
Actuarial Analysis via Branching Processes

Carlos Alberto de Bragan�ca Pereira,1;� F�abio Nakano2;y and Julio

Michael Stern3;z

1Univ. de S~ao Paulo, Departamento de Estat��stica, IME

2Supremum Assessoria e Consultoria

3Univ. de S~ao Paulo, Departamento de Ciência da Computa�c~ao, IME

July 2000

ABSTRACT

We describe a software system for the analysis of de- �ned bene�t actuarial

plans. The system uses a recursive formulation of the actuarial stochastic pro-

cesses to im- plement precise and e�cient computations of individual and group

cash 
ows.

1. INTRODUCTION

We report the use of a software tool for the analysis of cash 
ows due to pension

plans (PP) in Brazil. Many of the existing pension funds are of de�ned bene�ts

(DB) type, where the retired member or his surviving dependents receive a

lifelong monthly income. The subjacent stochastic process is modeled as a

branching process driven by several time dependent hazard rates. The expected

cash 
ows are computed by recursive functions describing the branching process,
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so avoiding several approximations used in standard actuarial methods. These

recursive functions also give a direct calculation of the cash 
ows variance and

other statistics.

2. THE BASIC MODEL

The main bene�t for a DB PP (de�ned bene�t pension plan) member is a life-

long retirement monthly income. Prior to his retirement a member is named

active. The retirement income is a function of the active members past incomes

or contributions (ex. last periods average). The active member makes contri-

butions to the pension plan, and these contributions can be complemented by

contributions from a sponsor (ex. employer or government). An active member

will become inactive when retired, at a maturity time, or earlier if disabled (ex.

injury or disease). An active member can also withdraw from the PP.

The member may have dependents (usually his family) entitled to a pension

monthly income after the members death. Dependents may be permanent, who

will receive a lifelong pension (ex. wife/widow, disabled children), or temporary,

who will receive the pension for a limited time (ex. normal children up to

maturity age of 21). Each dependents pension is a fraction of the members

retirement income. An additional one time (lump sum) death assistance may

also be available to the family.

Several constraints and corrections [1] [4] [5] [6] [7] [17] increase the com-

plexity of this basic model, for example:

� The retirement, and all other bene�ts de�ned by it, may be corrected by

a long term in
ation index, or may be adjusted by the income of an active

member of the same status of the retired one.

� The retirement maturity time may be based the members age and em-

ployment time, and also on the PP rules and government regulations,

both changing over time.
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� The members may receive a basic government retirement, being the PP

obligation to supplement it up to the PPs DBs.

� Changing social habits and legal de�nitions may change the status of

entitled dependents (ex. mistresses and out of wedlock children).

� Withdrawing members may claim his (or also the sponsors) contributions

corrected by in
ation or �nancial investment indices.

3. GRAPHS AND RECURSIVE FORMULATION

A branching process is described by a graph, where each vertex (or node) corre-

sponds to a state, and each arch (or edge) connecting two vertices corresponds

to a possible state transition.

In the actuarial processes we are studying, a state is characterized by the mem-

bers age, time of employment, salary, family, etc. A transition is characterized

by its probability, as well as by the bene�ts and contributions the transition

implies. Usually it is convenient to give the bene�ts and contributions values

as fractions of the main bene�t (retirement), or some other adimensional unit.

The expected value of a members random variable (ex. bene�ts or contribu-

tions) at a given period, is its probability weighted sum of the random variables

value at all possible transitions at that period:

E(X(t)) = sum(jinW (t))Pr(j) � x(j), where W is the set of all possible tran-

sitions, x(j) the random variable value at that transition, and Pr(j) the tran-

sitions probability. That random variable expected cash 
ow is the array of

its expected values in the future subsequent periods, usually years. The graph

description of the branching processes gives a recursive algorithmic formulation

for the computation of all these cash 
ows.

