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Abstract

New businesses concerned with weather forecast have been emerged recently where the specific climate de-
pending on geographical location and time of season is to be predicted. A neural GMDH (Group Method
of Data Handling) family of modeling algorithm emulates the self-organizing activity of the central nervous
system, and discovers the structure (functional form) of empirical models that include many input variables.
A GMDH model called neurofuzzy (NF-) GMDH, whose partial descriptions (basic building blocks) are rep-
resented by the Radial Basis Functions (RBF) network, is applied to temperature forecast from the numerical
weather prediction data of the Regional spectral model distributed by the Japan Meteorological Agency and
compared with conventional RBF network. It is shown that the hierarchical GMDH type network outperforms

the conventional RBF networks.
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1 OIntroduction

The weather forecasts influence the every day de-
cisions of many people. For example, fishermen and
ocean voyagers need precise and timely information
to avoid storms and save fuel. Farmers depend on
the forecasts to know when to plant and harvest their
crops, when to apply chemicals to these crops. Avia-
tors, in order to travel safely, need to know detailed
weather along their route. Therefore new businesses
concerned with weather forecast have been emerged
recently where the specific climate depending on ge-
ographical location and time of season is to be pre-
dicted.

Mathematical models of the multivariable system
require a large number of parameters. Group Method
of Data Handling (GMDH) [1] is one of the meth-
ods of identifying nonlinear systems with many input
variables. Its mathematical model is represented by a
hierarchical network of the partial descriptions (i.e.,
the basic building blocks) and discovers the structure
of empirical models as well as performing the task
of fitting model coeflicients to bases of observational
data. The GMDH family of modelling algorithms is
classified into two categories by Ivakhnenko, that is,
(1)the perceptron combination type (we briefly call
‘the perceptron type’) and (2)the network type.

In the perceptron type GMDH algorithm, we merely

take all of the independent variables one or two at
a time and construct the partial descriptions. Sev-

eral partial descriptions are selected by evaluating the
mean squared error (MSE) with the checking data
set. The outputs of selected partial descriptions are
treated as the input in the next layer. These steps
are repeated until a termination criterion is satisfied.

The Adaptive Learning Networks (ALN) [2] de-
veloped in U.S.A. in the early 1970th are regarded as
the network type GMDH in which the successive se-
lections of partial descriptions of the perceptron type
are not necessary, and this distinguishes the network
type from the perceptron type. Recently new GMDH
models, whose partial descriptions are represented by
the Radial Basis Functions (RBF) networks or fuzzy
models, have been developed [3]. We call them the
neurofuzzy (NF-) GMDH.

The RBF network is a technique for interpolating
data in multidimensional spaces. The networks have
the architecture that uses a single internal layer of
locally tuned processing units and are called ‘local-
ized receptive fields’ [4]. Brown and Harris demon-
strated in their book entitled ‘Neurofuzzy adaptive
modelling and control’ [5] that there exists an in-
vertible relationship between fuzzy logic systems and
RBF networks, with each inheriting the properties of
the other.

In this paper we applied these neurofuzzy GMDH
model to temperature prediction by using the nu-
merical weather prediction data distributed from the
Regional Spectral Model of the Japan Meteorological



Agency.

2 [OMulti Layered NF-GMDH

In the perceptron type GMDH algorithm, all par-
tial descriptions with one or two variables chosen
from all the input variables in each layer are eval-
uated and several of them are selected. The fuzzy
partial descriptions in this paper is as follows.

Let Ag;(x;) denote the membership function of
the k-th fuzzy rule in the domain of the i-th input
variables. The compatibility degree of the premise
part of the k-th fuzzy rule for an observed system
state x is computed with the algebraic product op-
eration of the compatibility degree as:

I
P = HAm(l“i) (1)

where, € R! | and I is 1 or 2 for the partial descrip-
tions of the GMDH. The conclusion part of the fuzzy
inference rule which infers output y is simplified as a
real number wy,.

K
Y=Y mrwk (2)
k=1

This model is called the simplified fuzzy reasoning.
When Gaussian membership function:

3)

Agi(;) = exp {—L — i)’ }

b

is chosen, the simplified fuzzy model of Eq.(2) is
equivalent to the network of Gaussian RBFs. While
the initial values of weights w are chosen from ran-
dom numbers in the artificial neural networks, those
of unknown parameters in the networks of RBF's are
usually given a priori, that is, the basis functions are
uniformly spaced and their weight coefficients are set
to zero.

The network type NF-GMDH have been proposed
[3], whose partial descriptions are represented by the
RBF networks. The NF-GMDH model[3] we adopt
here is a kind of adaptive learning network (i.e., a
network type of GMDH) in the hierarchical struc-
ture. In the net, two input variables are introduced
in each partial description. Figure 1 shows the model
structure. Let the number of partial descriptions in
each layer be M and the number of layers be P. The
final output y is the average of outputs in the last
layer.

Figure 1: Structure of Neurofuzzy GMDH with six
input variables

y=%2ypm (4)

We apply error-back-propagation-learning using this
output value.

