = 22. 45 for these test set (Table 1). RPNN found the exact model structure
Y1 = X1*(X5**3) + 9. 1 and provided lower prediction error RMSE = 2. 1 for the test
set. In order to study the stability of PNN and RPNN algorithms, the values of two
and three data cases from the training set were changed to be large errors of the initial
model. Results of the PNN algorithm were affected by the outliers (Table II). This
method provided low generalization ability for test set. On the contrary, RPNN results
for the test set were practically the same as for the noiseless data (Fig. 1, Table II).

Prediction of the Sublimation Enthalpy

To study the stability of RPNN, we developed QSAR models for the sublimation
enthalpy of a series of 18 polychlorinated hydrocarbons (PCBs).

The atom and bond-type E-state indices (8 parameters) were used as input
parameters for the MLRA, PNN and RPNN. The first analysis included 16 PCBs in
the training and two molecules in the test set. Statistically significant models with
low prediction error of the test molecules RMSE= 1. 06 and 0. 93 were calculated by

TABLE 1 Values calculated by PNN and RPNN method for the training and test sets

Without errors

Y

Training
38
520
200
139
2571
1457
1723
31360
2929
5832

Test set
6761
43
1011

PNN

set
28
524
193
129

2564
1471
1718

31358
2925
5832

6789
31

1019

RPNN

36
521
201
137
2569
1467
1724

31260
2925
5841

6759
41

1009

Y

38
1520
3200
139

2571
1457
1723

31360
2929
5832

6761
43

1011

With 2 errors

PNN

37
1270
3227
152

2652
1653
1822

31332
2978
5863

7336
3059
997

RPNN

27
513
192
128
2562
1458
1716

31280
2917
5827

6758
53
999

Y

38
1520
3200
139
571
1457
1723

31360
2929
5832

6761
43

1011

With 3 errors

PNN

26
1251
3212
124

2521
1598
1705

31380
2865
5636

7279
3057
966

RPNN

27
513
192
128

2562
1458
1715

31281
2917
5827

6758
54
999

TABLE II RMSE of PNN and RPNN methods for training and tests sets

Errors

0
2
3

Training Set

PNN

With errors

7. 2
125
612

Exact

7. 2
987
994

RPNN

With errors

30
957

1030

Exact

30
27
27

Test Set

PNN

22
2170
2163

RPNN

Exact

2. 1
11
12
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FIGURE 1 Results of the RPNN model calculated using training set contaminated with three large
errors.

FIGURE 2 Prediction of the sublimation enthalpy of molecules by the RPNN method using seven and
eleven molecules as the training and test sets, respectively.

the MLRA and the RPNN methods, respectively. PNN calculated lower result
RMSE = 3. 1. However, PNN and RPNN selected nonlinear models of the same

structure and . MLRA
significantly decreased its prediction ability when number of molecules in the training
set dropped below 12. On the contrary, the RPNN results were not affected by the
number of molecules in the training set. Even if the number of molecules in this
set decreased from 16 to 7 molecules, the RPNN still calculated the same regression
equations with only slight variations of the regression coefficients. For example, the
equation was calculated with seven molecules in
the training set. This model provided RMSE=4. 3 for 11 molecules in the test set
(Figs. 2 and 3). These results indicated a stability of RPNN method. The results
calculated by PNN method were lower compared to RPNN but much better compared
to MLRA method.
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FIGURE 3 Root Mean Squared Error calculated for the test set molecules as a function of the number of
molecules in the training set. MLRA failed to provide significant models if more than eight molecules were
used in the test set.

DISCUSSION

RPNN represents a promising method for applications in environmental and toxicolo-
gical studies. It provides the model in parametric form as an equation that can be
easily interpreted by the users. RPNN is a robust method that can be used even in
the presence of outliers in the training set. The use of m-estimates to estimate model
parameters represents an important improvement of this algorithm compared to the
traditional PNN algorithm. This feature is very important for application in chemistry
and in drug design. It is known that chemical data quite often contain a number of large
errors. Such errors can appear due to mistakes in molecular coding, representation,
experimental design, etc. The RPNN method is able to provide reliable results even
for such difficult cases. Moreover, models selected by RPNN are characterized by a
high predictive ability even for small data sets. RPNN provides high speed of training
compared to the other neural network approaches. Therefore, it can be also applied for
large data sets.
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