4. RETIRED MEMBER GRAPH

A retired member state has its age, bene�ts, and list of dependents. Let us

assume that a retired member has at most one permanent dependent (wife). If
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the member and his wife are both alive at time t, the member will be, at time

t + 1, in one of four possible states, depending on his and his wife survival or

not: Let the retired members and his wifes ages be (x; y) at time t. He can

reach at time t+ 1 the states (x+1; y +1); (x+ 1;�); (�; y+ 1); (�;�); where

the tilde (�) means death. The probability of each of the four transitions are

given by the force of mortality, h(a), at the respective ages:

Pr(t; (x; y); (x + 1; y + 1)) = (1� h(x)) � (1� h(y)); (1)

Pr(t; (x; y); (x + 1; )) = (1� h(x)) � h(y); (2)

Pr(t; (x; y); ( ; y + 1)) = h(x) � (1� h(y)); (3)

Pr(t; (x; y); ( ; )) = h(x) � h(y); (4)

A retired member leaves the system (PP) when all cash 
ows by him generated

cease to exist, possibly long after his own death. The leaves of the retired

member branching tree are the terminal state (�;�). Temporary dependents

(children) are supposed to always (deterministically) survive up to maturity age.

As we have mentioned in section 2, multiple permanent dependents may

occur. One possibility would be to incorporate the multiple permanent depen-

dents directly in the branching process, at a heavy computational cost. It so

happens that the standard pension rules of DB PPs only take into account the

total number of dependent survivors after the members death. This allows a

signi�cant simpli�cation: We model the permanent dependent in the retirement

branching process as a virtual permanent dependent corresponding to the last

surviving real permanent dependent. In appendix 1 we list a small Matlab pro-

gram to compute the cumulative life probability distribution of such a virtual

dependent. It is easy to generalize the procedure to three or more permanent

dependents. The cash 
ows of permanent dependents deceasing earlier than the

last survivor can then be modeled as independent cash 
ows.

The precise modeling of the multiple permanent dependents e�ect has a

signi�cant impact on those members bene�ts expected cash 
ows (typically
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30Since this situation is increasingly more frequent, such careful analysis is

recommended. Figures 1 to 4 show comparative life distributions as computed

in appendix 1. Sometimes the last order statistic is approximated by the survival

rates of the youngest permanent dependent. From �gures 2 to 4 can see that

this approximation can be quite misleading.

5. ACTIVE MEMBER GRAPH

An active member sate has its age, time of membership, time of employment,

education, salary, etc. While active, it is hard to obtain a reliable list of de-

pendents, so active members are assumed to have a standard family, based on

statistical data and the members general pro�le. If a member is active at time t,

with age a and employment time e, he will reach at time t+1 one of four possi-

ble states, depending on he still being in the PP, active, alive, and able. Death,

disability, and withdrawal are competing risks, with hazard functions (condi-

tional on the non occurrence of the preceding risks) hd(a), hb(a) and hw(e). So

the transition probabilities (except for deterministic retirement at maturity) for

death, disability, withdrawal, and remaining active are, respectively:

hd(a); hb(a); hw(e); and (5)

(1� hd(a)) � (1� hb(a)) � (1� hw(e)): (6)

If the member withdraws he receives a lump sum based on his past con-

tributions. If he dies or becomes disabled, he prematurely (in comparison to

maturity) enters retirement. The active member branching process is therefore

limited to the main stem of surviving all risks, a structure resembling a bamboo

more than a tree. The bamboo leaves are the terminal withdrawal state, or the

root of a retirement branching process.

6. LIFE TABLES AND OTHER ADJUSTMENTS

Life tables: Force of mortality tables are available for several countries. The

most commonly used table in Brazil is EB-7. However, a speci�c population, like
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the members of a given company or PP, can signi�cantly depart from national

averages. For speci�c PPs, some with up to two hundred thousand members,

we had the need to adjust these tables. Figures 5 to 8 give some comparisons

of these survival distributions. As usual in actuarial sciences we establish a

cut-o�, limiting individual age to a maximum (ex. 100 years). The impact of

these adjustments on the PP total liability is considerable, up to 20

We used a polynomial GMDH model (Group Method Data Handling) using

the available tables (prior information) and the PP population historic (observed

and censored deaths) [10]. The GMDH polynomial models have variable com-

plexity and several parameters. The best model was automatically selected by

an heuristic search controlled by the PSE criterion (Predicted Squared Error)

[2]. The PSE criterions objective is to minimize errors on yet unobserved data,

compromising training data error and an over�t penalty. The �nal model was

validated using computer intensive statistical resampling methods [12] [21].