3 [OTemperature Prediction

Numerical weather prediction(NWP) by the RSM
at the Japan Meteorological Agency(JMA) has been
remarkably progressed during the past decade. The
NWP is distributed twice a day from the JMA, which
predicts up to 51 hours ahead. Though the fore-
cast of large scale fields have become reliable up to
two or three days ahead, it is a common fact that
NWP exhibits systematic errors in the forecast of
the near surface weather parameters[6, 7]. The 2m-
temperatures for example are often systematically bi-
ased with geographical location and time of season.
Individual mountains or different parts of a large city
with their specific climate can hardly be resolved.
This bias can be reformed to some extent by using
regression models like the multiple linear regression.
However, the JMA undergoes a modernization plan
occasionally, that will replace the outdated equip-
ment with the most modern technological advances,
which includes more sophisticated weather satellites,
and a computerized system for the processing and
communication of weather information. These tools
certainly enable the operational forecaster to more
accurately pinpoint the location and timing of se-
vere storms, but cause ill effect since the NWP by
the RSM does not have continuity and it is hard
to apply regression models for prediction of future
weather. In this sense, the adaptive method like
Kalman filter or artificial neural network models are
indispensable. The NWP statistically processed by
using Kalman filter and AMeDAS(Automated Me-
teorological Data Acquisition System) data is called
the guidance, which is also distributed from the JMA.



The guidance is transmitted electronically and lo-
cal meteorologists prepare forecasts using this infor-
mation. We used NWP by RSM up to 24 hours
ahead and compared the prediction results by the
NF-GMDH with that of the guidance by JMA. We
used RMSHI Root Mean Square Error OJwhen we com-
pared each regression models with AMeDAS. RMSE
is often used as a difference of prediction error.

SN (F() — A(i)?
RMSE = \/ ~ (5)

F(i):Prediction valued A(4): Actual measurement[]
N:Number of Data

We calculated with 7 = 0.01,3 = 0.5 and P =
3 by NF-GMDH. 6 features (temperature, cloudi-
ness of mid level, cloudiness of lower level, EAST-
WEST wind direction, SOUTH-NORTH wind direc-
tion, average temperature of past 10years) are se-
lected. These data are normalized in unit interval
[0, 1]. We used (24hourx30days=)720 RSM data for
training, (24hourx1day=)24 RSM data for checking.
Figure 2 shows its schematic representation. We used
RSM and AMeDAS data in Osaka Japan between
June 1998 and October 1998 for training and we pre-
dicted the temperature between July 1998 and Octo-
ber 1998.

The mean RMSE of each month is shown in Fig-
ure 4. If the seasonal change of the temperature is not
drastic, NF-GMDH produced better result than the
guidance by JMA. Figure 5 shows the mean RMSE of
each day. Figure 6 shows an example of the changes
in temperature on July 1 1998. The mean RMSE
at 6 O’clock and 15 O’clock (Japan Standard Time),
are almost same as the mean RMSE of each month.
The variance of RMSE by NF-GMDH is smaller than
that of the guidance by JMA. The result by RBF is
the worst among three methods (RBF, NF-GMDH,
Kalman filter).

Since kalman filter is the adaptive method, it pre-
dicts near future well. NF-GMDH is better for the
months when temperature change is not so drastic.

We have studied whether the combinations of paired

input variables as shown in Figure 7 have different
performances or the model is robust with respect
to the combination. Fifteen cases in Figure 7 cover
all combinations of the six variables because of sym-
metricity of the hierarchical model. Table 1 shows the
simulation results which indicate both of the training
RMSE and checking RMSE does not have much dif-
ferences depending on the combination of variables.
Next, we studied to find optimum duration of
days whose NWP data are used for training. The
bias against AMeDAS temperature can be reformed
by using relatively recent data of the NWP, the aver-
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Figure 2: Schematic representation of temperature
prediction by Neurofuzzy GMDH
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Figure 3: Learning curves
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Figure 5: Mean RMSE of the days (July and August
1998)
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Figure 6: Changes in temperature on July 1 1998
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X2 X4 X5 X6 Case03
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XL X3 X2 X6 X4 X5 Case05
X2 X3 Xs X6  Case06
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X2 X3 X4 X5 Casel2
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Figure 7: Combinations of input variables

0000 QRMSE(Training) RMSE(Checking)
Case00 2.064 0.566
Case01 2.101 0.562
Case02 2.098 0.581
Case03 2.103 0.557
Case04 2.101 0.568
Case05 2.107 0.555
i Case06 2.097 0.548
Case07 2.103 0.611
Case08 2.108 0.575
Case09 2.103 0.547
Casel0 2.110 0.579
Casell 2.085 0.573
Casel2 2.079 0.558
Casel3 2.099 0.568
Casel4 2.066 0.585

Table 1: Simulation result

Training Data
10 Days 20 Days 30 Days
Months ]| Training | Checking | Training | Checking | Training | Checking
§_ July 1.553 1.689 2.417 1.824 2.767 1.664
August 1.245 1.302 1.453 1.277 1.763 1.292
September || 1.107 1.404 1.343 1.358 1.436 1.337
October 1.442 1.693 1.884 1.647 1.074 1.810

Table 2: RMSE of each month when the duration of
training data are changed as 10, 20 and 30 days

age temperature of past 10 years and the AMeDAS.
Three cases as 10, 20 and 30 days were compared as
shown in Table 2 which indicate that the RMSE for
checking data (prediction errors) changes with the
duration but the case of 30days is relatively better
than other cases.

4 [OConclusion

This paper proposed the use of RBF neural net-
work and the numerical weather prediction(NWP) by
the RSM at the JMA for temperature prediction. We
compared the prediction of the guidance with that
of the multi-layer RBF and single-layer RBF. We
showed some improvement can be achieved by the
NF-GMDH model compared with the Kalman filter,
when the seasonal change is moderate.
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