Fractional Age Correction: While modeling a transition between con-

secutive periods, from t to t+1 (depending on how de model is implemented)

unrealistic assumptions may be introduced, for example: A death transition

may imply that the member dies at the very �rst (or very last) month of the

year. To correct such a boolean (0-1) dichotomy, we may assume that the death

occurs at the middle month, and use a correction factor 6/12 = 1/2, or that the

death occurs at the middle day of the middle month, and use a correction factor

(6+1/2)/12 = 13/24, and so on. These correction factors are called fractional

corrections (or discretization corrections) [5]. Their impact on the �nal calcu-

lations is usually small, but they are important to preserve model consistency.

Income Growth: An active member income (or salary), the basis for his

bene�ts, is supposed to evolve with his professional life. The income usually

increases over time, but such increase has a saturation e�ect. Several models

adjust well to this situation [18], like the Modi�ed exponential, Gompertz and
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Logistic (Pearl) models:

M(t) = a� b � exp(�c � t); (7)

G(t) = exp(a� b � exp(�c � t)); (8)

L(t) = a=(1 + b � exp(�c � t)); (9)

7. IMPLEMENTATION

The calculation engine was implemented in plain ANSI-C programming lan-

guage, in order to obtain a carefully optimized code. Intermediate lookup tables

considerably speed up the computation of a PP many members cash 
ows. A

PP with a population of 100.000 members takes about 3 hours of processing

time on a Pentium 750MHz machine (MSWindows or Linux).

A GUI (Graphical User Interface), written in Delphi, provides an intuitive

and easy to customize interface to the corporate user. A Delphi multi-platform

data transfer interface downloads and updates the necessary data on a local

database (ex. AWK or Access) from the corporate environment (ex. DB2 on

an IBM-AS-400).

The analysis and simulations made with the actuarial system are used as

inputs to the PPs �nancial portfolio management. Several optimization models,

usually employing dynamic and stochastic programming, are used with this

objective [3] [9] [13] [14] [15] [16] [20] [22].
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APENDIX 1

function fus= rank2(a1,a2)

% F(t) is the components cumulative %life probability distribution

% F(t) = Pr(l<=t)

% Its complement is the survival probability distribution

% Fc(t) = 1-F(t) = Pr(l>t)

% The failure probability at the next %period x given the survival up to

% current time t is

% F(x|t) = (F(t+x)-F(t))/Fc(t) = 1 -Fc(x|t)
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% The failure rate, hazard rate or %force of mortality at age t is

% h(t) = f(t)/Fc(t)

% Integrating

% I[0:x] h(t)dt = -log(Fc(x))

% Fc(x) = exp(-H(x))

% H(x) = I[0:x] h(t)dt

% A(:,1)= age

% A(:,2)= h(t)

nx=100;

%maximum age at life table

% generates test assuring h(nx)==1;

% a= 1:nx; h= (1/nx)*a; h=h.^5; %plot(h);

% f= life density; h= haz.rate;

% a= age; c=complement; u=cumulative

aux=0;

for i=1:nx

aux= aux +h(i);

hu(i)= aux;

fuc(i)= exp(-hu(i));

fu(i)= 1-fuc(i);

end

% 2 lifelong dependents

% ak= current age of k-th depend

% Xk= surviv. of k-th depend.
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% R2= sup{X1,X2} R1= inf{X1,X2}

% Pr(R2<=t|a1,a2).

% = Pr(X1<=t|a1 and X2<=t|a2)

% Pr(R1<=t|a1,a2)

% = Pr(X1<=t|a1 or X2<=t|a2)

% Pr(R1>t|a1,a2)

% = Pr(X1>t|a1 and X2>t|a2)

for t=1:100

if( (a1+t)>nx )

fua1(t)=1;

else %Pr(X1<=t|a1)

fua1(t) = ((fu(a1+t)-fu(a1))/fuc(a1));

end

if( (a2+t)>nx )

fua2(t)=1;

else

fua2(t) = ((fu(a2+t)-fu(a2))/fuc(a2));

end

f2u(t)= fua1(t)*fua2(t);

f1u(t)= fua1(t) +fua2(t) -f1u(t);

end

fus=[fu;f2u;f1u;fua1;fua2];

plot(a',fu','--b',a',f2u,'-r',a',f1u, '-r',a',fua1','--k',a',fua2','--k');

title(['Order statistics for survival',int2str(a1),' and ',int2str(a2)]);
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